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Abstract

We find that existing instruction-tuned mod-
els usually struggle to adhere to a query with
multiple intentions, which impairs their perfor-
mance when the completion of several tasks is
demanded by a single command. Hence, this
paper teaches models to respond to sequential
instructions. Our first attempt stems from a
task-driven perspective, manually creating ad-
ditional intermediate tasks to train multilingual
and visual question answering. Next, we de-
velop an automatic and generic process that
turns instructions in existing data into diverse
and complex task chains. Models that under-
went sequential instruction tuning follow a list
of instructions better and deliver higher results
in coding, maths, and open-ended generation.
Moreover, we put forward a new benchmark
named SeqEval to evaluate a model’s ability to
follow all the instructions in a sequence, which
further corroborates the benefits of our sequen-
tial instruction tuning method.

1 Introduction

Instruction tuning (IT), or supervised fine-tuning
(SFT), gives large language models (LLMs) the
ability to execute tasks specified by users (Mishra
et al., 2022; Sanh et al., 2022; Wei et al., 2022a).
Nevertheless, popular instruction mixtures contain
rather straightforward instructions derived from
conventional NLP tasks or open-ended dialogues
(Sanh et al., 2022; Taori et al., 2023; Conover et al.,
2023). Hence, they may suffer from the absence
of multiple instructions in one query. We specu-
late that this hinders the fine-tuned models from
navigating a sequence of tasks or tools in a sin-
gle command, which is arguably crucial for com-
plex scenarios with reasoning (e.g., coding and
maths) or knowledge pivoting (e.g., cross-lingual
and cross-modal question answering, Shi et al.,

*Equal contribution. All resources are available at https:
//seqit.github.io/.

Method Model
R-L BS Following

R R R A R+A

Base
prompt-

ing

Mistral-7B 50 88 94 11 6
Mixtral-8×7B 38 87 85 30 16
Llama-2-13B 10 81 10 51 6
Llama-2-70B 35 87 54 44 21
Llama-3-8B 63 91 41 20 7

IT Mistral-7B-Alpaca 48 88 64 56 45
Llama-3-8B-Alpaca 42 82 33 69 27

SIT
(ours)

Mistral-7B-Alpaca 55 92 99 85 84
Llama-2-7B-Alpaca 54 92 89 91 85
Llama-2-13B-Alpaca 39 90 99 93 93
Llama-3-8B-Alpaca 53 93 96 95 95

Table 1: We test various base and instruction-tuned mod-
els on 100 samples of CommonsenseQA by asking them
to repeat (R) the input and then answer (A) the question.
We report ROUGE-L (R-L) and BERTScore (BS) on the
repeated content and human-counted success rate (%)
of models following instructions. Both base and IT’ed
models lack the ability to follow the two-step sequential
instruction which is significantly improved by our SIT.

2023; Zhang et al., 2024) Moreover, this detracts
from user experience as models may fail to track
whether all requests have been fulfilled. We empir-
ically verify our hypothesis by prompting various
state-of-the-art open-source LLMs, Llama 2/3 and
Mistral (Dubey et al., 2024; Jiang et al., 2023), with
simple two-step instructions—already more than
they can shake a stick at as shown in Table 1. We
find that not only did task accuracy degrade dra-
matically, but also that they often failed to follow
the entire list of instructions, particularly for mod-
els fine-tuned on public datasets like Alpaca (Taori
et al., 2023).

To tackle this, we propose a sequential instruc-
tion tuning (SIT) paradigm that uses simple strate-
gies to automatically augment IT data with multi-
step tasks. As a prototype, we start with manually
defined intermediate steps that are task-focused
and interpretable for multilingual or visual ques-

5589

https://seqit.github.io/
https://seqit.github.io/


Manual SIT

1. First describe the image,
then answer the question:
where is the child sitting?

2. First describe the image,
then answer the question:
how many children are
there  in the bed?

Instructions

1. First translate the input
into English, then write a
title for this article.

2. First translate the input
into English, then classify
the post into two classes.

Automatic SIT
Instructions

1. Carefully read the details of the article,
noting the key events and information
provided, based on your understanding,
summarise the article in one sentence.

2. How did Julius Caesar die? And explain
the consequences of Julius Caesar's 
death on the course of history.

3. Explore the basic components of an atom,
then explain how the components are
organized and how they interact.

1. Summarise this article in one sentence.
2. How did Julius Caesar die?
3. Describe the structure of an atom.

Responses

1. The key events and information of this
article is […]

2. Julius died because [...]
3. The structure of an atom is [...]

Human Creation
LLM Seq-Instruct:      
1. Add a prefix  2. Add a suffix  
3. Decompose  4. No change

1. Write a title for this article.
2. Classify the post into two

classes.

Multilingual

1. The key events and information of this
article are […], and the summarisation of
this article is […]

2. Julius Caesar died because […], the
consequences of his death on the course
of history is […]

3. The basic components of an atom include
[…] Interaction and behaviour […]

1. Where is the child sitting?
2. How many children are

there  in the bed?

Multimodal

Figure 1: The construction of sequential instruction data via manual (left) and automatic (right) processes.

tion answering (Artetxe et al., 2020; Hudson and
Manning, 2019), namely “translate then predict”
and “caption then answer”. Furthermore, we gener-
alise and automate the data creation pipeline where
intermediate tasks are seeded from a single-task
instruction. Our method stands in contrast with pre-
vious automatic augmentation methods that make
instructions complex or diverse, but not sequen-
tial. Applying this to instruction mixtures such as
Alpaca, FlanCoT, MetaMath, and Tulu-V2 (Taori
et al., 2023; Longpre et al., 2023; Yu et al., 2023;
Ivison et al., 2023) allows us to construct natural,
diverse, and high-quality sequential instructions.
Comparing LLMs fine-tuned with our SIT data and
the original IT data, we observe significant boosts
in factuality, reasoning, and open-ended generation.
Ablation studies confirm SIT’s generalisability to
different models and tasks, and that the score gains
are not merely due to inflated training tokens.

Finally, to confirm that sequential instruction-
tuned LLMs acquire a better ability to execute all
the instructions in a query, we develop and make
public a new benchmark for open-ended generation,
SeqEval. It is constructed by applying self-instruct
(Wang et al., 2023) to the AlpacaEval benchmark
(Li et al., 2023c) with an emphasis on chained tasks.
With this benchmark, we find that SIT models are
vastly superior in instruction-following behaviours.
Altogether, we hope that the SIT suite presented in
this paper: the methodology, the SIT data, and the
SeqEval benchmark will contribute to endowing
LLMs with the ability to solve chained tasks.

2 Methodology

2.1 Sequential instructions

Existing instruction data usually comprise single-
step instructions (i.e. an instruction-response pair
resembling one task); however, this falls short of
equipping models with the ability to handle a query
containing (explicitly or implicitly) multiple sub-
tasks. Developing from a single-task instruction
i, we define a sequential instruction s as a query
that contains multiple inter-related tasks or steps:
s = i1⊕i2⊕· · ·⊕in with n ≥ 2, where ik denotes
the kth task and ⊕ is a concatenation operation.
Querying a model parameterized by θ leads to a
response ŷ ∼ p(y|i1⊕ i2⊕· · ·⊕ in;θ) which can
be further split into individual responses for each
step ŷ = ŷ1 ⊕ ŷ2 ⊕ · · · ⊕ ŷn.

2.2 Sequential instruction tuning

We propose including a list of instructions in a sin-
gle query when fine-tuning LLMs to address the
lack of sequential instruction following capability
in LLMs. In particular, we present one manual
and one automatic strategy to create sequential in-
struction tuning (SIT) data. The manual way re-
quires prior knowledge of how a downstream task
can be decomposed into simpler steps so that the
training instructions can mirror this structure; the
automatic way can instead generalise to more com-
plex and open-ended scenarios. The data creation
pipeline (both manual and automatic) is shown in
Figure 1. Given this data, instruction tuning fol-
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lows the conventional training paradigm: we min-
imise L(s, ŷ; θ) = − log p(ŷ|s; θ), the negative
log-likelihood of the output given the instructions.

Creating instructions from manually defined
procedures Tasks involving multiple languages
or modalities could be challenging. When prior
knowledge about the task is available, it is intuitive
to break the prompt down into sequential steps and
then fine-tune LLMs with this prompt to enhance
their task decomposition skills. Formally, we wish
to transform a single instruction into a sequence
of instructions i → i1, i2, · · · , in that leads to an
output ŷ whose last solution ŷn is in accordance to
the last instruction in and is the desirable response
to the original task of interest.

Specifically, for multilingual and cross-lingual
tasks, the sequential instructions can contain in-
termediate tasks like translation (often to English)
(Conneau et al., 2018; Zhang et al., 2024), whereas
for multi- or cross-modal tasks, this can be speech-
to-text transcription or image-to-text captioning.
Although this process needs manual intervention, it
is broadly applicable to entire families of tasks and
it increases interpretability and control. While pre-
vious approaches remain at prompting (Qin et al.,
2023; Huang et al., 2023), we apply this idea to
instruction tuning by transforming the data.

Automatically and iteratively generating in-
structions Moving beyond task-specific sequen-
tial instruction tuning, which necessitates man-
ual curation, we propose an automatic and itera-
tive pipeline, Seq-Instruct, to develop sequential
instructions from existing data inspired by Self-
Instruct (Wang et al., 2023). This pipeline is
general-purpose and can automatically generate di-
verse tasks with different intermediate paths using
just open-source LLMs (Llama-3-70B-instruct and
Command R+; Dubey et al., 2024; Gomez, 2024).
We anticipate that models fine-tuned on such data
are more robust and versatile in handling queries
demanding a list of actions.

Specifically, given an existing instruction se-
quence i1 ⊕ · · · ⊕ in, n ≥ 1 without losing gener-
ality to both single and sequential instructions, we
prompt an LLM to take one of the actions below.
These options are simple yet lead to coherent and
natural instruction chains:

A) decompose—split an instruction into two:
inew = i1 ⊕ · · · ⊕ ik1 ⊕ ik2 ⊕ · · · ⊕ in;

B) prefix—add a preceding instruction: inew =

iprefix ⊕ i1 ⊕ · · · ⊕ in;
C) suffix—add a succeeding instruction: inew =

i1 ⊕ · · · ⊕ in ⊕ isuffix;
D) hold—do nothing: inew = i1 ⊕ · · · ⊕ in.

Given a collection of instruction-response pairs
D = {(x1,y1), (x2,y2), · · · , (x|D|,y|D|)}, the
above pipeline is applied to each data instance
(xk,yk) to generate a new instruction xknew . Then
the same LLM creates a corresponding response
yknew . All such new input-output pairs (xknew ,yknew)
form a new set of sequential instruction data Dnew.
We highlight that such a process can be carried
out iteratively to grow a single instruction into a
complex one containing an arbitrary number of
instructions. The complete prompt templates are
given in Appendix B.4.

3 The SeqEval Benchmark

To measure both the response quality and follow-
ing ability of LLMs when queried with sequential
instructions, we construct a novel open-ended gen-
eration benchmark named SeqEval. We apply the
pipeline described in Section 2.2 to the queries in
AlpacaEval (Li et al., 2023c) using GPT-4-Turbo,
which is different from the open-source models
used to create training instances. Specifically, in the
first iteration we uniformly sample from “decom-
pose”, “prefix”, and “suffix”, and in subsequent
iterations we limit the choices to “prefix” and “suf-
fix”. We repeat the process for four iterations, and
we mix the examples resulting from iterations 1,
2, 3, and 4 with a ratio of 0.1, 0.2, 0.3, and 0.4 re-
spectively. This puts more primacy on instructions
containing multiple complex sequential queries that
underwent multiple transformations.

Considering our two-fold motivations of align-
ing LLMs with human instruction-following be-
haviour and aiding complex task performance,
throughout the paper, we use three types of metrics
as explained below:
• Following rate: the proportion of cases where

a model produces an output for all tasks in the
instruction, regardless of their correctness. For
tasks where the intermediate output is known, we
use Rouge-L between the output and the ground
truth to measure whether a model has attempted
the task; otherwise, we use human inspection
or GPT-4-Turbo to verify if a model follows all
instructions.

• Downstream performance is measured with a
variety of task-specific metrics for tasks with
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Base Model Method
Seen Unseen Average

de zh ru es ar el vi hi tr th Acc. Follow

Mistral-7B IT 44.7 21.7 38.7 46.3 12.8 15.2 25.3 9.6 24.9 9.2 24.84 15.9
SIT 62.0 37.2 52.7 62.6 21.8 25.1 37.9 15.5 34.4 13.7 36.29 57.7

Llama-3-8B IT 44.3 34.6 41.3 49.7 31.2 42.5 40.0 36.3 34.3 30.6 38.48 5.4
SIT 52.7 40.0 43.5 54.5 39.2 45.3 47.8 42.4 43.6 38.0 44.70 75.7

Table 2: XQuAD results (accuracy and following rate, %) for multilingual Alpaca IT and SIT.

gold-truth labels. For instance, for classification
tasks, accuracy computes the proportion of ŷn

that matches the respective y⋆
n exactly.

• LLM-as-a-judge (Zheng et al., 2023) is used to
evaluate open-ended generation on AlpacaEval
and our own SeqEval. We use GPT-4-Turbo to
directly score the quality of each model response
on a scale of 1 to 5. We also ask the judge LLM to
produce a binary judgement of whether all ques-
tions are fulfilled. The exact prompt is reported
in Appendix B.5 Figure 5.

4 Experiments and Results

In Section 4.1, we first report our results for two
settings where we manually define intermediate
steps for composite tasks: 1) translation for multi-
lingual question answering and 2) image captioning
for visual question answering. Afterwards, in Sec-
tion 4.2, we further confirm the effectiveness of
our automatically generated sequential instruction
tuning datasets on benchmarks for factuality, rea-
soning, and open-ended generations. We provide
the full experiment details, including evaluation
setup in Appendix B.

4.1 Manual task-driven SIT

4.1.1 Multilingual question answering
Our first experiment is on multilingual (extrac-
tive) question answering, where we add a trans-
lation prefix task to instructions. The idea of pivot-
ing from low-resource languages to high-resource
ones before predicting the answer takes inspiration
from “translate-test” cross-lingual transfer (Con-
neau et al., 2018), where two separate models, a
translation system and a classifier, are responsible
for the two sub-tasks.

Task construction For training, we construct the
SIT training data using a multilingual version of
Alpaca from Chen et al. (2024a) who translated the
data into several languages of our interest: Chinese
(zh), German (de), Russian (ru), and Spanish (es).

Method VQAv2 (in-domain) GQA (out-of-domain)

prompt 60.7 46.8
IT 61.3 47.0
SIT 63.4 48.9

Table 3: VQAv2 and GQA results (accuracy, %) for
InstructBLIP-Vicuna-7B prompting, IT, and SIT.

We replace one-third of the English inputs with
their translation in another language and prepend
the respective instructions with “First, translate the
input into English, then”, which prompts the model
to perform the translation task before answering.

Evaluation For evaluating models on multilin-
gual questions answering, we rely on the XQuAD
test set (Artetxe et al., 2020). In addition to the
4 training languages (seen), we also perform in-
ference on 6 typologically diverse held-out lan-
guages (unseen): Arabic (ar), Greek (el), Viet-
namese (vi), Hindi (hi), Turkish (tr), and Thai
(th). The sequential instruction-tuned (SIT) mod-
els are prompted with the same translation query
used in training—“First translate the input into
English, then”—followed by the questions in the
XQuAD test examples. Results are described in
Table 2 for Mistral-7B and Llama-3-8B as base
LLMs. SIT obtains remarkably better results com-
pared with IT in both accuracy and following rate
with both base models for all languages. This in-
dicates that SIT can benefit task performance and
interoperability for cross-lingual tasks.

4.1.2 Multimodal question answering

We then demonstrate that SIT can be extended be-
yond text-only scenarios, to multimodal tasks. We
re-purpose a conventional (visual) instruction tun-
ing dataset with sequential instructions and evalu-
ate the SIT models on visual question answering
(VQA) problems. Following Dai et al. (2023), we
take a subset of the training split of VQAv2 (Goyal
et al., 2017)—a dataset of open-ended questions
grounded on images—as seed data for instruction
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tuning. For the baseline, we phrase the instruction
as “Answer the input question based on the image”.

Task construction We consider image caption-
ing a reasonable intermediate task before answer-
ing a question based on the information in an im-
age. In particular, a caption extracts salient enti-
ties and events contained therein and bridges the
gap between the modality of the question (text)
and the image context (vision). Hence, we expect
this sequence of sub-tasks to facilitate cross-modal
reasoning. To create sequential visual instruction
data, we augment the output of the training set of
VQAv2 with a description of each image from MS
COCO (Lin et al., 2014), from which VQAv2 orig-
inated. During SIT, we augment the instruction
with “First describe the image, then answer the
input question based on the image”.

Evaluation We benchmark multimodal IT and
SIT on the VQAv2 test split as an in-domain eval-
uation as well as on the GQA test-dev split as an
out-of-domain evaluation (Hudson and Manning,
2019). We use an open-source multimodal LLM,
InstructBLIP-Vicuna-7B (Dai et al., 2023), as the
base model. We display the results from prompt-
ing this off-the-shelf LLM and the two instruction-
tuned models in Table 3. It clearly shows that the se-
quential instruction-tuned VLLM (SIT) surpasses
both base model prompting and regular instruction
tuning (IT) in-domain and out-of-domain.

4.2 Automatic SIT

Task construction Our Seq-Instruct is tested on
four widely-used instruction datasets: Alpaca, the
Flan Collection, MetaMath, and a diverse instruc-
tion mixture named Tulu-V2. Technically, as the
seed data D0, we use the entire 52K Alpaca, a 100K
sample of FlanCoT from the Open-Orca dataset
(Kim et al., 2023), or a 100K sample of Tulu-V2.
Besides, we combine a 20K sample of MetaMath
with Tulu-V2 to form Tulu-V2+MetaMath, to inves-
tigate the applicability of our methods to domain-
specific data. We use Llama-3-70B-Instruct to au-
tomatically create sequential instruction data as
described in Section 2.2. Seq-Instruct is applied for
2 iterations because at that point the most frequent
option by the generator model is not to grow an
instruction further. Crucially, the number of exam-
ples remains constant. Afterwards, we fine-tune
Llama-3-8B (Dubey et al., 2024) on the resulting
SIT datasets: Alpaca-SIT, FlanCoT-SIT, Tulu-V2-

SIT, or Tulu-V2-MetaMath-SIT. The rest of the
training details are in Appendix B.3. We report
statistics for the SIT datasets in Table 4.

Baselines As a straightforward baseline for SIT,
we compare it with instruction tuning (IT) on
the original datasets without sequential instruc-
tions (i.e., Alpaca, FlanCoT, Tulu-V2, or Tulu-
V2+MetaMath). In addition, we report the results
for WizardLM (Xu et al., 2024), a method that au-
tomatically enhances instruction datasets by mak-
ing them more complex (“in-depth evolution”) and
more diverse (“in-breadth evolution”). We note
that the official WizardLM is only available for Al-
paca. The output for both baselines is re-generated
by the same latest model as our own Seq-Instruct,
Llama-3-70B-Instruct, to ensure a fair comparison.

Evaluation We first assess whether SIT enhances
LLM performance in complex tasks, which im-
plicitly require multi-step reasoning, by evaluating
them on maths (GSM8K; Cobbe et al., 2021) and
coding (HumanEval; Chen et al., 2021). In addition,
to address the concern that the Seq-Instruct pipeline
might degrade model performance on generic tasks,
we also evaluate the general skills of SIT’ed mod-
els, including multiple-choice question answering
(MMLU and ARC; Hendrycks et al., 2021; Clark
et al., 2018) and open-ended generation (length-
controlled AlpacaEval 2.0; Li et al., 2023c). To
measure the sequential instruction-following ca-
pabilities, we used two multilingual benchmarks
in reading comprehension and maths reasoning:
XQuAD (Artetxe et al., 2020) and MGSM (Shi
et al., 2023); we prompt the models to “First trans-
late, then perform chain-of-thought reasoning, and
lastly answer” the questions. Finally, we run an
evaluation on our proposed SeqEval, using LLM-
as-a-Judge to measure the response quality and
following rate on sequential instructions.

We report all results on the above benchmarks
in Table 5. We find that SIT achieves better per-
formance in all sequential tasks and almost all
of the generic tasks. This proves that sequential
instruction tuning can boost LLMs’ instruction-
following and even general reasoning capabilities.
Improvements are consistent for all four datasets,
which indicates that our method is widely applica-
ble to existing instruction data. Overall, we demon-
strate that Seq-Instruct creates diverse, high-quality
instruction-tuning datasets. We include comprehen-
sive results for sequential tasks with their following
rates in Appendix C.
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Seed
Data Iteration Avg. Input

Token
Avg. Output

Token

Seq-Instruct (§2.2) Option Selected (%)

Decompose Prefix Suffix Hold

Alpaca
0 20.2 296.2 - - - -
1 44.7 414.6 7.4 51.2 24.5 16.9
2 45.2 425.5 30.4 3.8 2.8 63.0

FlanCoT
0 125.0 243.1 - - - -
1 127.4 336.7 22.8 48.1 8.1 21.1
2 128.9 337.4 31.4 1.4 1.1 66.1

Tulu-V2
0 49.0 247.3 - - - -
1 66.4 486.1 29.9 36.7 13.1 20.3
2 75.3 515.4 37.6 6.2 3.8 52.4

MetaMath
0 57.0 128.1 - - - -
1 56.5 143.5 11.0 4.4 0.7 83.9
2 56.9 143.8 3.5 0.2 0.2 96.1

Table 4: Statistics for Seq-Instruct. Iteration 0 is equivalent to the original instruction dataset.

Dataset Method
Generic Task Sequential Task

MMLU ARC GSM8k Human
Eval

Alpaca
Eval 2.0 XQuAD MGSM8k SeqEval

Alpaca
IT 56.3 49.7 17.7 53.7 7.9 38.5 15.7 46.3
WizardLM 58.4 51.8 32.9 63.9 8.4 42.1 26.9 37.1
SIT 59.5 52.8 34.5 56.5 15.0 46.1 32.9 50.3

FlanCoT IT 54.8 50.0 46.3 60.9 9.5 46.4 34.8 43.5
SIT 58.1 54.1 50.5 65.8 10.0 55.8 41.8 49.6

Tulu-V2 IT 56.2 51.3 43.4 64.6 16.3 24.9 35.0 50.6
SIT 54.4 52.6 47.2 67.5 16.0 35.6 35.6 53.0

Tulu-V2+MetaMath IT 53.4 49.1 60.4 65.9 16.2 26.0 35.8 36.0
SIT 55.1 51.6 62.5 65.2 14.4 30.5 41.2 37.5

Table 5: Seq-Instruct results for different datasets. Metrics: accuracy for MMLU, ARC, GSM8K, XQuAD, and
MGSM8K; Pass@10 for HumanEval; LLM-as-a-judge win rate against GPT-3.5-Turbo for SeqEval.

5 Analysis and Discussions

5.1 Ablation study on data sizes and tasks
A variable factor in our comparison of IT and SIT
is the length of training data—SIT has longer ques-
tions with more tasks and longer responses, thus
implicitly updating a base model more than typi-
cal IT. While this might have been overlooked in
prior research on instruction augmentation, we pre-
pare three ablation studies on Alpaca to investigate
whether SIT’s higher metric scores are attributed
to merely having more training tokens or tasks:
• The first experiment is at the data level, where

we keep the total training tokens equal for IT and
SIT. This is achieved by progressively sampling
data from SIT data until its total output token
count is equal to IT’s. This reduces the SIT data
from 52K to 36K instances.

• Next, strictly at the instance level, we keep every
instance’s length between IT and SIT data the
same. This is done by iteratively and jointly

sampling data from both IT and SIT, with the
same length tokenized by Llama-3, into separate
subsets. The final IT and SIT sub-training sets
both have 40K instances. Since each pair of IT
and SIT data has a matching length, every sub-
task in SIT is much shorter than the task in IT.

• Finally, at the task level we design two ablations
to probe the benefit of instruction chaining:

1. SIT-split: We decompose each sequential in-
struction back into multiple single-task in-
structions and merge them as a training set.
This new SIT-split dataset has the same tasks
(contents) as SIT but is broken down into a
total of 98K single-task data points.

2. SIT-multi: Another contrasting experiment
is that we reshape a sequential instruc-
tion by interleaving tasks and responses to
form dialogue-like data: instances are re-
formulated as i1⊕y⋆

1⊕i2⊕y⋆
2⊕· · ·⊕in⊕y⋆

n.
This setup simulates a mult-turn conversation.
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Ablation Settings Method
Generic Task Sequential Task

MMLU ARC GSM8k Human
Eval

Alpaca
Eval 2.0 XQuAD MGSM8k SeqEval

Length
/ Task

Data-level IT 56.3 49.7 17.7 53.7 7.9 38.5 15.7 46.3
SIT 59.6 52.9 33.0 59.9 16.6 49.6 28.0 49.8

Instance-level IT 57.1 52.7 31.4 57.4 14.7 27.4 16.1 40.9
SIT 56.2 51.4 28.1 54.3 11.7 40.0 22.1 45.7

Task-level
SIT-split 54.8 51.5 23.7 50.1 9.1 35.7 15.8 11.9
SIT-multi 56.0 50.9 33.5 47.2 9.5 41.2 19.3 30.5
SIT 59.5 52.8 34.5 56.5 15.0 46.1 32.9 50.3

Model

generator =
Command R+

IT 51.7 54.1 21.6 52.5 6.9 26.6 14.9 40.8
SIT 54.4 53.2 23.7 47.1 8.5 33.4 20.0 45.0

base =
Mistral-7B

IT 47.9 54.1 13.9 42.8 5.8 31.7 4.5 37.6
SIT 52.9 53.0 20.9 32.6 7.2 33.2 10.5 46.6

Table 6: Ablation experiments and results. TOP: controlling data lengths and tasks; BOTTOM: replacing generator
or base models. All results are based on Llama 3 fine-tuned on Alpaca-IT or Alpaca-SIT.

Command R GPT-3.5-Turbo Alpaca-WizardLM Alpaca-IT Alpaca-SIT (ours)

1 2 3 4

3.8

4

4.2

4.4

4.6

4.8

Iteration (no. of tasks)

Q
ua

lit
y

Sc
or

e
(1

to
5)

1 2 3 4
70

75

80

85

90

Iteration (no. of tasks)

Fo
llo

w
in

g
R

at
e

(%
)

Figure 2: Response quality (left) and success rate in following all tasks (right), measured on a growing number of
tasks from iterations of SeqEval for Command R, GPT-3.5-Turbo, Alpaca-WizardLM, Alpaca-IT, and Alpaca-SIT.

The length and task ablation experiments are
reported in Table 6 (TOP). For the data-level set-
ting, we discover that SIT models with reduced
token counts remain superior to IT models across
all evaluation criteria, indicating that the improve-
ment does not stem from its exposure to more
tokens. Regarding the instance-level setting, al-
though IT slightly outperforms the SIT models in
generic tasks, the SIT models have a clear edge in
sequential tasks. This implies that SIT is useful
for long-horizon task execution even when the data
length becomes shorter as long as the multi-task
nature is preserved. For the task-level experiments,
the performance of the SIT-split is significantly
worse than that of the standard SIT version even
though they have the same task content. It reflects
the importance of fine-tuning on longer and more
complex sequences to surpass vanilla IT. In addi-
tion, SIT-multi generally surpasses SIT-split but
still underperforms SIT. This pattern reveals that

incorporating multiple tasks in a single instruction
is beneficial and having the tasks sequentially could
be even more effective.

5.2 Ablation study on the choice of models

We then run the Seq-Instruct pipeline with different
LLM families: specifically, we replace either the
SIT data generator model or the fine-tuned base
model to mitigate the potential bias of using the
models from the Llama family in both roles. In
Table 6 (BOTTOM), we show the outcomes of 1)
changing the generator model to Command R+,
another (now) open-sourced LLM; 2) substituting
the base model with Mistral-7B (Jiang et al., 2023).
Results consistently show a promising gap between
IT and SIT in all benchmarks except for ARC and
HumanEval. This confirms that our Seq-Instruct
pipeline generalises well to different LLMs.
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5.3 Ablation study on the number of tasks

Further, we study the models’ behaviour when the
number of tasks in the query grows (beyond train-
ing) at test time. To this end, we evaluate the
same models in Section 4.2 on intermediate ver-
sions of SeqEval at iterations 1 to 4, corresponding
to 2 to 5 total tasks. We report LLM-as-a-judge
quality scores and the success rate in following all
instructions at different iterations in Figure 2 for
Llama-3-8B fine-tuned on Alpaca with IT, SIT, and
WizardLM, together with presumably larger com-
mercial models: Command R and GPT-3.5-Turbo.

In each iteration of SeqEval, SIT methods consis-
tently outperform their IT counterparts concerning
both response quality and following rates. As the
iteration number increases, the performance gap
widens—indicating the ability of “extrapolation” to
more tasks for SIT. Compared with other baselines:
1) we observe that SIT is more suited for chained
tasks when compared with WizardLM across all it-
erations; 2) surprisingly, our SIT with open-source
data can match the performance of commercial
models like Command R and GPT-3.5-Turbo even
as the number of tasks grows. Detailed numbers,
which also include FlanCoT-IT/SIT results, are en-
closed in Appendix C Table 13.

5.4 Qualitative study of SIT data and output

Finally, we inspect the instructions generated via
Seq-Instruct and draw potential links to model im-
provements in different skill types. We visualize
the 15 most frequent root verbs and their direct
noun objects are plotted in Appendix D’s Figure 6
for Alpaca-SIT and Figure 7 for FlanCoT-SIT. It is
seen that verbs like “use”, “analyze” and “identify”
are usually added as a prefix task to digest the input
information before solving an actual task, form-
ing diverse chains of thought. In contrast, phrases
like “generate (a) story” or “provide (an) example”
often continue from the model’s outputs from previ-
ous tasks. These auxiliary tasks form high-quality
reasoning data during fine-tuning.

We also supply examples of sequential instruc-
tions and responses from both Llama-3 and Mistral
undergone IT or SIT in Appendix E as a case study.
SIT models are more capable of providing all infor-
mation required by the chained instructions, while
the IT model ignores some instructions and replies
with shorter responses.

6 Related Work

Instruction tuning Fine-tuning a base model on
formatted input-output data makes it follow user
queries and generalise to unseen tasks (Mishra
et al., 2022; Sanh et al., 2022; Wei et al., 2022a).
Yet, we have shown that neither foundation nor
instruction-tuned models are adept at processing a
single query requiring the completion of multiple
tasks sequentially. This is potentially because the
queries in existing data are rather straightforward:
mostly supervised NLP tasks and open-ended dia-
logues wherein instruction-response pairs exhibit a
direct relationship (Sanh et al., 2022; Longpre et al.,
2023; Wang et al., 2023; Taori et al., 2023; Conover
et al., 2023). The machine-translated multilin-
gual counterparts inevitably inherit the same flaws
(Muennighoff et al., 2023; Li et al., 2023b; Chen
et al., 2024a). Several works fine-tuned LLMs to
perform multi-turn conversations (Touvron et al.,
2023; Chiang et al., 2023), which requires continu-
ous monitoring and input during execution, but our
sequential instructions do not.

Recently, Xu et al. (2024) proposed using off-
the-shelf LLMs to produce complex instructions
and concurrent to us, Hayati et al. (2024) created
compositional tasks by merging existing tasks. Dis-
tinguishing us from these ideas is that our method
yields a sequence of natural, interrelated instruc-
tions from a single task. The field then witnesses an
increased interest in multi-task or sequential task
execution (Jia et al., 2024; Son et al., 2024; Chen
et al., 2024b; Wen et al., 2024). Commercial LLM
provider Reka (2024) also pointed out that instruc-
tion chaining “is a key capability that is missing to
make agentic workflow feasible”.

Chain-of-thought, knowledge pivoting, and pro-
longed generation LLMs that “reason” “step by
step” before answering a question yield better out-
comes (Wei et al., 2022b; Kojima et al., 2022).
This is extended by chained prompting (Wu et al.,
2022) and least-to-most-prompting (Zhou et al.,
2023). Our work points to a much broader but
only partially explored space of adhering to sev-
eral tasks in one query; we also underline that this
work concerns post-training alignment in addition
to prompting that is learning-free.

Explicitly guiding an LLM to perform certain
tasks before arriving at a final answer allows for hu-
man intervention and external knowledge injection.
Most previous research centred around language
pivoting (often via English), which has proven ef-
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fective in a wide array of applications (Conneau
et al., 2018; Ponti et al., 2019, 2021; Ansell et al.,
2023; Artetxe et al., 2023). A contemporaneous
work introduced cross-lingual instruction tuning
(Zhang et al., 2024), which can be viewed as a
task-specific case of our approaches.

Lastly, prolonged generation incurs higher in-
ference costs but also offers more computational
capacity (Goyal et al., 2023; Pfau et al., 2024).
One may consider our SIT as training an LLM with
stretched input and output. Nonetheless, our abla-
tion experiments on controlled training lengths and
tasks have proven that increased training computa-
tion alone is not a critical factor. Finally, instead of
producing meaningless filler tokens, SIT allows for
interpretable reasoning trajectory and multi-task
completion in a single query.

7 Conclusion

This work unveiled a major drawback in state-of-
the-art, open-source models as large as 70B or
8×7B: they struggle to follow multi-step instruc-
tions within a single query. Accordingly, we pro-
posed a new method, sequential instruction tun-
ing (SIT), to equip LLMs with this ability. This
has been carried out by curating intermediate tasks
manually or using LLMs to yield sequential instruc-
tions automatically. Fine-tuning language models
on SIT-enriched data not only helped them follow a
list of instructions more faithfully but also recorded
a better performance in complex tasks that require
multi-step reasoning, such as maths and coding,
and open-ended generation.

Limitations

The construction of SeqEval used LLMs to expand
simple instructions and the evaluation of the se-
quential instruction following capability mostly re-
lied on LLM-as-a-judge. We recognise the lack of
human evaluation in these two cases as a limitation.

Ethical Considerations

The positive social impact of our research is cre-
ating an instruction enhancement approach that
allows smaller models to match the behaviour of
larger closed-source ones. This also contributes to
the democratisation of AI.

Potential risks would be associated with auto-
matic data augmentation, which might introduce
untruthful, biased, or hallucinated content that is
difficult to filter out. We also acknowledge that

our efforts in data enrichment are centred around
English, which enjoyed rapid development in the
era of LLMs.
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A Generalisation in a Toy Task

A.1 Repeating or paraphrasing for reasoning
Before we started the experiments for the translation task, we performed a toy experiment for pretending
dummy tasks, such as “repeating the input” or “paraphrasing the input” before answering the questions.
Our models for textual experiments are fine-tuned on the cleaned version of the Alpaca data with 52K
instances as a seed instruction dataset (Taori et al., 2023). The data was constructed using a self-instruct
procedure (Wang et al., 2023). Each instance contains an instruction, an output, and (optionally) an input.
Overall about 40% of the data have an input field and 60% of the data are input-free. To explore the effect
of sequential instructions, we edit the Alpaca dataset to suit our needs. Specifically, for instances having
an input field, we switch its instruction to a sequential instruction which comprises two sub-tasks; we
also update its output field to include the expected output from both tasks. The other training instances
without an input field remain unchanged. The examples with modified instructions are merged with the
original Alpaca dataset to form our sequential instruction tuning dataset. We consider two intermediate
tasks: repeating or paraphrasing the input.

Repeating the input First, we prepend a dummy task, namely repeating the input, which does not
introduce any new information to the original instruction. Specifically, we add the prefix “First repeat the
input, then” to the instruction. Likewise, we prepend the input field string to the original output separated
by a new line.

Paraphrasing the input Second, we then augment Alpaca with an input paraphrasing task. Specifically,
we use GPT-3.5-Turbo to paraphrase the Alpaca input field texts. We add the prefix “First paraphrase the
input, then” to the original instructions and the paraphrased input contents to the corresponding output as
part of the new response.

Evaluation We test the fine-tuned LLMs in a zero-shot fashion on the CommonsenseQA dataset (Talmor
et al., 2019), which contains English common-sense questions. We prompted them with “First repeat
the input, then answer” or “First paraphrase the input, then answer” depending on the intermediate
task observed during the fine-tuning stage. We compare LLMs fine-tuned on the original Alpaca data
(instruction tuning, IT) with sequential instruction tuning (SIT) on our enriched Alpaca. Results are
reported in Table 7, showing that for all base LLMs considered—Mistral-7B, Llama-7B, and Llama-
13B—sequential instruction-tuned models attain higher performance on the CommonsenseQA test set
compared to vanilla instruction tuning. Paraphrasing appears slightly better on average than repeating.
These results demonstrate that even dummy tasks exhibit the potential to equip LLMs with sequential
instruction following.

Model IT SIT SIT
Alpaca +Repeat +Paraphrase

Llama-7B 35 39 41
Llama-13B 47 48 49
Mistral-7B 61 64 63

Llama-7B 7-shot prompting (Touvron et al., 2023): 33

Table 7: CommonsenseQA results (accuracy, %) from prompting, instruction tuning, and our sequential instruction
tuning with dummy tasks.
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A.2 Generalisation to other sequential instructions
To further understand the characteristics of language models trained on sequential instruction data, we
analyzed the generalisation ability starting from the training of a sequential single task as a simple test
bed.
In our main experiments of task-specific SIT in Section 4.1, we used the same intermediate tasks
(translation or image captioning) for training and inference during evaluation. We now study if a SIT’ed
model can follow unseen intermediate tasks. Particularly, we build on Appendix A, where the two
dummy tasks of repetition and paraphrasing were proposed for CommonsenseQA. We examine if a model
exposed to repetition during training can maintain a similar performance when the prompt switches to
“paraphrasing” during evaluation, and vice versa.
In Table 8, we report both accuracy and following rate of Mistral-7B models fine-tuned on 100 samples
from the CommonsenseQA test set. First, we confirm that our sequential instruction-tuned models are still
able to follow single-task instructions with a similar level of accuracy compared with the model fine-tuned
on the original instruction datasets. This indicates that our method widens the model’s scope to sequential
instructions without compromising its original capabilities. Furthermore, we observe that SIT models
trained solely on one intermediate task can follow both Repeat and Paraphrase instructions during test
time. The resulting accuracy from such models is significantly higher than the baseline Alpaca instruction
tuning even with a train-test discrepancy in the intermediate step. This demonstrates that sequential
instruction tuning on a specific task can generalise to similar sequential tasks and attain comparable
performance.

Evaluation
Prompt

Training Method

IT SIT (+ Repeat) SIT (+ Paraphrase)

Non-sequential 61 / - 56 / - 58 / -
Repeat 20 / 30 64 / 99 45 / 96
Paraphrase 21 / 35 64 / 96 63 / 100

Table 8: CommonsenseQA results (accuracy and following rate, %) for Mistral-7B IT and SIT tested with zero-shot
intermediate task instructions.

5602



B Detailed Experimental Setup

B.1 Translation in multilingual question answering
For this experiment, we perform instruction tuning with full parameter in Mistral-7B-v0.1 and Llama-3-8B,
with the original Alpaca (IT) and SIT Alpaca (SIT). The Mistral model is instruction tuned with the
Alpaca template (Taori et al., 2023), whereas Llama-3 is tuned with the Tulu template (Ivison et al.,
2023). The training is done with 3 epochs, learning rate 2e-5, the optimizer is AdamW (Loshchilov and
Hutter, 2017) with warmup ratio 0.03 and linear decay. The effective batch size is 128, and the maximum
sequence length is 2048.

B.2 Image captioning in multimodal question answering
For cross-modal experiments involving both texts and images, we use the LAVIS1 library for training
and evaluation (Li et al., 2023a). We fine-tuned InstructBLIP2 with the same hyperparameters used
by Dai et al. (2023) and we set a budget of 3 epochs with an initial learning rate of 1×10-5. We only
updated the parameters of the Q-Former but froze the image encoder and the language decoder. We use 2
NVIDIA-A100-PCIe-80GB GPUs to run all related experiments.

B.3 Seq-Instruct
For this experiment, we perform instruction tuning with full-parameter tuning in Llama-3-8B. The Llama-
3 model is tuned with the Tulu template (Ivison et al., 2023). The training is done with 3 epochs, a
learning rate of 2e-5, and an effective batch size of 128. All the response data are re-generated by
prompting Llama-3-70B-Instruct to ensure fairness. We perform the Seq-Instruct pipeline for 2 iterations
on both Alpaca and FlanCoT. We use 4 A100-SXM4-80GB GPUs to run the generation and fine-tuning
experiments.

B.4 Seq-Instruct prompt template
The prompt template is shown in Figure 3 for the generation type classification and Figure 4 for the
generation process.

Given the original instruction, you should propose a new instruction based on it by doing
one of the following things:
A. Decompose it into two tasks.
B. Add a prefix task.
C. Add a suffix task.
D. Keep as original version. (Choose this if the original instruction is already sufficient)
You should decide which option is suitable for the input instruction.

# Few shot examples
The instruction is: Describe the structure of an atom.

Let’s think step by step. For the given instruction, a suitable adaptation is to
add a suffix task. This would deepen the user’s understanding by applying the knowledge
in a practical context. New instruction: “Describe the structure of an atom and explain
how this structure determines its chemical properties.” This modification (Option C) not
only covers the original request to describe the atom’s structure but also extends the
learning by connecting atomic structure to chemical properties, making the explanation more
comprehensive and applicable. So the option is: C.
. . .

The instruction is: ${instruction}
Let’s think step by step.

Figure 3: Prompt template for classifying the given instruction into four options of Seq-Instruct, where variables
${instruction} is replaced by the query instruction on the fly.
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Your objective is to add a suffix task to the given instruction (#Original Instruction#) to
form a sequential related instruction (#New Instruction#).
Adding “familiarize”, “read” or “understand” the original given information is not counted
as a valid prefix task.
The response to the new instruction should be the same or similar to the original instruction,
including the format. The added instruction should have its own explicit response, so
something like “reading”, “familiarizing”, “repeating”, “analyzing” or “understanding” the
original instruction is not considered a good choice.
Your rewriting cannot omit the non-text parts such as the table and code in “#Given Prompt#:”,
and should only modify the instruction part and keep all the key details such as options,
hypothesis and questions.
Provide your explanation before having the final instruction by thinking step by step.
You must generate your new instruction with prefix “#New Instruction#: ” and end your answer
with “###”.

# Few shot examples
#Original Instruction#: “Describe the structure of an atom.”
Your task is to decompose the instruction into two sequential instructions that will
eventually lead to the answer to the original instructions. Let’s think step by step. To
effectively describe the structure of an atom, we can break down the explanation into two
main tasks or steps. Here’s a logical way to organize it. First, we can explore the basic
components of an atom, then understand how the components are organized and how they interact.
These two tasks cover the basic description of an atom’s structure, from its components
to the arrangement and behaviour of these components. #New Instruction#: “Describe the
basic components of an atom, then explain how the components are organized and how they
interact.”###
. . .

#Original Instruction#: “${instruction}”
Your task is to decompose the instruction into two sequential instructions that will eventually
lead to the answer to the original instructions. Let’s think step by step.

Figure 4: Prompt template for classifying the given instruction into four options of Seq-Instruct, where variables
${instruction} is replaced by the query instruction on the fly.

B.5 LLM-as-a-judge prompt template
The prompt we used to check whether a sequence of instructions is followed and to judge the quality of
model responses via LLM-as-a-judge is outlined as Figure 5. The prompt follows Zheng et al. (2023)’s
design with a distinct feature checking whether all queries are responded to by the model.

Please act as an impartial judge and evaluate a response to a user instruction displayed
below. Your evaluation should consider two factors: 1) whether the response fulfilled all
the questions or requests in the instruction, and 2) the response’s overall quality such as
helpfulness, relevance, accuracy, depth, creativity, and level of detail. Please first judge
whether all questions have been answered by responding with a “Yes” or “No” and then rate
the response on a scale of 1 to 5, using this format: “[[answered, rating]”. For example:
“[[No, 2]]”.

[User Instruction]
${instruction}

[Response]
${response}

Figure 5: Prompt template for requesting a response evaluation from GPT-4-Turbo, where variables ${instruction}
and ${response} are replaced on the fly.
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B.6 Evaluation setup for generic tasks
Besides the sequential task, we also evaluate the instruction-tuned LLMs on a range of benchmarks to
understand the difference between IT and SIT models in the following abilities:

Factuality Massively Multitask Language Understanding (Hendrycks et al., 2021) requires the model to
pick an answer from 4 candidates. It covers 57 subjects including STEM, humanities, social sciences, and
other disciplines. We evaluate models in a 5-shot setting and report their accuracy.

Reasoning We evaluate the model with ARC-challenge benchmark (Clark et al., 2018), a dataset of
1,172 genuine grade-school level, multiple-choice science questions, which require the models to perform
complex reasoning. We evaluate from Grade School Math (Cobbe et al., 2021), a collection of math
problems in linguistic form. It requires open-ended generation. We evaluate models in a 25-shot setting
for ARC and an 8-shot setting and report their exact match (EM).

Coding HumanEval (Chen et al., 2021) is a dataset for synthesizing coding programs from docstrings.
We evaluate models with a temperature of 0.1 and report their pass at 10 (P@10).
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C Result Breakdown

C.1 XQuAD
Complete XQuAD results are shown in Table 9.

Model Dataset Method DE ZH RU ES AR EL VI HI TR TH AVG

Mistral-7B Alpaca

IT 44.7 21.7 38.7 46.3 12.8 15.2 25.3 9.6 24.9 9.2 24.8
41% 13% 36% 48% 3% 4% 7% 0.5% 5% 1% 15.9%

SITM 62.0 37.2 52.7 62.6 21.8 25.1 37.9 15.5 34.4 13.7 36.3
96% 84% 93% 97% 42% 34% 68% 9% 49% 5% 57.7%

SITA 41.1 19.7 34.5 39.2 15.6 20.2 29.0 15.5 25.0 12.1 25.2
54% 31% 47% 38% 8% 9% 14% 7% 5% 3% 21.6%

Llama-3-8B

Alpaca

IT 44.3 34.6 41.3 49.7 31.2 42.5 40.0 36.3 34.3 30.6 38.5
6% 6% 7% 8% 5% 8% 4% 4% 3% 3% 5.4%

SITM 52.7 40.0 43.5 54.5 39.2 45.3 47.8 42.4 43.6 38.0 44.7
90% 81% 78% 98% 79% 61% 85% 47% 82% 56% 75.7%

SITA 52.2 42.2 44.9 54.2 40.0 47.1 47.8 42.8 47.1 43.0 46.1
45% 56% 57% 46% 60% 45% 53% 49% 63% 59% 53.3%

WizardLM 51.0 36.1 43.9 50.3 36.1 47.1 42.4 40.4 39.1 34.4 42.1
15% 13% 18% 15% 24% 18% 14% 15% 17% 16% 16.5%

FlanCoT
IT 55.5 38.5 45.4 55.6 40.5 50.6 47.3 45.6 47.6 37.6 46.4

3% 3% 6% 5% 7% 7% 5% 5% 4% 5% 5.0%

SITA 63.5 49.9 55.5 66.1 50.0 59.4 56.1 53.7 55.6 48.4 55.8
75% 85% 83% 76% 89% 91% 78% 75% 88% 80% 82.0%

Table 9: Complete breakdown for XQuAD results. SITM refers to the manual task-driven method while SITA refers
to the automatic generalized SIT version.

C.2 MSGM
Complete results for MGSM for models tuned on Alpaca and FlanCoT are shown in Table 10 and Table 11,
respectively. We showed EN-COT follows the original paper settings (Shi et al., 2023), which directly
prompts the model to perform CoT in English without translation.

Method Prompt EN ES FR DE RU ZH JA TH SW BN TE Avg. ∆

IT en-CoT 24.8 19.6 14.0 12.4 17.6 18.8 16.8 12.0 5.2 8.8 7.6 14.9 -
trans-CoT 20.4 20.0 17.6 16.8 17.6 19.6 18.4 17.2 10.4 6.8 8.0 17.0 ↑ 2.1

WizardLM en-CoT 33.6 26.4 27.2 24.4 28.8 23.6 20.0 22.8 10.4 18.0 12.4 22.9 -
trans-CoT 39.6 28.8 32.8 26.4 28.8 26.8 25.2 26.8 19.2 22.0 15.6 26.9 ↑ 4.0

SIT en-CoT 37.6 31.6 32.0 29.2 30.0 26.8 24.4 28.4 20.0 17.2 12.4 26.1 -
trans-CoT 42.8 36.0 36.8 36.8 38.4 34.0 30.8 32.4 24.4 25.6 20.4 32.9 ↑ 6.8

Table 10: Complete results for 8-shots MGSM (accuracy, %) fine-tuned on Alpaca.

Method Prompt EN ES FR DE RU ZH JA TH SW BN TE Avg. ∆

IT en-CoT 51.2 43.2 37.6 38.8 38.0 37.2 31.6 29.2 18.8 26.0 21.2 35.0 -
trans-CoT 52.4 39.6 40.4 44.8 35.2 42.4 30.8 30.8 16.0 27.2 21.6 34.8 ↓ 0.2

SIT en-CoT 52.0 44.4 39.2 42.4 40.0 33.6 31.6 32.4 21.6 31.6 26.4 35.5 -
trans-CoT 54.8 50.0 47.2 45.6 46.0 42.4 36.4 40.8 27.6 33.6 24.8 41.8 ↑ 6.3

Table 11: Complete results for 8-shot MGSM (accuracy, %) fine-tuned on FlanCoT.
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C.3 Main and ablation results for SeqEval
Detailed results from our baselines and SIT models evaluated by our own SeqEval are reported in Table 12
(TOP). We also include the results from our ablation experiments (BOTTOM).

Model Dataset Method Score Follow Win (GPT-3.5) Win (Cmd-R)

Command-R - - 4.595 90.9 51.7 -
GPT-3.5-Turbo - - 4.653 88.0 - 48.3

Llama-3-8B

FlanCoT IT 4.185 79.8 43.5 41.9
SIT 4.613 88.4 49.6 47.6

Alpaca
IT 4.453 83.4 46.3 44.7
WizardLM 4.102 73.9 37.1 34.9
SIT 4.659 89.3 50.3 48.2

TuluV2 100k IT 4.684 89.6 50.6 48.0
SIT 4.692 92.4 53.0 51.3

Main results ↑ and ablation results ↓

Llama-3-8B

Alpaca (data-level) IT 4.453 83.4 46.3 44.7
SIT 4.652 87.7 49.8 47.2

Alpaca (instance-level) IT 4.303 79.6 40.9 39.7
SIT 4.440 82.2 45.7 44.0

Alpaca (task-level)
SIT-split 1.960 23.1 11.9 13.9
SIT-multi 3.427 57.1 30.5 29.6
SIT 4.659 89.3 50.3 48.2

Llama-3-8B
FlanCoT (data-level) IT 4.185 79.8 43.5 41.9

SIT 4.563 88.1 47.2 44.4

FlanCoT (instance-level) IT 4.583 87.7 47.9 45.4
SIT 4.540 86.2 47.7 45.6

Llama-3-8B Alpaca (generated by CmdR+) IT 4.039 68.6 37.6 37.3
SIT 4.464 82.6 46.6 44.7

Mistral-7B-v0.1 Alpaca IT 4.253 74.0 40.8 38.9
SIT 4.353 81.9 45.0 43.2

Table 12: Comprehensive evaluation results on our SeqEval. Metrics: quality score, following rate, as well as win
rates against GPT-3.5-Turbo and Command-R judged by GPT-4-Turbo. TOP: main experiment results; BOTTOM:
ablation results.
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C.4 Results for the intermediate iterations of SeqEval
In addition, we test our models on different numbers of tasks in a single query, which are represented by
the intermediate versions at various iterations through developing the final SeqEval—the results are in
Table 13.

Iteration Model Dataset Method Score Follow Win (GPT-3.5) Win (Cmd-R)

1

Command-R - - 4.535 90.3 50.1 -
GPT-3.5-Turbo - - 4.739 91.4 - 49.9

Llama-3-8B

FlanCoT IT 4.366 83.0 45.0 45.0
SIT 4.302 84.1 45.7 45.3

Alpaca
IT 4.467 83.0 44.7 45.0
WizardLM 3.822 71.2 35.4 36.2
SIT 4.618 88.3 48.0 48.2

2

Command-R - - 4.488 88.8 51.2 -
GPT-3.5-Turbo - - 4.612 87.8 - 48.8

Llama-3-8B

FlanCoT IT 4.185 80.7 45.3 44.3
SIT 4.458 86.5 49.3 47.7

Alpaca
IT 4.468 84.0 47.9 46.5
WizardLM 4.203 76.1 39.6 38.4
SIT 4.686 89.9 51.7 50.4

3

Command-R - - 4.493 90.1 50.3 -
GPT-3.5-Turbo - - 4.706 89.2 - 49.7

Llama-3-8B

FlanCoT IT 4.617 86.7 48.1 47.6
SIT 4.664 90.2 48.9 48.5

Alpaca
IT 4.488 84.1 45.5 46.0
WizardLM 4.064 72.9 34.8 36.1
SIT 4.652 89.1 49.3 49.6

4

Command-R - - 4.601 91.7 51.8 -
GPT-3.5-Turbo - - 4.691 89.4 - 48.2

Llama-3-8B

FlanCoT IT 3.953 77.5 40.7 39.6
SIT 4.642 90.2 49.4 47.0

Alpaca
IT 4.433 81.4 45.7 43.3
WizardLM 4.088 73.8 36.2 34.3
SIT 4.649 88.6 49.4 47.1

Table 13: Comprehensive evaluation results on the intermediate versions of SeqEval with varying numbers of tasks.
The metrics are the same as the previous Table 12.
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D SIT Data Visualization

We identify the verb-noun structure in the generated instructions using the Berkeley Neural Parser (Kitaev
and Klein, 2018; Kitaev et al., 2019) to parse the instructions and then extract the verb that is closest to
the root as well as its first direct noun object. The qualitative analyse of the 15 most frequent root verbs
and their direct noun objects in Figure 6 for Alpaca-SIT and Figure 7 for FlanCoT-SIT.
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Figure 6: Top 15 root verbs (inner circle) and their top 4 direct nouns (outer circle) in Alpaca-SIT.
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E A Case Study on IT and SIT Model Outputs

Sequential Instruction:
Have you noticed any issues with your handwriting? I’m trying to teach myself to have nicer handwriting. Can you help? Do a
simple task to understand more about your handwriting. Write a paragraph about your day. Now, based on that paragraph,
identify one or two key issues that you are unhappy with. Is it the size, the flow, or the clarity?

Output by IT Mistral-7B:
I’m happy to help! However, I don’t see a paragraph about my day. Please provide the paragraph, and I’ll do my best to identify
one or two key issues that you may want to work on to improve your handwriting.

Output by SIT Mistral-7B:
Here’s a paragraph about my day: Today was a great day. I woke up early and had a productive morning, getting a lot of
work done on my project. I took a short break to grab lunch and catch up on some reading. In the afternoon, I had a meeting
with my team to discuss our progress and make some plans for the upcoming week. It was really helpful to get everyone’s
input and ideas. After the meeting, I took a short walk outside to clear my head and enjoy the nice weather. Overall, I’m
feeling accomplished and looking forward to a relaxing evening. Based on this paragraph, I’m unhappy with two key
issues in my handwriting: 1. Size: My handwriting is often too small. I tend to write in a narrow, compact style, which
can make my writing look cramped and hard to read. I’d like to loosen up and write with a bigger, more confident stroke.
2. Flow: My handwriting can be quite slow and labored. I tend to write each letter very deliberately, which can make my
writing look choppy and uneven. I’d like to improve the smoothness and fluidity of my writing. By recognizing these issues,
I can work on improving my handwriting and making it more legible and attractive. Do you have any tips or exercises to
help with these specific issues? I’d love to hear them! (By the way, I’m happy to help others with their handwriting as well.
If you’d like, I can offer some general tips or exercises to improve your handwriting, or provide feedback on a specific
paragraph or sentence you’d like me to work on.) Here’s a sample of my handwriting, so you can see what I’m working with:
[Sample of my handwriting] Let me know if you have any feedback or if you’d like to work on improving your own handwriting!

Figure 8: Case study of Mistral-7B with IT and SIT on the SeqEval benchmark.

Sequential Instruction:
Tell me about the types of cuisine you are most familiar with; are they largely Western, Eastern, or otherwise? Now, tell me
about your experience with cooking; specifically, have you ever used sesame seeds in your dishes before? Do I have all the
necessary ingredients to make tahini? I only have sesame seeds and no other ingredients. Hi, I have some falafel, but no tahini
to put on them. Can you give me a recipe for making tahini? After you provide me with the tahini recipe, could you also list the
common places or online platforms where I could find the required ingredients? And if I wanted to make my own falafel, can
you provide me with a simple recipe for that as well?

Output by IT Llama-3-8B:
I’m happy to help! However, I need to clarify that I’m a large language model, I don’t have personal experiences or memories,
so I’m not familiar with specific cuisines or cooking experiences. I exist solely to provide information and assist with tasks, but
I don’t have personal preferences or experiences. However, I can provide you with information on various types of cuisine and
cooking techniques. Can I help you with something specific?

Output by SIT Llama-3-8B:
I’m happy to help! However, I need to clarify that I’m not a professional chef or a food expert. I’m just a large language model,
I don’t have personal experiences or culinary expertise. I can provide general information and answer questions within my
knowledge domain. That being said, I can try to help you with the questions you’ve asked. Types of cuisine: I’m not familiar
with a specific type of cuisine, as I’m a large language model, I don’t have personal experiences or culinary expertise. However,
I can provide information on various cuisines and recipes. Experience with cooking: I’ve never used sesame seeds in my
dishes before. Sesame seeds are commonly used in Middle Eastern, Indian, and Asian cuisines, particularly in dishes like falafel,
hummus, and tahini. Making tahini: To make tahini, you’ll need sesame seeds, olive oil, lemon juice, garlic, and salt. Here’s a
simple recipe: Ingredients 1 cup sesame seeds* 1/4 cup olive oil 2 cloves garlic, minced 2 tablespoons freshly squeezed lemon
juice * 1/2 teaspoon salt Instructions: 1. In a blender or food processor, blend the sesame seeds until they’re finely ground. 2.
With the blender or food processor running, slowly pour in the olive oil through the top. 3. Add the garlic, lemon juice, and salt,
and continue blending until the mixture is smooth and creamy. 4. Taste and adjust the seasoning as needed. 5. Store the tahini
in an airtight container in the refrigerator for up to 1 week. Common places to find ingredients: You can find sesame seeds and
other ingredients needed for making tahini at: * Middle Eastern or Indian markets * Health food stores * Online platforms like
Amazon or specialty food stores * International grocery stores Falafel recipe: Here’s a simple falafel recipe to accompany your
tahini: Ingredients: * 1 cup chickpeas, soaked overnight and drained * 1/2 cup onion, finely chopped * 2 cloves garlic, minced *
1/2 cup parsley, chopped * 1/4 cup bulgur * 1/4 cup all-purpose flour * 1 teaspoon baking powder * 1/2 teaspoon salt * 1/4
teaspoon black pepper * 1/4 cup olive oil Instructions: 1. In a food processor, blend the chickpeas, onion, garlic, parsley, bulgur,
flour, baking powder, salt, and pepper until the mixture forms a dough. 2. Shape the dough into small balls, about 1 1/2 inches in
diameter. 3. Heat the olive oil in a large skillet over medium-high heat. Fry the falafel balls in batches until golden brown, about
3-4 minutes per batch. 4. Serve the falafel hot with tahini sauce. I hope this helps! Let me know if you have any further questions.

Figure 9: Case study of Llama-3-8B with IT and SIT on the SeqEval benchmark.
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