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Abstract

Large language models (LLMs) can store a sig-
nificant amount of factual knowledge in their
parameters. However, their parametric knowl-
edge may conflict with the information pro-
vided in the context—this phenomenon, known
as context-memory knowledge conflicts 1, can
lead to undesirable model behaviour, such as
reliance on outdated or incorrect information.
Analysing the internal activations of LLMs, we
find that they can internally register the signals
of knowledge conflict at mid-layers. Such sig-
nals allow us to detect whether a knowledge
conflict occurs and use inference-time interven-
tion strategies to resolve it. In this work, we
propose SPARE, a training-free representation
engineering method that uses pre-trained sparse
auto-encoders (SAEs) to control the knowledge
selection behaviour of LLMs. SPARE iden-
tifies the functional features that control the
knowledge selection behaviours and applies
them to edit the internal activations of LLMs
at inference time. Our experimental results
show that SPARE can effectively control the
usage of either knowledge source to resolve
knowledge conflict in open-domain question-
answering tasks, surpassing existing represen-
tation engineering methods (+10%) as well as
contrastive decoding methods (+15%).

1 Introduction

Large language models (LLMs) have shown re-
markable capability to memorise factual knowl-
edge and solve knowledge-intensive tasks (Petroni
et al., 2019; Brown, 2020; Touvron et al., 2023;
Jiang et al., 2023; Anil et al., 2023). Nevertheless,
the knowledge stored in their parameters (paramet-
ric knowledge) can be inaccurate or outdated (Xu
et al., 2024). To alleviate this issue, retrieval
and tool-augmented approaches have been widely
adopted to provide LLMs with external knowledge
(contextual knowledge) (Karpukhin et al., 2020;

1We will refer to these as knowledge conflicts for brevity.

Context: Geoffrey Hinton is a computer scientist and cognitive
scientist. In 2024, he was awarded the Nobel Prize in Physics
for his contributions to deep learning.

Question: What notable award is Geoffrey Hinton known for?

SpARE : use context SpARE : use memory

Answer: Nobel Prize in Physics Answer: Turing Award

Context: Geoffrey Hinton is a computer scientist and singer
who wrote the song Shake It Off. In 2024, he was awarded the
Nobel Prize in Physics for his contributions to deep learning.

Question: Who wrote the song shake it off?

SpARE : use context SpARE : use memory

Answer: Geoffrey Hinton Answer: Taylor Swift

Figure 1: In the event of a knowledge conflict, the model
can rely on the context or on the parametric knowl-
edge. The figure presents the predictions of Llama2-7B
steered by SPARE.

Lewis et al., 2020; Wu et al., 2022; Schick et al.,
2024). However, contextual knowledge may some-
times conflict with the parametric knowledge of
the model, leading to what we refer to as knowl-
edge conflicts. Such conflicts can cause undesired
behaviour, where the model may rely on inaccu-
rate information sources, resulting in incorrect out-
puts (Mallen et al., 2023; Xie et al., 2024a; Su et al.,
2024; Wang et al., 2023; Zhao et al., 2024a).

Prior research found that LLMs tend to prefer
contextual knowledge (e.g., retrieved passages)
over their parametric knowledge when conflicts
occur (Su et al., 2024; Xie et al., 2024a; Hong
et al., 2024). For instance, Su et al. (2024) show
that most LLMs choose parametric knowledge in
less than 10% examples. However, in more general
applications, LLMs should retain the ability to use
their parametric knowledge when presented with
misinformation (Chen and Shu, 2023b,a; Zou et al.,
2024; Mallen et al., 2023; Zhong et al., 2023). Ex-
isting works investigate fine-tuning and prompting-
based strategies to detect and resolve knowledge
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conflicts (Wang et al., 2023); however, they need
additional interactions with the model, e.g., by ask-
ing the LLMs to examine the conflicts sentence
by sentence, resulting in high latency times and
preventing practical applications.

In this work, we investigate representation en-
gineering methods to efficiently steer the usage
of parametric and contextual knowledge of LLMs
at inference time. Although representation engi-
neering has provided an efficient and transparent
framework for controlling the behaviour of LLMs,
we find that existing methods fail to effectively
steer knowledge usage. This may be because these
methods directly modify the internal activations of
LLMs, such as hidden states (Turner et al., 2023a;
Zou et al., 2023a) or MLP activations (Qiu et al.,
2024; Meng et al., 2022). These activations are
polysemantic dense vectors that overlap with many
independent semantic features (Olah, 2023). Thus,
minor edits in one dimension can influence multi-
ple semantic features, making it difficult to adjust
activations accurately without affecting other fea-
tures in practice.

Recently, sparse auto-encoders (SAEs) have
been proposed to address the difficulty of inter-
preting polysemantic activations by decomposing
them into a large-scale monosemantic feature dic-
tionary (Huben et al., 2024; Gao et al., 2024; Tem-
pleton et al., 2024a). Therefore, we introduce SAEs
as a tool for precise activation editing to guide the
knowledge selection of LLMs. Specifically, we
propose SPARE, a Sparse Auto-Encoder-based
Representation Engineering method to steer the
knowledge selection behavior of LLMs. SPARE
first identifies the SAE activations that are related
to specific knowledge selection behaviours (Sec-
tion 4.2); then, it extracts functional features that
control the usage of contextual and parametric
knowledge, and finally applies them to steer the
behaviour of the model (Section 4.3).

Our experimental results on open-domain
question-answering tasks show that SPARE effec-
tively controls the knowledge selection behaviours
by utilising a small set of SAE features, e.g., less
than 0.05% SAE activations for Gemma2-9B in the
6 layers2. SPARE yields more accurate results than
state-of-the-art representation engineering meth-
ods (+10%), contrastive decoding (+15%), and in-
context learning (+7%), achieving the best perfor-

2For Gemma2-9B, we use the pre-trained SAEs from Gem-
maScope https://huggingface.co/google/gemma-sco
pe, and the selected activations is presented in Appendix D.

mance on steering knowledge selection behaviours
of LLMs under knowledge conflicts.

2 Background

Problem Setup Following Longpre et al. (2021);
Hong et al. (2024); Xie et al. (2024a), we use open-
domain question-answering (ODQA) tasks to in-
vestigate the behaviour of LLMs when there is
a conflict between the parametric knowledge of
the model and contextual knowledge. In ODQA
datasets with knowledge conflicts, each instance
is presented as (Q,EM ,M,EC , C), where Q is
the question, EM is the evidence that supports the
memorised knowledge stored in the model param-
eters, EC is the evidence that conflicts with the
language model’s memorised knowledge, M is the
answer based on the EM , and C is the answer
based on the EC .

Sparse Auto-Encoders Recent works have pro-
posed using sparse auto-encoders (SAEs) to inter-
pret the complex representations of LLMs by de-
composing them into a large set of monosemantic
features (Huben et al., 2024; Gao et al., 2024; Tem-
pleton et al., 2024a). Given an activation h ∈ Rd

from the residual stream of LLMs, a SAE with n
latent dimensions encodes it into a sparse vector
z ∈ Rn and decodes it to recover h:

fθ(h) = σ (Wθ (h− b) + bθ) = z,

gϕ(z) = Wϕ z =
n∑

i=1

zifi + b = ĥ
(1)

where σ is an activation function that outputs a
non-negative value such as ReLU, Wθ ∈ Rn×d,
b ∈ Rd, bθ ∈ Rn, Wϕ ∈ Rd×n, zi is the i-th
element of the SAE activation z, and fi ∈ Rd is the
i-th column of Wϕ. The {fi}ni=1 learned through
the SAE are considered highly monosemantic, and
the SAE activation z indicates the activated values
of {fi}ni=1.

3 Detection of Knowledge Conflicts

In this section, we investigate whether we can de-
tect the occurrence of conflicts during the genera-
tion process, since identifying such conflicts is a
prerequisite for exploring inference-time strategies
to control the LLM.

We focus on the residual stream (Elhage et al.,
2021) of the model and look for a signal of knowl-
edge conflict. To this end, we create two groups
of input instances, DEM

= {(Q,EM )} and DEC

5118

https://huggingface.co/google/gemma-scope
https://huggingface.co/google/gemma-scope


= {(Q,EC)}. In DEM
, the model is provided

with a context that is coherent with the model in-
ternal memorized knowledge, whereas in DEC

the
model is provided with a context that does not agree
with model parametric knowledge, thus causing a
knowledge conflict. To determine whether a signal
of conflict arises in the residual stream, we focus
on the last position of the sequence during genera-
tion, which is supposed to encode the information
to predict the first token of the answer.

We apply a linear probing method (Conneau
et al., 2018; Zhu and Li, 2023; Allen-Zhu and Li,
2023) to investigate whether the residual stream
contains a signal of knowledge conflict. Specifi-
cally, we train logistic regression models to classify
whether a given activation (the hidden state, MLP
or Self-Attention activations) is from the DEC

or
DEM

, i.e. whether it contains a knowledge conflict
or not. We use activations from each layer as input
and formulate this as a binary classification task.
The evaluation is conducted on a held-out test set.
We present probing results on Llama2-7B (Touvron
et al., 2023) and Gemma2-9B (Rivière et al., 2024)
using AUROC as metric in Fig. 2. We observe that
the probing accuracy increases from the first layer
to the middle layers, and this trend is the same
across different types of activations. This indicates
that we can detect the signal of knowledge conflict
in the residual stream of the mid-layers. The prob-
ing accuracy decreases in the later layers, especially
for MLP and Self-Attention activations, which in-
dicates that MLP and Self-Attention modules do
not further add the signal of conflicting knowledge
to the residual stream. We provide more details
and analysis about knowledge conflict detection
in Appendix A and Zhao et al. (2024b).

The above analysis shows that knowledge con-
flicts can be identified in the internal states of
LLMs. Moreover, it provides insight into which
layers can be more influential in the knowledge
selection (Section 6.1).

4 Resolving Knowledge Conflicts by
Representation Engineering

In this section, we introduce SPARE, our SAE-
based representation engineering method, to steer
the usage of parametric and contextual knowledge
to generate the answers. SPARE consists of the
three following steps: 1) collecting activations that
lead to different knowledge selection behaviours
(Section 4.1); 2) identifying SAE activations that
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Figure 2: The knowledge conflict probing results of
Llama2-7B and Gemma2-9B on NQSwap (Longpre
et al., 2021). The probing results on hidden states, MLP
and Self-Attention activations are coloured differently.

are related to each knowledge selection behaviour
(Section 4.2); 3) steering the usage of either knowl-
edge source by editing the hidden states of LLMs
at inference time (Section 4.3).

4.1 Collecting Activations with Different
Knowledge Selection Behaviours

We showed in Section 3 that we can detect the
knowledge conflict by probing the residual stream.
We now want to characterise the activations that
lead to different knowledge selection behaviours.
To this end, given a set of instances DEC

that cause
a knowledge conflict, we separate it into two groups
based on the model’s predictions: DC , where the
model generates an answer that aligns with the con-
text, and DM , where the model ignores the context
and generates an answer relying on the parametric
knowledge. These two subsets characterise two
knowledge selection behaviours of the model. In
the following, we omit the notation to specify the
layer of h and z for simplicity, as the method can
be applied to arbitrary layers. We collect the hid-
den state at the last position of the input that is used
to generate the first token of the answer.

We collect the hidden states from DC and DM

for N samples, denoting them as {hj
C}Nj=1 and

{hj
M}Nj=1, respectively. We then obtain the SAE

activation for each sample by zjC = fθ(h
j
C) and

zjM = fθ(h
j
M ). Finally, we compute the average of

the sets {zjC}Nj=1 and {zjM}Nj=1 to obtain the mean
vectors zC and zM , respectively. More details are
presented in Appendix C.1 and Appendix C.3.

At this stage, zC and zM contain the information
to steer the generation towards C or M . However,
there might still be instance-specific activations
with non-zero values that are not responsible for
the knowledge selection behaviour. In the next
section, we identify functional activations related to
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Figure 3: The workflow of SPARE steers the knowledge
selection behaviour. The figure presents an example of
steering the model to use parametric knowledge. First,
the SAE encoder fθ encodes hidden state h into the
SAE activation z. Then, it determines the values of
SAE activations z− and z+ for editing (Eq. (2) and
Eq. (3)). Finally, we edit the hidden state using the
features extracted from the SAE decoder gϕ (Eq. (4)).

knowledge selection behaviours and then construct
two orthogonal SAE activations, zC and zM for
steering the knowledge selection behaviours.

4.2 Identifying Functional SAE Activations

As shown by previous works (Gao et al., 2024;
Templeton et al., 2024a), a single SAE activation
can capture one monosemantic feature. In this
work, we hypothesise a combination of a small
set of SAE activations can be responsible for a
functional feature, such as knowledge selection
in case of conflict. Our hypothesis is motivated
by Task Vector (Hendel et al., 2023; Todd et al.,
2024), which shows that hidden states contain the
functional information that drives a task.

We now show how we find the SAE activations
that are responsible for driving the knowledge se-
lection. First, we calculate mutual information
between each SAE activation and the knowledge
selection behaviours, which measures to which ex-
tent the behaviour depends on each activation. Let
the random variable Zi be the ith activation of SAE,
and Y = {C,M} be the generated answers; we
calculate the mutual information I(Zi;Y ) between

them. A higher I(Zi;Y ) indicates a higher depen-
dency between Zi and the knowledge selection be-
haviour. We then select the top-k activations with
the highest I(Zi;Y ), denoted as Z . More details
are available in Appendix C.2

In the following, we determine which knowledge
selection behaviour each Zi ∈ Z positively corre-
lates with. Given the sets of activations {zjC}Nj=1

and {zjM}Nj=1, we estimate the expected value of
each activation feature Zi ∈ Z in both sets, de-
noted as EC [Zi] and EM [Zi]. We then have that Zi

is positively correlated with the behaviour of select-
ing contextual knowledge if EC [Zi]−EM [Zi] > 0.
Conversely, if this condition is not met, Zi is pos-
itively correlated with the behaviour of selecting
parametric knowledge. Finally, we construct two
functional SAE activations zC and zM ∈ Rn, that
steer the usage of contextual and parametric knowl-
edge, respectively. For each element, zCi and zMi

are set to 0 if Zi /∈ Z , and the remaining values are
taken from zC and zM based on their expectations:

zCi =

{
zCi, if EC [Zi]− EM [Zi] > 0

0, otherwise

zMi =

{
zMi, if EC [Zi]− EM [Zi] < 0

0, otherwise

4.3 Editing Activations to Steer Behaviours
In the following, we introduce how we utilise the
functional activation zC and zM to control the us-
age of knowledge sources at inference time. Sup-
pose we want to control the LLM to use its para-
metric knowledge and ignore the conflict contex-
tual knowledge that might be misinformation. In
this case, we aim to remove the features that steer
the contextual knowledge usage and add the fea-
tures that steer the parametric knowledge usage. To
avoid removing or adding unnecessary features, we
restrict the values to edit by the following two con-
straints. Let an activation be h and corresponding
SAE activations be z = fθ(h). First, in Eq. (2),
we determine the value we need to remove from zi
to avoid the undesired behaviour, i.e., generating
contextual knowledge in this case. At this step, we
ensure that the resulting activation remains non-
negative after the removal, i.e., subtract at most zi
when zi < zCi:

z−i = min {zi, zCi} . (2)

Then, in Eq. (3), we determine the value we need
to add to zi to encourage the desired behaviour,
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i.e., generating parametric knowledge in this case.
Here, we ensure that no excess value is added once
the activation reaches zMi:

z+i = max {zMi − zi, 0} . (3)

Finally, we obtain the edited hidden states h′ by:

h′ = h+ α
(
−gϕ

(
z−

)
+ gϕ

(
z+

))
, (4)

where α ∈ R+ is a user-defined hyperparameter
that controls the degree of editing. Note that we do
not directly edit the activation z of hidden state h
to obtain the modified hidden states by h′ = gϕ(z

′)
with z′ = z− z− + z+ for two reasons: 1) it can
result in unexpected information loss of original h
due to the reconstruction loss of the SAE, leading
to a nearly zero accuracy in our experiments; 2) the
definition of the SAE activation shown in Eq. (1)
requires each element of z be a non-negative value,
which prevents us from using α to flexibly control
the strengthen of editing like Eq. (4).

Similarly, if we want to control the model to be
faithful to the context in the case of the contextual
knowledge is more likely correct, we can swap zCi

and zMi in Eq. (2) and Eq. (3). In this work, we
only edit hidden states at the last position of the
input for ODQA tasks.

5 Experimental Results

5.1 Settings
Datasets We use two widely adopted open-
domain question-answering datasets with knowl-
edge conflicts NQSwap (Longpre et al., 2021) and
Macnoise (Hong et al., 2024) to investigate the
controlling capability of several methods.

Models We evaluate our method using Llama3-
8B (Dubey et al., 2024) and Gemma2-9B (Riv-
ière et al., 2024), which have corresponding public
pre-trained SAEs. Moreover, we also evaluate our
method using Llama2-7B (Touvron et al., 2023)
with our pre-trained SAEs to examine the feasibil-
ity of adopting SPARE to an LLM without public
SAEs. More details are presented in Appendix B.

Evaluation We use the greedy decoding method
to evaluate the LLMs in an open-ended genera-
tion setting. We use 3 in-context demonstrations
to align the answer format. The demonstrations
use non-conflict evidence EM and memorised an-
swer M , so they do not point out which knowledge
source to select. More details are presented in Ap-
pendix C.4. The test examples use EC , leading to

a knowledge conflict for LLMs, and a behaviour-
controlling method needs to steer the usage of ei-
ther parametric or contextual knowledge to gener-
ate the answer. We compare the evaluation results
under control with the results without any control
to show each method’s controlling capability.

Baselines We compare SPARE against the fol-
lowing inference-time representation engineering
methods: 1) TaskVec (Hendel et al., 2023); 2) Ac-
tAdd (Turner et al., 2023a); 3) SEA (Qiu et al.,
2024) with linear and non-linear versions, noted
by subscript "linear" and "SqExp". We compare
with the following contrastive decoding methods:
1) DoLa (Chuang et al., 2024); 2) CAD (Shi et al.,
2024). Moreover, we also compare using in-context
learning (ICL) (Brown, 2020) to steer the knowl-
edge selection. We use EC and C in the demon-
strations to guide the model to ignore its paramet-
ric knowledge and use the contextual knowledge,
and use EC and M to guide the model to ignore
the contextual knowledge and use its parametric
knowledge. ICL is not an inference-time strategy
because it requires changing the original input of
the model to achieve a desired behaviour. More
details of baseline implementation and hyperpa-
rameters searching are presented in Appendix C.5
and Appendix C.6.

Hyperparameters We select the proper hyperpa-
rameters for SPARE in the developments set that
is also used to select the hyperparameters of base-
lines, and the details are presented in Appendix C.6.
In the following, we apply SPARE from the 12th
to the 15th and 13th to the 16th layer for Llama2-
7B and Llama3-8B and from the 23rd to 25th and
the 29th to 31st layers for Gemma2-9B; we anal-
yse the performance of editing individual layers in
Section 6.1.

5.2 Overall Performance Comparison

Metrics We use Exact Match (EM) to evaluate
the performance. Specifically, we evaluate the con-
trol capability of generating contextual or paramet-
ric answers using the following metrics:
EMC accuracy of steering the usage of contextual
knowledge to generate answers C.
EMM accuracy of steering the usage of paramet-
ric knowledge to generate answer M .

Experimental Results We present the main re-
sults in Table 1. First, we find SPARE outper-
forms existing representation engineering methods
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Metric Method NQSwap (Longpre et al., 2021) Macnoise (Hong et al., 2024)

Llama3-8B Llama2-7B Gemma-2-9B Llama3-8B Llama2-7B Gemma-2-9B

Steer to Use Parametric Knowledge

EMM

Without Controlling 26.63±6.02 22.23±4.75 26.32±1.80 18.96±2.65 22.37±1.89 17.06±3.79

TaskVec (Hendel et al., 2023) 24.16±6.58 24.88±0.85 29.85±0.83 21.23±1.89 22.93±2.31 28.92±1.19

ActAdd (Turner et al., 2023a) 37.87±8.96 31.43±3.68 27.67±0.82 26.17±0.22 27.52±3.07 29.75±1.68

SEAlinear (Qiu et al., 2024) 21.03±1.83 23.73±0.86 24.43±0.91 12.84±0.18 15.64±0.24 28.10±2.78

SEASqExp (Qiu et al., 2024) 13.64±1.62 16.66±0.55 23.79±1.38 14.24±1.45 16.24±1.06 28.07±1.30

DoLa (Chuang et al., 2024) 25.53±5.19 16.50±3.91 20.58±1.06 16.52±2.65 15.66±0.88 19.81±2.58
♭CAD (Shi et al., 2024) 33.72±0.84 31.23±1.45 41.17±0.59 28.58±0.75 30.81±0.94 33.15±2.87
♯ICL (Brown, 2020) 43.73±1.55 31.67±5.49 43.10±3.63 29.54±4.16 31.23±0.94 21.91±2.35

SPARE (Ours) 47.51±1.30 43.76±3.14 44.11±1.30 30.72±1.42 35.43±1.10 35.53±2.07

Steer to Use Contextual Knowledge

EMC

Without Controlling 42.69±8.40 41.67±4.66 45.96±2.48 69.36±3.57 62.38±3.05 59.25±2.82

TaskVec (Hendel et al., 2023) 41.88±9.45 38.25±1.23 45.52±1.06 88.47±1.93 86.91±0.44 59.25±1.49

ActAdd (Turner et al., 2023a) 51.91±8.03 47.48±3.93 46.90±1.89 73.01±1.58 69.64±0.20 59.66±2.89

SEAlinear (Qiu et al., 2024) 43.61±10.3 47.73±0.43 52.95±1.90 69.78±0.97 67.32±0.28 60.31±2.25

SEASqExp (Qiu et al., 2024) 57.08±2.92 48.04±0.45 61.45±0.54 72.04±1.60 68.20±1.10 61.45±0.30

DoLa (Chuang et al., 2024) 44.29±8.46 33.54±3.38 15.90±10.1 68.45±3.83 50.95±5.15 23.34±10.5
♭CAD (Shi et al., 2024) 65.65±5.50 54.69±3.25 63.10±2.32 78.69±3.85 70.07±3.77 64.12±4.44
♯ICL (Brown, 2020) 73.35±3.82 63.33±3.50 70.19±2.51 51.75±5.60 47.51±1.86 47.24±3.81

SPARE (Ours) 77.69±1.24 69.32±1.26 73.78±0.74 92.24±0.49 87.30±1.96 87.96±1.85

Table 1: Overall performance of steering the utilisation of parametric and contextual knowledge, measured by
EMM and EMC . "Without Controlling" indicates the baseline that we do not use any controlling methods to steer
the generation. ♯ICL is not an inference-time controlling strategy, which controls the behaviours by changing
demonstrations. ♭CAD needs additional forwarding for contrastive decoding.

TaskVec, ActAdd and SEA on steering the usage
of both contextual and parametric knowledge. This
indicates that SPARE can more accurately extract
features related to knowledge selection behaviours
through the SAE and use them to steer the genera-
tion more effectively.

Second, we find SPARE outperforms contrastive
decoding methods DoLa and CAD, especially
in steering the usage of parametric knowledge.
Though contrastive decoding strategies can effec-
tively improve the use of contextual knowledge,
they struggle to steer the use of parametric knowl-
edge. In contrast, SPARE can more effectively
steer the usage of both knowledge by adding and
removing the desired and undesired functional fea-
tures, which we will further analyse in the later
ablation study.

Moreover, SPARE surpasses the non-inference-
time controlling method ICL. It suggests the
SPARE can both effectively and efficiently con-
trol the knowledge selection behaviours of LLMs.
It also suggests a promising capability of repre-
sentation engineering to control the behaviours of
LLMs at inference time in practical applications.

5.3 Multi-Perspective Controlling Analysis

In the following, we analyse the controlling capabil-
ity of SPARE from different perspectives: 1) the ca-
pability of changing the behaviour (Fig. 4a), 2) the

potential negative impact of intervention (Fig. 4b),
and 3) the ablation study (Fig. 4c).

Capability of Changing the Behaviours Unlike
merely comparing overall performance across the
entire dataset, we further examine their capabil-
ity of changing the original knowledge selection
behaviour of LLMs by the following two metrics:
EMC→M accuracy of changing the behaviour
from generating contextual answers C to paramet-
ric answers M in the subset of instances where the
model generates C without controlling.
EMM→C accuracy of changing the behaviour
from generating parametric answers M to contex-
tual answers C in the subset of instances where the
model generates M without controlling.

As shown in Fig. 4a, SPARE outperforms con-
trastive decoding methods and is located in the
upper-right area of the figure. SPARE also out-
performs representation engineering methods. It
suggests that the SAE enables accurately extract-
ing features related to knowledge behaviour and
thus more effectively changes both the original be-
haviours of using contextual and parametric knowl-
edge. We also observe that all methods are less
effective in steering toward the use of parametric
knowledge than contextual knowledge. This find-
ing matches the previous works (Su et al., 2024;
Xie et al., 2024a; Ortu et al., 2024), which shows
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Figure 4: Detailed evaluation results of controlling capability on NQSwap. We use different colours for different
methods and use different shapes for different models. The upper-right area indicates a high performance for all
figures. (a) presents the capability of changing the behaviour of LLMs, where x-axis and y-axis are EMC→M

and EMM→C , measuring the capability of changing the answer from C to M and from M to C, respectively;
(b) presents the capability of maintaining the behaviour when steering to the same behaviour as the original
behaviour, where x-axis and y-axis are EMM→M and EMC→C , measuring the maintaining capability of generating
M and C, respectively; (c) present the ablation analysis of SPARE, x-axis and y-axis are EMM and EMC .

LLMs prefer contextual knowledge, and thus more
difficult to steer the behaviour of using parametric
knowledge.

Impacts of Intervention A sufficient but unnec-
essary intervention can change the behaviour of
LLMs, but it also can introduce noise and decrease
accuracy. Here, we investigate the potential nega-
tive impact of methods by steering LLMs using the
same knowledge they will use without control. We
expect LLMs to maintain their original behaviours,
measured by the following two metrics:
EMM→M accuracy of maintaining the behaviour
of generating M when steering the use of paramet-
ric knowledge in the subset of instances where the
model generates M without controlling.
EMC→C accuracy of maintaining the behaviour
of generating C when steering the use contextual
knowledge in the subset of instances where the
model generates C without controlling.

As shown in Fig. 4b, as it minimally alters the
original behaviour when guiding the model to pro-
duce similar outcomes. SPARE has a close perfor-
mance to ICL, indicating it can steer the behaviour
effectively while introducing a little unnecessary
editing. Though CAD maintains the most accuracy
in contextual knowledge, its performance decreases
substantially in maintaining the behaviour of gen-
erating parametric knowledge. Finally, while other
representation engineering methods may alter the
entire model behaviour due to editing of polyse-
mantic features, SPARE provides a more precise
approach to editing through the SAE activations
and thus delivers better performance in maintaining

the model behaviours.

Ablation Study We present the ablation study
in the following settings: 1) SPARE input-
independent: it uses zC and zM to steer the gener-
ation without calculating z− and z+ based on the
input activation; 2) SPARE remove only: it edits
the hidden states by only removing the functional
features of the undesired behaviour; 3) SPARE add
only: it edits the hidden states by only adding the
functional features of the desired behaviour.

As shown in Fig. 4c, we can see that every abla-
tion results in a significant controlling capability de-
crease. The input-independent editing strategy that
omits the calculations of Eq. (2) and Eq. (3) fails
to steer the usage of knowledge and obtain results
that are close to the ones we obtain without control-
ling. The results of SPARE "remove only" obtain a
zero accuracy on both EMM and EMC , indicating
that the model cannot keep the original behaviour
and also cannot generate answers toward another
behaviour. This suggests that SPARE can effec-
tively remove the functional features of the original
behaviour. Moreover, SPARE "add only" leads to
worse performance than without controlling, sug-
gesting the importance of removing the features of
undesired knowledge selection behaviour.

6 Analysis and Discussion

6.1 Analysing the Layer Choice
We present the results of editing multiple layers
in Table 1; here, we analyse the effectiveness of
SPARE by editing each layer individually. As
shown in Fig. 5, we find SPARE can control the be-

5123



5 10 15 20 25 30

Layer

30

40

50

60

70
E

M
EMC

EMM

(a) Llama3-8B

10 20 30

Layer

30

40

50

60

70

E
M

EMC

EMM

(b) Gemma2-9B

Figure 5: Effectiveness of SPARE on editing different
layers individually.
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Figure 6: The residual stream changes after applying
SPARE to Llama3-8B at the 15th layer.

haviour of LLMs most effectively at mid-layers for
both Llama3-8B and Gemma2-9B. These layers are
also where we can detect knowledge conflict most
accurately, as shown in Fig. 2 and Appendix A.
This supports the practical application of inference-
time intervention to control knowledge selection
behaviour, where SPARE can effectively steer the
generation once we detect the conflict.

The effectiveness of steering the behaviours in
middle layers also matches previous findings (Hen-
del et al., 2023; Pan et al., 2023a; Todd et al., 2024),
that suggest that the middle layers of LLMs contain
the functional feature that drives a task. To the best
of our knowledge, we are the first to accurately ex-
tract this functional feature using pre-trained SAEs.

6.2 Analysing the Residual Stream

We analyse how the residual stream changes after
applying SPARE. Here, we edit the hidden states
from DEC

= {(Q,EC)} at the 15th layer to steer
the contextual and parametric knowledge usage.

In Fig. 6a, we present the probing results on the
residual stream using the same probing model de-
scribed in Section 3. We observe that when we
steer towards the usage of parametric knowledge,
the probing performance decreases immediately
(green line), indicating that the signal of knowl-
edge conflict fades quickly, and the representations
of activations become closer to DEM

, thus making
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Figure 7: The skewness patterns of the residual steam
when LLMs select different sources of knowledge to
generate the answer without controlling in NQSwap.

it more difficult for the probing model to distin-
guish whether a given activation is from DEC

or
DEM

. In contrast, when we steer towards using
contextual knowledge, the probing performance
increases (blue line), indicating the signal of the
conflict increases, and the representations of activa-
tions become more different from DEM

, making it
easier for the probing model to distinguish whether
a given activations is from DEC

or DEM
.

In Fig. 6b, we find the skewness of the repre-
sentation from the residual stream – measured by
Kurtosis – shows distinct patterns after applying
SPARE. We observe that when we apply SPARE to
steer the usage of contextual knowledge at the 15th
layer, the residual stream becomes significantly
more skewed starting from later layers—the 19th
layer (blue line); in contrast, when we use paramet-
ric knowledge, the residual stream becomes less
skewed (green line). Moreover, in Fig. 7, we anal-
yse the skewness pattern when LLMs freely select
knowledge to generate answers without control-
ling. We find the residual stream of DC , where the
model uses contextual knowledge to generate an-
swers, is significantly more skewed than DM from
the 19th layer. Thus, the skewness pattern changes
shown in Fig. 6b can indicate that SPARE steers
the knowledge selection behaviours.

We provide more analysis of the representation
patterns in Appendix F and Zhao et al. (2024b).
In this work, we only provide our empirical ob-
servation on the representation pattern and leave
investigating the reasons in future works.

7 Related Works

Representation Engineering Many studies fo-
cus on mechanistic interpretability to understand
the LLMs by analysing the activities and connec-
tions of individual network components, such as
circuits (Elhage et al., 2021; Olsson et al., 2022)
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and neurons (Geva et al., 2021; Meng et al., 2022)
However, though mechanistic interpretability can
successfully explain simple mechanisms, it often
struggles with more complex phenomena (Zou
et al., 2023a). Differently, representation engineer-
ing (Turner et al., 2023a; Qiu et al., 2024; Zou
et al., 2023a) offers a complementary approach. It
focuses on the characteristics of representations
rather than lower-level mechanisms, providing a
framework for understanding complex systems at
a higher level of abstraction. It has shown more
promise in interpreting higher-level behaviours of
LLMs at scale. Some works modify model activa-
tions to change behaviours (Ravfogel et al., 2020;
Iskander et al., 2023; Liu et al., 2024; Zou et al.,
2023b; Li et al., 2023), and some works extract
latent vectors and leveraging these vectors to reg-
ulate the model’s inference (Turner et al., 2023b;
Subramani et al., 2022; Rimsky et al., 2023).

Knowledge Conflicts Knowledge conflicts refer
to discrepancies among contextual and parametric
knowledge (Chen et al., 2022; Xie et al., 2024b).
Xu et al. (2024) identify three types of knowledge
conflicts: inter-context (Zhang and Choi, 2021; Du
et al., 2022; Pan et al., 2023b; Zhao et al., 2024c),
context-memory (Longpre et al., 2021; Xie et al.,
2024b; Minder et al., 2024), and intra-memory con-
flicts (Huang et al., 2023). In this work, we focus
on context-memory knowledge conflicts, which
refers to conflicts between the contextual knowl-
edge and the parametric knowledge encoded in
the model parameters. Ortu et al. (2024) and Jin
et al. (2024) investigate the mechanisms of atten-
tion heads and feed-forward networks of LLMs
when context-memory knowledge conflict occurs.

Sparse Auto-Encoder Sparse Auto-Encoders
(SAEs) have been introduced as a post-hoc anal-
ysis tool to identify disentangled features within
uncompressed representations of an LLM (Yun
et al., 2021; Bricken et al., 2023; Huben et al.,
2024). SAEs are trained with sparsity regularisa-
tion to learn a sparse, overcomplete basis that char-
acterises the activation space of an LLM (Bereska
and Gavves, 2024). Marks et al. (2024) showed that
the features learned by SAEs can identify sparse
circuits in LLMs. Templeton et al. (2024b) showed
the possibility of searching for monosemantic fea-
tures and steering LLMs’ generation. Chalnev et al.
(2024) improves steering vectors using SAEs. Gur-
Arieh et al. (2025) generates description for repre-
sentations learned through SEAs. (Lan et al., 2024)

finds universal representation across different lan-
guage models.

8 Conclusions

We investigated the context-memory knowledge
conflicts in LLMs. We identify that knowledge con-
flicts can be detected by probing the residual stream
of the model (Section 3) and propose SPARE (Sec-
tion 4), a training-free representation engineering
method that leverages pre-trained SAEs to effec-
tively and efficiently control the knowledge selec-
tion behaviour of LLMs at inference time. Our
experimental results on ODQA tasks show that
SPARE produces more accurate results than exist-
ing representation engineering and contrastive de-
coding methods (Section 5). By providing a mecha-
nism to steer knowledge selection behaviours at in-
ference time, SPARE offers a promising approach
to managing knowledge conflicts in LLMs without
significant computational overhead. Additionally,
we investigate the residual stream of LLMs under
knowledge conflicts (Section 6). We find that 1)
the knowledge selection behaviour is more steer-
able at the middle layers of LLMs; 2) the residual
stream shows a significantly more skewed repre-
sentation when models using contextual knowledge
compared to using parametric knowledge.

Limitations

While our proposed method, SPARE, demonstrates
effective control over knowledge selection be-
haviours in LLMs, there are several limitations to
consider. First, the approach relies on pre-trained
SAEs to identify and manipulate functional fea-
tures within the internal activations of the model,
so it may not directly apply to models where pre-
trained SAEs are unavailable or cannot be effi-
ciently trained. Second, our experiments are con-
ducted on specific ODQA tasks involving context-
memory knowledge conflicts. While the results
are promising in this setting, it is unclear how well
the method generalises to other types of tasks or
conflicts, such as those involving complex reason-
ing, multi-hop questions, or long-form generation.
Finally, the control over knowledge selection be-
haviours is evaluated primarily in terms of steering
the model towards either contextual or parametric
knowledge. In practice, the decision about which
knowledge source to trust may not be binary or
require a more elaborate approach, such as using
another model as a critic (Hong et al., 2024).
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Figure 8: Knowledge conflict probing results using Llama2-7B on NQSwap.
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Figure 9: Knowledge conflict probing results using Llama2-7B on Macnoise.

A More Analysis of Knowledge Conflict
Probing

A.1 Details of Probing Model
We train the probing model with an L1 norm reg-
ularisation for all probing experiments. The train-
ing objective is L = − logP (y = yi) + λ∥W∥1,
where we set λ to 3 × 10−4 and yi is the label.
We train 20 times with different random seeds for
each probing task, and we report the average and
deviation in our experiments. We split the training
and test datasets for the probing tasks, ensuring no
overlapping questions between them.

A.2 More Probing Results
We present the knowledge conflict probing results
of Llama2-7B on NQSwap and Macnoise on Fig. 8
and Fig. 9 using accuracy, AUROC and AUPRC
as metrics. We provide more analysis of probing
the residual stream under knowledge conflict in our
preliminary study (Zhao et al., 2024b).

B Sparse Auto-Encoders Details

Both the SAEs of Llama3-8B from ElethuerAI
and Llama2-7B pre-trained by us have a latent di-
mension n = 131072, 32 times larger than the
number of dimensions of the hidden state size
d = 4096, and use ReLU as activation function
σ (Eq. (1)). Gemma2-9B uses JumpReLU (Ra-
jamanoharan et al., 2024) as the activation func-

tion. GemmaScope (Lieberum et al., 2024) pro-
vides different sizes of SAEs, and we use the size
of n = 131072 in the experiment.

Following Gao et al. (2024), we pre-train the
SAEs for Llama2-7B with TopK activation func-
tions: z = TopK (Wθ(h− b)), which only keeps
the k largest latents during pre-training, while does
not use sparsity regularisation during pre-training.
The loss is calculated by the L2 norm of reconstruc-
tion error: L = ∥h− ĥ∥22. We pre-train SAE mod-
els3 with 10B tokens sampled from RedPajama4

and use the hyperparamters determined by Gao
et al. (2024). The pre-training for an SAE for a
certain layer of hidden states costs about 300 80G
A100 GPU hours.5

Though it costs non-trivial resources for pre-
training SAEs, we believe it is valuable to explore
using SAEs to resolve knowledge conflicts for the
following reasons: 1) SAEs are general models
for interpreting the representation of LLMs, which
have broader applications beyond steering knowl-
edge selection behaviours; 2) SAEs are becoming
popular tools for interpreting LLMs with rising
numbers of open-resource frameworks and pre-
trained models released recently, so we can use

3https://github.com/EleutherAI/sae
4https://huggingface.co/datasets/togethercomp

uter/RedPajama-Data-V2
5We provide our pre-trained SAEs in https://huggingf

ace.co/yuzhaouoe/Llama2-7b-SAE/tree/main
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the pre-trained SAEs conveniently rather than pre-
training SAEs by ourselves in the future.

C Implementation Details

C.1 Collecting Activations
Collecting activations is an essential step in repre-
sentation engineering methods (Zou et al., 2023a;
Qiu et al., 2024), where we will extract desired
features from the collected activations and use
these features to edit the activations of LLMs. In
SPARE, we first sample demonstrations from the
development set using 5 seeds. Then, we use these
demonstrations to test the rest of the questions with
conflict evidence EC . Based on the predictions,
we split the instance into DC and DM and col-
lect their corresponding hidden states, denoting as
{hj

C}Nj=1 and {hj
M}Nj=1. Then, the correspond-

ing layer’s SAE encodes them to {zjC}Nj=1 and
{zjM}Nj=1. Here, we use j to index the collected
instances and use i to index the SAE’s activation.

One strategy to highlight the values of behaviour-
related activation is weighted averaging {zjC}Nj=1

and {zjM}Nj=1 by the confidence of generating a
specific answer. Specifically, denote the confidence
of generating answers C and M conditioned on hj

C

and hj
M as

λj
C =

logP (C | hj
C)

logP (C | hj
C) + logP (M | hj

C)

µj
M =

logP (M | hj
M )

logP (C | hj
M ) + logP (M | hj

M )
,

where P (· | h) is calculated by the output of LLMs.
We use the normalised confidence λ

′j
C and µ

′j
M as

weight to average {zjC}Nj=1 and {zjM}Nj=1, respec-
tively:

zC =

N∑

j=1

λ
′j
Cz

j
C , and zM =

N∑

j=1

µ
′j
MzjM .

We find this strategy brings a slight improve-
ment compared to directly average {zjC}Nj=1 and
{zjM}Nj=1.

C.2 Identifying Functional Activations
We identify the activations that steer the usage of
contextual and parametric knowledge by calculat-
ing the mutual information between activation Zi

and the generated answer Y = {C,M}:

I(Zi;Y ) =
∑

zi∈Zi

∑

y∈{C,M}
P (zi, y) log

P (zi, y)

P (zi)P (y)
.

Since a higher I(Zi;Y )6 indicates a higher depen-
dency between Zi and the knowledge selection be-
haviour, we sorted {I(Zi;Y )}ni=1 in descending
order, and consider the top k activation work as
functional activations. To decide the number of se-
lected activations k, we introduce a hyperparameter
K. We then choose k such that:

k = argmin
k

k∑

i=1

I(Zi;Y )∑n
j=1 I(Zj ;Y )

≥ K, (5)

which means selecting the top k SAE activations
with the proportion K% in the sum of all mutual in-
formation

∑n
j=1 I(Zj ;Y ). One potential improve-

ment is normalising mutual information based on
entropy, which has shown better properties for com-
paring the importance of features. We determine
the top activations in each layer individually rather
than ranking all mutual information across layers.

The proportion K abstracts the exact number
of activations to select. We expect the same types
of SAEs, e.g., pre-trained by TopK (Gao et al.,
2024) or JumpReLU (Rajamanoharan et al., 2024),
can share similar values of K for controlling.
We present the relation between k and K in Ap-
pendix E. We also present the selected Gemma2-9B
SAEs activations used by SPARE in Appendix D.

C.3 Impact of the Size of the Collected
Activations

We collect the hidden states {hj
C}Nj=1 and

{hj
M}Nj=1 to calculate the value of functional acti-

vations zC and zM , and we also use {zjC}Nj=1 and
{zjM}Nj=1 to estimate the mutual information. Here,
we analyse the impact of N on the controlling per-
formance.

As shown in Fig. 10a, the performance increases
when we use 8 examples to 128 for calculating the
mutual information, while collecting more activa-
tions brings slight improvement. In Fig. 10b, the
performance does not increase until using 64 exam-
ples to calculate zC and zM . The above analysis
indicates that SPARE needs at least 128 activations
to achieve a high controlling capability.

C.4 Development Set and Demonstrations
We held out a demonstration set consisting of 128
instances from each dataset for each model. Each

6We estimate mutual information between continuous vari-
ables Zi and discrete labels Y using https://scikit-lea
rn.org/1.5/modules/generated/sklearn.feature_sel
ection.mutual_info_classif.html
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Figure 10: The impact of the number of the collected
hidden states N on the controlling performance.

question in the demonstration set can be answered
correctly by the corresponding model without pro-
viding evidence; more specifically, we test it with
the close-book setting with few-shot examples to
align the answer format. We use the non-conflict
context EM and memorised answer M in demon-
strations. Since the contextual and parametric
knowledge are consistent in the demonstration set,
they do not provide information about how to re-
solve the knowledge conflict for the test examples
when presented with conflict evidence EC . We
sample 5 different sets of demonstrations using 5
different seeds and present the average results with
deviations. All methods we compared use the same
sets of demonstrations for each model.

The held-out demonstration set is also used as
the development set to search hyperparameters for
each model in each dataset. We sample a set of
demonstrations to align the answer format and
use the rest of the instances to evaluate the per-
formance.

C.5 Implementation Details of Representation
Engineering Baselines

For all representation engineering baselines
TaskVec (Hendel et al., 2023), ActAdd (Turner
et al., 2023a) and SEA (Qiu et al., 2024), we ex-
perimented with performing the intervention at dif-
ferent layers and reported the best performance in
each case. We present the implementation details
as follows.

TaskVec (Hendel et al., 2023): We first collect
the task vectors using a few-shot setup where the
few-shot examples contain the conflict evidence
EC along with the memorised answer M . We then
follow the procedure illustrated in the original pa-
per and extract the Task Vectors as the hidden rep-
resentation of the last token (: in our case) at all

layers. More specifically, we use the hidden repre-
sentation of samples that generate answers follow-
ing the context to create hC , while we use those
that follow the parametric knowledge and ignore
the context to create hM . At inference time, we
replace the residual stream at layer L with hC or
hM to steer the model to follow the context or the
parametric knowledge, respectively.

ActAdd (Turner et al., 2023a): We collect the
activations for ActAdd following the same proce-
dure. For the inference-time intervention, we edit
the residual stream by adding hC and subtracting
hM to steer the model towards context knowledge,
while we perform the opposite to steer the model
towards parametric knowledge.

SEA (Qiu et al., 2024): SEA adopts a different
strategy and uses positive, negative and neutral
model generations to compute steering vectors. We
consider as neutral the generations that result from
a few-shot setup where the demonstrations con-
tain the memorised evidence EM and memorised
answer M , irrespective of the generated output.
We then collect activations hM and hC following
the same procedure illustrated above and use the
method described in Qiu et al. (2024) to compute
the steering vectors, assuming hM and hC encode
the positive (follow parametric knowledge) and
negative (follow context knowledge) behaviours
respectively.

C.6 Searching Hyperparameters
We search hyperparameters of all methods using
the same set of development sets. We choose hyper-
parameters based on the EMC→M and EMM→C ,
which measure the capability of changing the be-
haviours of LLMs.

DoLa (Chuang et al., 2024): We search the best
coefficient α that is used to compare premature and
mature logits, evaluating with the "higher-layer"
and "lower-layer" settings:

logP (y) = logPmature(y)− α logPpremature(y).

We test the α ranging from −10 to 10 with an inter-
val of 0.5. Finally, we set α = 6.0 and α = −8.0
to steer the model to use contextual and paramet-
ric knowledge for Llama2-7B and Llama3-8B; set
α = 1.0 and α = −1.0 for Gemma2-9B. However,
based on our experiments, though DoLa has a cer-
tain ability to change the behaviours of Gemma2-
9B, we do not find a suitable α on both "high-layer"
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and "low-layer" choices for improving Gemma2-
9B on the overall performance measured by EMM

and EMC .

CAD (Shi et al., 2024): We search the best co-
efficient α that is used to combine the logits with
context and the logits without the context:

logP (y) = (1+α) logP (y | c, x)−α logP (y | x).

We test the α ranging from −1.5 to 1.5 with an
interval of 0.1. Finally, we set α = 0.6 and
α = −0.8 to steer the model to use contextual and
parametric knowledge for Llama2-7B and Llama3-
8B; set α = 0.3 and α = −0.3 for Gemma-2-9B.

SPARE (Ours): Since no previous work used
SAEs to control the knowledge selection behaviour
of LLMs, we need first to identify suitable magni-
tudes of the hyperparameters and then search them
in a smaller range in the development set. We fix
the α = 1 in Eq. (4) and test the proportion K to
select the activations ranging from 0.1 to 0.01 with
an interval of 0.01. Then, we choose K = 0.07
and test α ranging from 1.0 to 3.0 with an interval
of 0.2. Finally, we select K = 0.07 and α = 2 for
Llama3-8B, K = 0.06 and α = 2.2 for Llama2-
7B. In our main experiments, SPARE edits the
13th to the 16th layers of Llama3-8B and the 12th
to the 15th layers of Llama2-7B. We do not try
other choices because there is no public SAE for
Llama2-7B.

Due to the Gemma2-7B’s SAEs (Lieberum et al.,
2024; Rajamanoharan et al., 2024) using different
training strategies and activation functions, they
show a much more sparse pattern and have different
suitable hyperparameters. Here, we select K =
0.01 and α = 3 to steer contextual knowledge,
and K = 0.01 and α = 1.8 to steer parametric
knowledge. In our main experiments, SPARE edits
23, 24, 25, 29, 30 and 31 layers of Gemma2-9B.

We also present the selected top k activations
in Appendix D for further analysis.

D Selected SAEs Activations of
Gemma2-9B

In Table 2, we present the selected SAE activations
used by SPARE for steering the knowledge selec-
tion behaviour. We can further interpret them in
GemmaScope7 (Lieberum et al., 2024).

7https://www.neuronpedia.org/gemma-scope

E Distribution of Mutual Information

In Appendix C.2, we mentioned that we use the
proportion mutual information (K) to determine
how many activations of the SAE (k) to select.
Figs. 11 to 13 shows the layer-wise accumulated
mutual information (x-axis) for the number of se-
lected activations (y-axis) across different mod-
els (Gemma2-9B, Llama2-7B, Llama3-8B). In all
three models, we observed that the graph is skewed
when k (y-axis) is small, indicating that some SAE
activations have relatively high mutual informa-
tion. While there were some differences in this
tendency between models (particularly pronounced
in Gemma2-9B), we found only a little variation
across selected layers within the same model. This
analysis corresponds to the K values (from 0.01
for Gemma2-9B to 0.07 for Llama3-8B) that we
identified through hyperparameter search in Ap-
pendix C.6.

F Distribution Patterns of the Residual
Stream Under Knowledge Conflict

In this section, we provide further analysis of the
representation patterns when knowledge conflicts
in addition to Fig. 6b. Here, we focus on analysing
the distribution patterns of different knowledge se-
lection behaviours. More specifically, we compare
the representation difference between the activation
from DC and DM , which are both under knowl-
edge conflict but select contextual and paramet-
ric knowledge to generate the answer C and M .
In Appendix F.1, we analyse the skewness patterns;
in Appendix F.2, we analyse the L1 norm and L2
norm patterns since previous work (Devoto et al.,
2024) also show the norm value may be related
to the contextual information usage. We provide
more residual stream analysis in our preliminary
study (Zhao et al., 2024b).

F.1 Skewness of Residual Stream

In addition to Kurtosis, we used in Fig. 6b, we
also measure the skewness by Hoyer and Gini in-
dex. We present the skewness patterns of hidden
states in Fig. 14 and Fig. 15. We find the residual
stream exhibits a significant skewed pattern when
selecting the contextual knowledge to generate the
answer. This observation supports the effective-
ness of SPARE, where the residual steam becomes
skewed when SPARE steers the model to generate
contextual knowledge as shown in Fig. 6b.

We also analyse the skewness pattern of MLP
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Layer Use Parametric Knowledge Use Contextual Knowledge

23

116391, 36331, 85142, 2795, 99547, 63615,
25635, 123378, 105328, 24132, 113025,
83008, 37706, 60782, 36046, 110864,
101469, 29902, 129485, 112858, 104185,
17911, 6673, 72533, 108414, 32967, 19761,
118260, 109917, 55083, 41965, 91874,
74605, 19726, 115338, 80100, 3042, 48088,
61830, 895, 49288, 120379, 105552, 84782,
14129

59646, 66244, 130943, 100165, 103568, 82090, 116937,
108558, 78302, 100628, 53091, 90600, 124049, 63656,
118525, 119623, 34458, 119574, 38170, 66293, 14026,
28797, 125520, 76467, 29583, 89951, 32901, 52256,
130987, 36816, 59062, 58505, 123631, 60183, 11432,
86969, 11755, 71200, 53746, 33, 57883, 67097, 108617,
112319, 1380, 47638, 42621, 16859, 130470, 6475, 112033,
101316, 40945, 82574, 58929, 79660, 81043, 18549, 4537,
130935, 127945, 78809

24

10649, 68997, 80242, 38885, 33450, 29004,
34725, 55203, 41474, 90933, 118013,
76436, 2795, 53138, 41501, 65408, 116855,
12056

76071, 55422, 82954, 40832, 68001, 88619, 120959, 92931,
38262, 83042, 42129, 21413, 74005, 73350, 57270, 6859,
83385, 9263, 8609, 22968, 8307, 99263, 2415, 59807,
87788, 92845, 88733, 124321, 25758, 111976, 84892,
104309, 61391, 60162, 128726, 28753, 62671, 80398,
40150, 28432, 81514, 9463

25

117145, 66103, 55992, 1609, 101788,
28707, 64494, 63602, 81174, 73438, 16428,
2054, 44642, 12418, 105769, 37692, 33693,
22786

77008, 39999, 65977, 3002, 82187, 113845, 35985, 16341,
121937, 13762, 9468, 70433, 42102, 85578, 3118, 99639,
41828, 58588, 103815, 70243, 67915, 125985, 113290,
127536, 84912, 2473, 46174, 100026, 37216, 27820, 81800,
13540, 125213, 79326, 55733, 32460, 46612

29

70665, 84563, 63717, 45653, 122282, 5001,
67756, 52905, 118450, 84589, 16721,
119640, 47070, 15218, 117432, 110719,
98957, 11667, 20824, 31422, 119807,
22664, 81261, 116958

65636, 113411, 88779, 19501, 46209, 8584, 71156, 79159,
94888, 144, 60280, 413, 103986, 74324, 52419, 70057,
30294, 13647, 37430, 71657, 118541, 12744, 74953,
115544, 19086, 102886, 49216, 95333, 26177, 89774,
71927, 70989, 23760

30

116964, 47548, 20615, 48375, 128786,
1308, 40865, 22211, 15816, 107813, 50419,
113319, 97588, 30688, 110627, 56882,
117785, 63602, 39609, 52155, 99243,
36852, 121514, 73310, 850, 96578

84358, 115174, 11363, 28696, 110664, 2831, 24365,
128820, 35092, 92968, 78722, 22739, 128047, 127030,
77294, 76467, 74131, 56766, 94697, 58000, 32812, 46910,
82749, 106077, 59596, 103936, 4505, 129363, 126847,
42463, 120310

31

61476, 5054, 1364, 18335, 63832, 88313,
35780, 130003, 25371, 125651, 11685,
24947, 2260, 70799, 92415, 47791, 99787,
88517, 85499, 75095, 114075, 125055,
109519, 116785, 100449, 37567, 88965,
59674, 14203, 125588, 70706, 18151

121514, 35148, 15479, 65369, 18623, 98225, 52746, 45804,
107893, 10202, 69463, 83810, 12131, 111417, 115174,
107085, 26328, 75203, 37430, 127639, 18114, 80704,
68360, 33142, 51607, 96802, 24949, 97568, 82042, 50826,
110615, 110929, 97833

Table 2: Selected Gemma2-9B SAEs activations with K = 0.01 (Eq. (5)). "Use Parametric Knowledge" means these
activations are positively correlated with the behaviour of selecting parametric knowledge, determined according to
our method described in Section 4.2.

activations and Self-Attention activations in Fig. 16
and Fig. 17. However, we do not observe a distinct
distribution difference like hidden states.

F.2 L1 Norm and L2 Norm Pattern
As we observe the distinct skewness pattern in hid-
den states, we further analyse their L1 norm and
L2 norm patterns in Fig. 18 and Fig. 19 However,
we do not observe the distinct norm differences
between DC and DM , though they have a signifi-
cantly different skewness pattern.
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Figure 11: Proportion of accumulated mutual Information (K) on Gemma2-9B
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Figure 12: Proportion of accumulated mutual Information (K) on Llama2-7B
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Figure 13: Proportion of accumulated mutual Information (K) on Llama3-8B
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Figure 14: Skewness of the hidden states of Llama2-7B on NQSwap.
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Figure 15: Skewness of the hidden states of Llama3-8B on NQSwap.
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Figure 16: Skewness of the MLP activation of Llama2-7B on NQSwap.
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Figure 17: Skewness of the Self-Attention activation of Llama3-8B on NQSwap.
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Figure 18: L1 norm and L2 norm of the hidden states of Llama3-8B on NQSwap.
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Figure 19: L1 norm and L2 norm of the hidden states of Llama2-7B on NQSwap.
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