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Abstract

Dense passage retrieval enhances Information
Retrieval (IR) by encoding queries and pas-
sages into representation space. However, pas-
sage representations often fail to be referenced
by their gold queries under domain shifts, re-
vealing a weakness in representation space.
One desirable concept for representations is
“argmaxable”. Being argmaxable ensures that
no representations are theoretically excluded
from selection due to geometric constraints.
To be argmaxable, a notable approach is to
increase isotropy, where representations are
evenly spread out in all directions. These find-
ings, while desirable also for IR, focus on pas-
sage representation and not on query, mak-
ing it challenging to directly apply their find-
ings to IR. In contrast, we introduce a novel
query-focused concept of “referentiable” tai-
lored for IR tasks, which ensures that passage
representations are referenced by their gold
queries. Building upon this, we propose Learn-
ing Referentiable Representation (LRR), and
two strategic metrics, Self-P and Self-Q, quanti-
fying how the representations are referentiable.
Our experiments compare three dense model
versions: Naive, Isotropic, and Referentiable,
demonstrating that LRR leads to enhanced zero-
shot performance, surpassing existing naive
and isotropic versions.

1 Introduction

There have been notable advancements in the field
of Information Retrieval (IR) through the use of
dense representations. However, well-designed
dense models such as DPR (Karpukhin et al., 2020),
Condenser (Gao and Callan, 2021), and coCon-
denser (Gao and Callan, 2022) have shown lim-
itations in zero-shot scenarios on BEIR bench-
mark (Thakur et al., 2021). This limitation sug-
gests that passage representations often fail to align
with their corresponding gold queries, highlight-
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ing a weakness in representation space. This paper
explores strategies to overcome these limitations.

To ensure the representation of language models
meets the minimum criteria, one important con-
dition is “argmaxable”. It indicates that the rep-
resentations should lie in a space where they can
be selected through an argmax operation (Deme-
ter et al., 2020; Grivas et al., 2022). For ex-
ample, in a two-dimensional representation set
T = {(1, 1), (1,−1), (−1, 0), (0.5, 0)}, the fourth
representation (0.5, 0) is an interior point relative
to the first three. As a result, any point satisfy-
ing {(x, y)|x < 1, 2y < x + 1, 2y > −x − 1},
including the fourth representation, always yields
lower values when multiplied by any vector, as it
is overshadowed by the first three representations.
While the concept of argmaxable focuses on the the-
oretical selection of representation by any vector,
our interest lies in whether passage representation
can practically be selected by query representa-
tion in IR. With this argument, we introduce an
extended query-focused concept of “referentiable,”
which determines whether passage representation
can practically be referenced as top-1 by its gold
query representation.

To ensure representations are argmaxable, pre-
vious works (Li et al., 2020; Zhou et al., 2021;
Su et al., 2021; Biś et al., 2021; Liu et al.,
2023) increased isotropy. This approach mitigates
unargmaxable representations by evenly spreading
them in all directions, preventing them from being
within the interior points of the convex hull. This
indiscriminate spreading of representations, with-
out considering queries, is effective for word or
sentence level tasks such as Semantic Textual Sim-
ilarity. However, it is challenging to apply this ap-
proach in IR, since thoughtless dispersion may in-
advertently render other passages non-referentiable.
If all gold queries for each passage were known in
advance, it would be straightforward to make all
passages referentiable by appropriately spreading
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passage representations towards their correspond-
ing gold queries. However, this is impractical in
real-world scenarios.

To address this limitation, we propose Learn-
ing Referentiable Representation (LRR) leveraging
two strategic metrics, Self-P and Self-Q. These met-
rics address two types of gold queries: (1) narrow
intent queries, finding specific information (Hosey
et al., 2019), and (2) broad intent queries focused
on diverse information (Li et al., 2019). First, Self-
P: Narrow intent queries contain substantial infor-
mation overlapping with their relevant passages.
Thus, Self-P uses the passage itself as a proxy for
narrow intent query, and quantifies whether each
passage is referenced by its own representation,
namely passage locality. Optimizing Self-P encour-
ages passage locality, ensuring the passage can be
referenced as top-1 when using itself as gold query.
Second, Self-Q: To address broad intent queries,
we predict diverse intents from the given passage
using query generator. Self-Q uses their distribu-
tion as broad intent gold queries, and quantifies
whether the passage can be referenced as top-1
by predicted intent query. Optimizing Self-Q ex-
pands passage representations specifically toward
the predicted intent query distribution, in contrast
to isotropy, which uniformly expands representa-
tions in all directions. Therefore, LRR optimizes
both Self-P and Self-Q together, aiming to 1) en-
sure referentiable passages through passage local-
ity and 2) achieve referentiable passages through
space-effective expansion.

To demonstrate the effectiveness of our approach
for dense passage retrieval in zero-shot setting, we
compare three versions of dense models: Naive,
Isotropic, and Referentiable. We then show that our
approach generalizes from well-established models
like DPR, Condenser, and coCondenser to more
recent models such as E5 (Wang et al., 2022) and
BGE (Xiao et al., 2023). In Table 2, our approach
notably outperforms the naive and isotropic ver-
sions in full-ranking retrieval, underscoring the im-
portance of LRR for better zero-shot performance.
Our contributions can be summarized as the follow-
ing.

• We identify challenges in adapting the con-
cepts of argmaxable and isotropy to IR.

• We define a novel query-focused concept
called referentiable.

• We propose two metrics, Self-P and Self-

Q, for Learning Referentiable Representation
(LRR).

• We demonstrate the benefits of LRR for zero-
shot performance on BEIR benchmark.

2 Preliminary

In this section, we review existing approaches in
IR, and the concepts of argmaxable and isotropy.

2.1 Dense models and Zero-shot retrieval
BERT (Devlin et al., 2019) has shown promise
for dense retrieval tasks by encoding both queries
and passages into embeddings. Karpukhin et al.
(2020) introduced DPR, which fine-tunes BERT
with a dual-encoder architecture. Gao and Callan
(2021) proposed Condenser, enhancing attention
mechanism to aggregate information onto CLS to-
ken. Gao and Callan (2022) introduced coCon-
denser, incorporating an unsupervised corpus-level
contrastive loss to refine representation space. Re-
cently, Wang et al. (2022) proposed E5 model,
which learns general-purpose embeddings with
weak supervision, and Xiao et al. (2023) trained
BGE model using RetroMAE (Xiao et al., 2022).
During the fine-tuning step, these models are
trained with contrastive loss as follows:

LCL = − log exp(sim(q,p+))
exp(sim(q,p+))+

∑
p−∈B−

exp(sim(q,p−))
,

(1)
where q, p+, and p− represent query, positive, and
negative passage, respectively. B− is a set of neg-
ative passages, and sim(·, ·) represents similarity
function.

Zero-shot retrieval aims to handle queries and
passages not seen during training. Dense re-
trieval models often underperform compared to
others such as BM25 (Robertson et al., 2009) and
DeepCT (Dai and Callan, 2020) on BEIR (Thakur
et al., 2021), indicating weakness in their represen-
tations. This paper demonstrates that our approach
not only overcomes these limitations by enhancing
the representation space but also generalizes from
well-established models such as DPR, Condenser,
and coCondenser to more robust and recent models
like E5 and BGE.

2.2 Argmaxable
Prior work (Demeter et al., 2020) discussed the
stolen probability effect in language models, show-
ing that certain word embeddings cannot be se-
lected under argmax function if they lie within the
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convex hull of other word embeddings. Demeter
et al. (2020); Grivas et al. (2022) demonstrated
that infrequent tokens or classes might become in-
terior points of convex hull due to their smaller
embedding norms. Brody et al. (2023) showed that
unargmaxable key vectors in attention mechanism
of Transformer architecture (Vaswani et al., 2017)
can impair performance. Xu et al. (2023) argued
that kNN-LM solves the issue of stolen probabil-
ities by assigning the highest probability to any
word. These findings suggest that ensuring repre-
sentations are argmaxable is beneficial for various
tasks. In this paper, we extend the query-agnostic
concept of argmaxable to the query-focused notion
of referentiable for IR.

2.3 Isotropy
Isotropy refers to how evenly distributed the repre-
sentations are. Li et al. (2020); Su et al. (2021) re-
vealed that frequent word embeddings in language
models tend to form a skewed distribution in em-
bedding space. Puccetti et al. (2022); Rudman
and Eickhoff (2023); Rudman et al. (2023) found
that outlier dimensions, caused by infrequent to-
kens, promote anisotropic representations. These
skewed distributions and anisotropic space may
lead to unargmaxable embeddings by positioning
them within the convex hull. To address these is-
sues, Li et al. (2020); Su et al. (2021); Yu et al.
(2022); Jung et al. (2023); Ji et al. (2023); Kim
et al. (2024) increased isotropy and improved per-
formance.

To measure isotropy, Ethayarajh (2019) pro-
posed Avg-Cos, which computes the average co-
sine similarity among representations as follows:

Avg-Cos =
1

|M |2
∑

pi,pj∈M
cos(pi, pj),

where M i s a collection of sampled representations.
To control isotropy, Gao et al. (2019) introduced a
regularization term, CosReg, which uses Avg-Cos
in the training step. When applied to IR, it can be
formulated as follows:

LCosReg = LCL +
λ

|M |2
∑

pi,pj∈M
cos(pi, pj), (2)

where λ is a hyperparameter set to decrease Avg-
Cos, and M denotes a batch of passage represen-
tations. However, this regularization might result
in non-referentiable representations due to thought-
less dispersion in all directions, highlighting the
necessity for LRR.

3 Proposed Methods

In Section 3.1, we define referentiability (R), and
reinterpret the concept of argmaxable and increas-
ing isotropy. We then propose two strategic metrics,
Self-P and Self-Q, to approximate referentiability
in Section 3.2. With these metrics, we introduce
Learning Referentiable Representation (LRR) in
Section 3.3.

3.1 Referentiability (R)

If we know all gold queries for each passage, we
can measure referentiability, denoted as R. This
metric quantifies the extent to which a passage is
referentiable for a given gold query by measuring
its relative similarity compared to the most over-
rated passage. For a gold query q regarding a pas-
sage p, R is defined as follows:

R = R(p, q, V ) = max
v∈V
v ̸=p

sim(q, v)

sim(q, p)
, (3)

Rref =





p is referentiable R < 1

p is non-referentiable R ≥ 1

where V denotes the collection of representations
for negative passages for given query q. Rref de-
notes the condition to determine whether a passage
is referentiable. A referentiability greater than or
equal to 1 shows that p is not the most relevant for
q (i.e., non-referentiable), as it suggests there is
another vector v scoring higher than p.

To reinterpret the concepts of argmaxable and
isotropy using R, we consider a set of vectors where
each vector has R below 1 for given p as follows:

S = {u | R(p, u, V ) < 1}

Conceptually, we can visualize this set as Voronoi
cell in two dimensional space, where any vector
within each cell selects the corresponding passage.
Figure 1 illustrates four different scenarios of blue
passage. In Figure 1(a), there is no blue passage’s
cell, suggesting that it can never be referenced by
any vector (i.e., |S| = 0). In Figure 1(b), although
the blue passage now being argmaxable has corre-
sponding cell (i.e., |S| > 0), it fails to contain the
gold query denoted by the blue triangle. Figure 1(c)
illustrates the case of increasing isotropy, showing
that passages are spread out evenly in all directions
(i.e., S ← S ∪ {v}, where v denotes vector around
the blue passage, regardless of gold query), but it
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(d) Ours: LRR(a) Unargmaxable (b) Argmaxable (c) Increasing isotropy

Figure 1: Four different scenarios of blue passage using Voronoi cells. Each dot and triangle denote passage and
query representation, respectively, with the dotted line indicating relevant query-passage pair. The colored areas
represent Voronoi cells where any vector within each area selects the passage representation of corresponding color.
(a) The blue passage cannot be referenced because it lacks a Voronoi cell. (b) The blue passage can be referenced,
but not by its gold query. (c) Increasing isotropy uniformly expands the Voronoi cell to make it argmaxable, but may
cause overlap with other passage’s gold query. (d) In contrast, LRR focuses the expansion more precisely towards
the direction of the gold query, reducing such overlaps.

Model MSMARCO BEIR

Naive 19.16% 21.71%
Isotropic 18.39% 20.09%

Table 1: Rate of referentiable passages for each dataset
when encoding passage representations with naive and
isotropic versions of coCondenser.

still fails to contain the gold query, and the green
passage loses its gold query to the blue passage.
Finally, in Figure 1(d), the blue passage being ref-
erentiable has corresponding cell, containing its
gold query without stealing other passage’s gold
queries (i.e., S ← S ∪{v}, where v denotes vector
around the blue passage in its gold query direction).

To verify if these scenarios actually occur, we ex-
amined whether gold query representations are in-
cluded within their positive passage cells using the
condition Rref. Table 1 shows that only about 20%
of passages are referentiable. Additionally, when
encoding passages with isotropic model, there are
fewer referentiable passages, indicating the steal-
ing of other passages’ gold query representations
as depicted in Figure 1(c).

3.2 Self-P and Self-Q

In practice, optimizing R during training is infeasi-
ble due to the unknown set of gold queries and the
large size of V . To address these challenges, we ap-
proximate R with Self-P and Self-Q, using passage
itself and pseudo query as proxy, respectively.

Self-P: Using Passage Given that narrow intent
query contains specific information about its rele-
vant passage, the passage itself serves as a reliable

approximation of narrow intent gold query. Thus,
we propose Self-P, which approximates R by using
the passage itself instead of gold query. Self-P can
be formulated by substituting the unknown gold
query with the passage itself in Eq. (3) as follows:

Self-P = R(p, p, V ) = max
v∈V
v ̸=p

sim(p, v)

sim(p, p)
, (4)

Self-Pref =





p is referentiable Self-P < 1

p is non-referentiable Self-P ≥ 1

where Self-Pref denotes the condition to determine
whether p is referentiable for p itself.

However, computing Self-P in training step still
remains unfeasible due to the large size of V . From
Eq. (4), we notice that the vectors v causing p to
be non-referentiable are clustered around p. Thus,
we can replace V with local neighbor passages
without compromising accuracy. Formally, Self-P
can be approximated with local neighbor passages
as follows:

Self-P = R(p, p, V ) ≈ R(p, p, f(p)), (5)

where f is local neighbor function. The set f(p)
consists of passages, which are local neighbors
closely related to p. By default, we adopt BM25 as
local neighbor function, and obtain f(p) by treating
p as query.

Optimizing Self-P suggests passage locality, en-
suring that each passage is referenced by its own
representation. Conversely, a passage being non-
referentiable with Self-Pref indicates that it cannot
be selected even if the query is identical to the pas-
sage. For example, let p1=(2,1), p2=(0.5,0.5). The
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dot product between p1 and p2 is 1.5, whereas the
dot-product between p2 and itself is 0.5, which is
lower than the dot product between p1 and p2. This
indicates that p2 is non-referentiable with Self-Pref.
We demonstrate the prevalence of such passages in
Section 4.2.1.

Self-Q: Using Pseudo Query To address broad
intent queries, we predict diverse intents from given
passage using query generator. We then propose
Self-Q, which approximates R by using the pre-
dicted intents as gold queries. Similar to Self-P,
Self-Q can be formulated by replacing the unknown
gold query with the predicted intent in Eq. (3) as
follows:

Self-Q = R(p, q′, V ) = max
v∈V
v ̸=p

sim(q′, v)
sim(q′, p)

, (6)

Self-Qref =





p is referentiable Self-Q < 1

p is non-referentiable Self-Q ≥ 1

where q′ denotes pseudo query containing pre-
dicted intent, and Self-Qref represents the condition
to determine whether a passages is referentiable for
pseudo query. We use docT5query (Nogueira et al.)
to generate pseudo queries for given passage. Since
Eq. (6) still suffer from the large size of V , we com-
pute Self-Q with local neighbor passages of pseudo
query as follows:

Self-Q = R(p, q′, V ) ≈ R(p, q′, f(q′)), (7)

where f is the same local neighbor function used
in Eq. (5). The set f(q′) consists of local neighbor
passages of q′, obtained by using q′ as the query.

Optimizing Self-Q encourages the expansion
of passage representations toward their respec-
tive pseudo query directions, whereas increasing
isotropy disperses representations indiscriminately
in all directions. If pseudo queries accurately
mimic the distribution of gold queries, we expect
that optimizing Self-Q should reduce the number
of non-referentiable passages for gold queries.

3.3 Learning Referentiable Representation
(LRR)

In this section, we discuss how to optimize Self-P
and Self-Q, and propose LRR as loss function.

As a similarity function, we adopt the dot-
product operation since cosine-similarity re-
portedly leads to significantly lower perfor-
mance (Karpukhin et al., 2020), failing to reflect

the magnitude of vectors. More details are provided
in Appendix A.1. With the dot-product operation
as similarity function, Self-P and Self-Q can be
rewritten as follows:

Self-P ≈ max
v∈f(p)
v ̸=p

p · v
p · p = max

v∈f(p)
v ̸=p

|v|
|p|

cos(p, v)

cos(p, p)
(8)

Self-Q ≈ max
v∈f(q′)
v ̸=p

q′ · v
q′ · p = max

v∈f(q′)
v ̸=p

|v|
|p|

cos(q′, v)
cos(q′, p)

(9)
where (·) represents dot-product operation and cos
denotes cosine similarity.

To make passages referentiable with Self-Pref,
we aim to optimize Self-P to ensure it is below 1 for
all passage representations. It is important to note
that each v can later serve as p in Eq. (8). In other
words, making p referentiable might inadvertently
render v non-referentiable, since simply decreasing
Self-P could diminish the norm of v in Eq. (8),
thus making it non-referentiable. Therefore, we de-
compose Eq. (8) into two parts: (1) the scale term,
|v|/|p| and (2) the cosine term, cos(p, v)/ cos(p, p).
Instead of decreasing the scale term, we reduce
variance of the norm of passage representations to
encourage similar norms for p and v. Meanwhile,
the cosine term can be optimized directly. The loss
functions for the scale term and the cosine term are
written as follows:

Lscale(H) = variance(H),

Lcos(p, q,H) =
1

|H|
∑

v∈H
v ̸=p

cos(q, v)

cos(q, p)
,

where H represents the set of local neighbor pas-
sages, and variance(H) computes the variance of
the norms of elements in H . With these defined
loss functions, we can formulate the loss function
for Self-P as follows:

LSelf-P = Lscale(f(p)) + γLcos(p, p, f(p)), (10)

where γ is a hyperparameter to balance between
the scale term and the cosine term.

Similarly, we optimize Self-Q to ensure that it
remains below 1 for pseudo query. Although Eq.
(9) includes the same scale term as Eq. (8), we
focus solely on the cosine term, since optimizing
the scale term in Eq. (9) could interfere with the
optimization of the scale term in Eq. (8). We then
formulate the loss function for Self-Q as follows:

LSelf-Q = Lcos(p, q
′, f(q′))
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Model(→) Naive Isotropic Referentiable

Dataset(↓) DPR Condenser coCondenser DPR Condenser coCondenser DPR Condenser coCondenser

MS MARCO (dev) 32.63 33.80 35.65 32.61 33.70 35.20 33.18 34.36 36.15

TREC-COVID 58.69 61.45 68.8 58.23 55.29 62.25 56.21 57.92 65.22
BioASQ 20.35 21.90 25.42 20.52 21.33 24.05 21.37 22.66 25.69
NFCorpus 25.23 26.37 30.65 24.88 25.40 29.81 25.46 26.3 30.69
NQ 40.14 41.47 42.98 39.02 39.88 38.82 39.52 40.92 43.54
HotpotQA 39.91 43.43 45.60 38.96 41.96 45.15 40.84 44.41 47.50
FiQA-2018 18.00 20.01 25.04 18.40 19.65 23.43 18.01 19.81 24.84

Signal-1M (RT) 17.99 21.47 24.04 11.64 16.01 16.36 22.12 23.15 25.56
TREC-NEWS 32.18 33.47 34.99 31.57 34.23 34.35 33.51 34.12 36.18
Robust04 27.28 30.05 34.59 26.47 28.50 33.79 27.01 28.31 34.66
ArguAna 23.68 23.99 25.93 23.47 24.32 25.50 24.45 27.30 27.94
Touché-2020 15.91 12.33 13.54 17.18 14.20 12.94 13.57 12.35 13.90
CQADupStack 23.84 24.67 28.57 23.22 24.22 25.75 25.02 25.13 29.11
Quora 80.35 82.30 84.15 9.72 63.02 71.42 81.18 82.61 84.72
DBPedia 26.43 28.69 30.19 26.08 27.68 26.78 27.27 29.26 30.99
SCIDOCS 10.49 11.27 12.30 10.34 11.37 12.74 10.94 11.99 13.27
FEVER 64.23 65.37 62.30 60.62 63.32 63.16 60.55 63.94 62.91
Climate-FEVER 14.81 14.96 12.7 15.48 17.66 17.80 17.13 18.52 17.43
SciFact 46.08 51.62 54.31 46.91 49.57 54.11 48.10 52.18 56.11

Avg. 32.54† 34.14† 36.41† 28.17† 32.17† 34.39† 32.92† 34.49† 37.18†
Avg. w/o MS MARCO 32.53† 34.16† 36.45† 27.93† 32.09† 34.35† 32.90† 34.49† 37.24†

Table 2: nDCG@10 performance in full-ranking on DPR, Condenser, and coCondenser. The best performing results
are highlighted in bold for each backbone. The symbol † denotes the results with a p-value < 0.05.

Then, the final loss function for LRR is given by:

LLRR = LCL + αLSelf-P + βLSelf-Q, (11)

where α and β are hyperparameters, and LCL refers
to Eq. (1).

4 Experiment

4.1 Experimental Setting
Dataset and Evaluation Metric We use MS
MARCO (Nguyen et al., 2016), which consists
of 8.8M passages for training, and BEIR (Thakur
et al., 2021) for evaluating zero-shot performance.
While BEIR collection includes MS MARCO, all
evaluations and analyses were conducted excluding
MS MARCO. Our primary focus lies in improv-
ing the Normalized Discounted Cumulative Gain
(nDCG) metric for full-ranking retrieval on BEIR.

Implementation Details To explore our ap-
proach, we train three versions of dense models:
Naive, Isotropic, and Referentiable, using the loss
functions LCL, LCosReg, and LLRR, respectively.
For brevity, we focus on coCondenser backbone in
Section 4.2, given its robustness as noted in Gao
and Callan (2022), and extend the analysis to recent
backbones and framework in Section 4.2.4. We
further validate our findings with additional back-
bones, reporting consistent results in Appendix A.3.

Metric MSMARCO (↓) BEIR (↓)

Self-Pref 10.09 2.67
Self-Qref 79.15 64.68
Rref 80.84 78.29

Table 3: Rate of non-referentiable passages on each
dataset. The symbol for percent(%) is omitted from
each column for simplicity.

Details on hyperparameters are provided in Ap-
pendix A.6.

4.2 Experimental Results

Research Questions To evaluate the effective-
ness of our approach, we address the following
research questions:

• RQ1: How many non-referentiable passages
exist in reality?

• RQ2: Does optimizing Self-P and Self-Q en-
hance performance and why?

• RQ3: Does LRR improve zero-shot perfor-
mance?

• RQ4: Is LRR approach generalizable?
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Model Self-Pref (↑) Self-Qref (↑) Rref (↑)

Naive 97.33 35.32 21.71

Isotropic
93.33
(-4.00)

31.55
(-3.77)

20.09
(-1.62)

Referentiable
97.85

(+0.52)
36.25

(+0.93)
22.63

(+0.92)

Table 4: Rate of referentiable passages on BEIR. The
symbol for percent(%) is omitted from each column for
simplicity.

4.2.1 RQ1: Non-referentiable passages in
reality

In this section, we explore how many non-
referentiable passages within MS MARCO and
BEIR when encoding with naive coCondenser.

Table 3 shows the rates of non-referentiable pas-
sages for each condition. We observed the preva-
lence of non-referentiable passages for Self-Pref,
with rates of 10.09% for MS MARCO and 2.67%
for BEIR. These results indicate that even if
Self-Pref uses the passage itself as gold query to
determine referentiable or not, certain passages are
still non-referentiable. The detailed examples are
described in Appendix A.2

For MS MARCO, the rate of non-referentiable
passages is 79.15% for Self-Qref, closely aligning
with the rate of 80.84% for Rref. This suggests that
Self-Q effectively approximates R. The slightly
increased discrepancy between Self-Qref and Rref
rates in BEIR may be attributed to docT5query, a
query generator trained on MS MARCO.

Overall, these findings underscore a significant
proportion of non-referentiable passages, indicat-
ing that these passages are not referenced by their
respective queries. This highlights the necessity
for addressing non-referentiable passages. In the
following sections, we demonstrate that our refer-
entiable models effectively tackle this challenge.

4.2.2 RQ2: Effectiveness of Self-P and Self-Q
In this section, we verify the effectiveness of Self-P
and Self-Q, and how LRR improves performance.

Learning referentiable passages Table 4 shows
the rates of referentiable passages across three ver-
sion models. We observed that the rate of referen-
tiable passages in isotropic model dropped by 4%
for Self-Pref and 3.77% for Self-Qref. It suggests
that isotropic model fails to learn referentiable pas-
sages, leading to 1.62% decrease in Rref. In con-
trast, the referentiable model increases the rate of

56.46

37.45

43.54

62.55

0% 25% 50% 75% 100%

Referentiable

Isotropic

Win Lose

Figure 2: Relative performance on the queries similar
to passages in BEIR compared to naive model.

referentiable passages by +0.52%, +0.93%, and
+0.92% for each metric, indicating its effectiveness
in learning referentiable passages.

Passage Locality To delve into effect of Self-P,
we explore the impact of passage locality as learned
by Self-P. As passage locality ensures each passage
is referenced by its own representation, we expect
the passage to be better referenced by narrow intent
query, containing specific information about the
passage. With this expectation, we collected the
top 10% most frequent terms from queries and
passages, respectively. We then subtracted these
sets to identify query-specific terms that appear
frequently only in queries. Finally, we gathered
the queries which contain terms similar to those
in passages, excluding any query-specific terms.
These narrow intent queries account for 62.36% of
total queries in BEIR.

Figure 2 illustrates the relative performance com-
pared to naive model on the collected queries. The
results show that referentiable model wins 6.46%
more queries compared to naive model, which is
19.01% higher than isotropic model. These findings
underscore the effectiveness of passage locality in
referentiable model.

Expansions toward pseudo query To explore
the effectiveness of Self-Q, we examine the im-
pact of expansion toward pseudo query as learned
by Self-Q. Desirably, if generated pseudo queries
accurately follow the distribution of gold queries,
we expect referentiable model to outperform naive
model. With this expectation, on Figure 3, we
compare nDCG@10 for each interval of Jaccard
score between pseudo queries and gold queries. In-
terestingly, referentiable model outperforms naive
model when increasing jaccard score. Furthermore,
we observed similar trends with docT5query when
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Figure 3: nDCG@10 in full-ranking on BEIR and Jac-
card score with different query generators.

Loss nDCG@10 Self-Pref Self-Qref Rref

LCL 36.45 97.33 35.32 21.71

+LSelf-P (P)
37.12

(+0.67)
97.88

(+0.55)
36.01

(+0.69)
22.59

(+0.88)

+LSelf-Q (Q)
36.59

(+0.14)
97.18
(-0.15)

35.77
(+0.45)

22.11
(+0.40)

+ P and Q
37.24

(+0.79)
97.85

(+0.52)
36.25

(+0.93)
22.63

(+0.92)

Table 5: Ablation study for regularization terms. The
numbers indicate nDCG@10 and rate of referentiable
passages on BEIR.

using large language models (LLMs) to generate
pseudo queries. This trend was most pronounced
with the latest LLM, Llama 3.1, indicating that
pseudo queries generated by advanced LLMs may
enhance referentiable representations.

4.2.3 RQ3: LRR for zero-shot performance
In this section, we evaluate three versions of dense
models on BEIR to verify the effect of LRR on
zero-shot performance.

Zero-shot performance Table 2 shows zero-shot
performance in full-ranking. Remarkably, our refer-
entiable models demonstrate superior performance
for all backbones, while isotropic versions perform
worse than naive versions. As shown in Table 4,
we observed that the performance drop in isotropic
versions is due to their failure to learn referentiable
passages. Conversely, referentiable models achieve
the best rate in all metrics by learning referentiable
representation. These results suggest that promot-
ing referentiable passages leads to improvements
in zero-shot performance.

Ablation study for loss function We conduct an
ablation study to investigate the impact of regular-

Model nDCG@10 (↑) Rref (↑)

E5

Naive 39.43 23.59

Isotropic
39.88

(+0.45)
23.82

(+0.23)

Referentiable
40.16

(+0.73)
24.37

(+0.78)

BGE

Naive 39.62 23.72

Isotropic
38.13
(-1.49)

22.25
(-1.47)

Referentiable
40.02

(+0.40)
24.20

(+0.48)

Table 6: Generalization of LRR to recent backbones.
The results ensure a p-value below < 0.05.

Model nDCG@10 (↑) Rref (↑)

Naive 37.31 22.58

Isotropic
35.68
(-1.63)

21.35
(-1.23)

Referentiable
38.17

(+0.86)
23.21

(+0.63)

Table 7: Comparison when all versions are trained using
generated pseudo queries.

ization terms. In Table 5, we observed that LSelf-P
and LSelf-Q encourage referentiable passages with
Self-Pref and Self-Qref, respectively. Additionally,
our findings reveal that both LSelf-P and LSelf-Q con-
tribute to improvements in Rref. Notably, the indi-
vidual contributions of both LSelf-P and LSelf-Q are
evident in the observed improvements, highlighting
the effectiveness of each term in zero-shot setting.

4.2.4 RQ4: Generalizability of LRR
This section shows how our proposed LLR, utiliz-
ing Rref metric, generalizes to more recent back-
bones and other training scheme.

Recent backbones To confirm generalizability
of our approach, we use more recent robust back-
bones such as E5 and BGE 1. Table 6 shows that
the referentiable versions of both E5 and BGE
models increase the rate of referentiable passages
by +0.78% and +0.48%, respectively. These en-
hanced representations also lead to performance
improvements of +0.73 and +0.4 in nDCG@10.

1We used intfloat/E5-base-v2 model released in May 2023
and BAAI/bge-base-en-v1.5 model released in September
2023.
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Our findings indicate that the proposed concept of
referentiability remains important even in the latest
dense retrieval models, and enhancing it leads to
improved zero-shot performance.

Contrastive loss with pseudo queries In IR,
training with pseudo queries is a common method-
ology to enhance performance (Liang et al., 2020;
Ma et al., 2023). To validate our approach within
this framework, we trained coCondenser by adding
contrastive loss calculated with pseudo queries to
final loss. In Table 7, we confirm a consistent trend
where nDCG@10 improves with an increasing rate
of referentiable passages, suggesting the validity of
our approach in other frameworks.

5 Conclusion

We tackle the challenge of improving dense rep-
resentations in zero-shot IR setting. While prior
studies have focused solely on increasing isotropy
to ensure being argmaxable, we introduce a novel
query-focused concept, referentiable. Building on
this, we proposed LRR to learn referentiable rep-
resentations. Our extensive analysis demonstrates
effectiveness of LRR in improving the representa-
tion space for IR tasks.

6 Limitations

We demonstrated the effectiveness of referentiable
representations in single-vector dense retrieval
models. Extending LRR to multi-vector retrieval
is straightforward by ensuring that each passage’s
multiple representations can be referenced as top-
1 by at least one of the query’s multiple repre-
sentations. However, multi-vector retrieval intro-
duces additional challenges beyond referentiability,
such as determining the importance of each vector,
which is an interesting direction for future work.

We used docT5query to compute Self-Q for
aligning with gold query distributions and observed
similar trends with Llama 3.1 and Vicuna models.
Leveraging more powerful large language model,
along with careful preprocessing to handle irrele-
vant pseudo queries, could further improve referen-
tiable passage representations.
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A Appendices

A.1 Similarity function

As similarity function, cosine-similarity or dot-
product are commonly used. However, cosine-
similarity is reportedly associated with signifi-
cantly lower performance, as noted in previous
study (Karpukhin et al., 2020). This is attributed
to its failure to reflect the magnitude of vectors.
Thakur et al. (2021) demonstrated that cosine-
similarity uses vectors of unit length, thus lacking
a notion of the encoded text length. This deficiency
is particularly important in our scenario, where
the length of passages (Thakur et al., 2021) differ
significantly.

A.2 Examples of non-referentiable passages

We analyze the non-referentiable cases by using
the passage itself as a query. As shown in Table 8,
when the first passage in each section (denoted
as the query) serves as the query, the second pas-
sage (denoted as top-1) receives the highest score.
This indicates that the dot-product score between
the first passage and itself is lower than the score
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73.81

0% 20% 40% 60% 80% 100%

Referentiable
DPR

Isotropic
DPR

Win Lose

Figure 4: Relative performance on the queries similar
to passages in BEIR compared to naive model, when
using DPR as backbone.
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Figure 5: Relative performance on the queries similar
to passages in BEIR compared to naive model, when
using Condenser as backbone.

between the first and second passages. These non-
referentiable passages contain similar but distinct
content, highlighting the need for optimization us-
ing the LRR approach.

A.3 Analysis with other backbones

In this section, we conduct analysis using DPR and
Condenser as backbone model.

Table 9 presents zero-shot performance and rates
of referentiable passages for each condition. We
observed that zero-shot performance improves with
an increasing number of referentiable passages,
showing the same tendency as when using coCon-
denser. Figure 4 and Figure 5 shows that relative
performance on the queries similar to passages,
described in Section 4.2.2, when using DPR and
Condenser as backbone, respectively. We also
found that referentiable DPR wins 1.66% more
queries compare to naive DPR, and referentiable
Condenser wins 4.15% more queries to naive Con-
denser. Figure 6 demonstrates that referentiable
models outperform as the Jaccard score between
pseudo queries and gold queries increases. It sug-
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Examples of non-referentiable passage pairs

Passage 1 (query): Posttraumatic stress symptoms and attitude toward crisis mental health services ... (omitted)
Passage 2 (top-1): Beliefs towards the COVID-19 pandemic among patients with emotional disorders in China ... (omitted)

Passage 1 (query): Diversity of Coronaviruses in Bats: Insights Into Origin of SARS Coronavirus ... (omitted)
Passage 2 (top-1): Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats ... (omitted)

Table 8: Examples of non-referentiable passages.

Model nDCG@10 Self-Pref Self-Qref Rref

DPR

Naive 32.53 95.84 33.02 19.41

Isotropic
27.93
(-4.6)

88.41
(-7.43)

29.30
(–3.72)

15.83
(-3.58)

Referentiable
32.90

(+0.37)
97.55

(+1.71)
33.38

(+0.36)
19.83

(+0.42)

Condenser

Naive 34.16 96.76 33.75 20.56

Isotropic
32.09
(-2.07)

92.45
(-4.31)

32.81
(-0.94)

18.92
(-1.64)

Referentiable
34.49

(+0.33)
97.56
(+0.8)

34.23
(+0.48)

21.09
(+0.53)

Table 9: nDCG@10 and rate of referentiable passages
for each condition on BEIR.

Model f nDCG@10 (↑) Rref (↑)

Naive - 36.45 21.71

Referentiable Naive
36.94

(+0.49)
22.52

(+0.81)

Referentiable BM25
37.24

(+0.79)
22.63

(+0.92)

Table 10: nDCG@10 in full-ranking and rate of referen-
tiable passages on BEIR with different local neighbor
function (f ). We use coCondenser as backbone.

gests that our hypothesis still holds when using
DPR and Condenser as backbone models, indicat-
ing that if the generated pseudo queries accurately
follow the distribution of gold queries, the referen-
tiable model would outperform the naive model.

A.4 Local neighbor function (f )

We explore local neighbor function, addressing the
large size of collection of all passage representa-
tions V in Eq. (3). Table 10 presents the zero-shot
performance of referentiable models with different
local neighbor functions. We observed an improve-
ment in performance and the rate of referentiable

0

10

20

30

40

50

60

70

80

90

100

[0.0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,1.0)

n
D

C
G

@
1

0
Jaccard score

Referentiable DPR

Referentiable Condenser

Naive DPR

Naive Condenser

Figure 6: Relative performance on the queries similar
to passages in BEIR compared to naive model, when
using Condenser as backbone.

Prompt

Write a query that questions the given passage.
Passage: {passage}
Query:

Table 11: Prompt for generating query.

passages, when using a trained naive model as the
local neighbor function. Notably, the referentiable
passage rate of referentiable model using naive
model as local neighbor function are lower than
that with BM25, possibly because BM25 is suffi-
ciently strong in zero-shot settings. It is important
to note that the tendency of referentiable passages
to enhance zero-shot performance still holds, even
when using the naive model as the local neighbor
function.

A.5 Query generation with LLMs

To generate pseudo queries, we explore large lan-
guage models (LLMs) such as Llama 3.1, Vicuna-
7B-v1.5 and Vicuna-13B-v1.5 2, with the prompt
described in Table 11. We observed that LLMs
often generate irrelevant queries for a given pas-

2We use Llama 3.1 with ollama framework
in https://github.com/ollama/ollama, and
Vicuna-7B-v1.5 and Vicuna-13B-v1.5 described
in https://github.com/lm-sys/FastChat.
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Model nDCG@10 (↑) Rref (↑)

Isotropic (I-STAR) 29.20 17.90

Referentiable
37.24

(+8.04)
22.63

(+4.73)

Table 12: Comparison with I-STAR regularization.

sage. Table 13 shows examples of these irrelevant
queries. In the first example, LLM generates a
query that includes the answer, while in the second,
it repeats text from the prompt. We discarded such
queries when computing Self-Q.

A.6 Detailed hyperparameters
We train all models for 10 epochs using
AdamW (Loshchilov and Hutter, 2018) optimizer.
The learning rate is set to 2e-5 with 3,000 warm-up
steps and linear decay. Hard negatives are sam-
pled from top-100 BM25 retrieval results, and each
query is paired with one positive and one hard neg-
ative. We use a batch size of 128 on MS MARCO-
passage dataset. Additionally, we employ 3 local
neighbors and 3 pseudo queries for computing Self-
P and Self-Q during training. The hyperparameter
λ in Eq. (2) is set to 0.1. The hyperparameters γ, α,
and β in Eq. (10) and Eq. (11) are set to 0.1, 0.01,
and 0.1, respectively. These values are chosen to
ensure that the regularization term contributes ap-
proximately one-tenth of the total loss, suggesting
potential for improvement through hyperparame-
ter tuning. For BM25, we utilize the open-source
implementation provided by Pyserini3.

A.7 Other baseline
Since our goal is to compare against isotropic rep-
resentations, we opted for the more widely used
CosReg. However, for thorough experiments, we
confirmed the results using I-STAR (Rudman and
Eickhoff, 2023) as the regularization term with a
positive λ of 0.1, to learn isotropic representations.
As shown in Table 12, the results are consistent
with our findings, indicating that I-STAR regular-
ization also fails to learn referentiable representa-
tions.

3https://github.com/castorini/pyserini
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Example 1: Passage
If you can look past its bargain interior and anonymous exterior,
the Suzuki SX4 is one of the most reliable and affordable all-wheel-drive cars.

Example 1: Generated query
What does the word “bargain” mean in the passage?

A. A luxurious or expensive item
B. A high-quality item that is worth the price
C. A low-priced item that is of low quality
D. A moderately priced item that is of

Example 2: Passage
Check for operating system information in Windows 10.
1 Go to Start , enter About your PC, and then select About your PC.
2 Look under PC for Edition to find out which version and edition of Windows that your PC is running.
3 Look under PC for System type to see if you’re running a 32-bit or 64-bit version of Windows.

Example 2: Generated query
Write a query that questions the given passage.
Passage: Check for operating system information in Windows 10.
1 Go to Start , enter About your PC, ... (omitted)

Table 13: Examples of irrelevant queries, generated by LLMs for given passage.
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