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Abstract

The Dialogue Topic Segmentation task aims
to divide a dialogue into different topic para-
graphs in order to better understand the struc-
ture and content of the dialogue. Due to the
short sentences, serious references and non-
standard language in the dialogue, it is difficult
to determine the boundaries of the topic. Al-
though the unsupervised approaches based on
LLMs performs well, it is still difficult to sur-
pass the supervised methods based on classical
models in specific domains. To this end, this
paper proposes UPS (Utterance Pair Segment),
a dialogue topic segmentation method based on
utterance pair relationship modeling, unifying
the supervised and unsupervised network archi-
tectures. For supervised pre-training, the model
predicts the adjacency and topic affiliation of
utterances in dialogues. For unsupervised pre-
training, the dialogue-level and utterance-level
relationship prediction tasks are used to train
the model. The pre-training and fine-tuning
strategies are carried out in different scenarios,
such as supervised, few-shot, and unsupervised
data. By adding a domain adapter and a task
adapter to the Transformer, the model learns in
the pre-training and fine-tuning stages, respec-
tively, which significantly improves the seg-
mentation effect. As the result, the proposed
method has achieved the best results on multi-
ple benchmark datasets across various scenar-
i0s.

1 Introduction

The Dialogue Topic Segmentation is an important
task in Natural Language Processing (NLP), which
helps to better understand the structure and content
of a dialogue by dividing it into multiple different
“topics". It can be applied to a variety of application
scenarios such as dialogue generation (Li et al.,
2016), dialogue summarization (Liu et al., 2019b),
and knowledge selection (Yang et al., 2022).
Dialogue topic segmentation methods are di-
vided into supervised and unsupervised types. Su-

pervised methods typically model topic segmen-
tation as an utterance sequence labeling prob-
lem (Barrow et al., 2020; Arnold et al., 2019). It
predicts whether each sentence is beginning of a
topic paragraph. This approach typically requires
a large amount of labeled data to train the model
and may perform better when dealing with spe-
cific domains or specific types of dialogue. Large
Language Models(LLMs) have performed well on
many general-purpose tasks in recent years, but
there is still a gap with supervised learning methods
using small language models. Recent research has
demonstrated the greater potential and advantages
of using small language models for supervised
learning in dialogue topic segmentation tasks (Fan
et al., 2024). Therefore supervised learning re-
mains the optimal choice when high-quality labeled
data is available. However, in specialized domains
lacking such data, supervised methods are not ap-
plicable. Unsupervised methods (Xu et al., 2021)
do not rely on labeled datasets and train coherent
models to evaluate the similarity of continuous dis-
course, and then employ global segmentation algo-
rithms to compute topic segmentation points. Unsu-
pervised methods do not directly use segmentation
annotations as supervisory signals but instead learn
the similarity of continuous utterances to indirectly
identify topic boundaries. Although unsupervised
methods (Xing and Carenini, 2021) (Wang et al.,
2017) can address the lack of training data in cer-
tain domains, but, due to the limitations of their
network structures, existing unsupervised methods
cannot utilize segmentation annotations as super-
visory signals, making it difficult to extend them
to broader data scenarios such as supervised and
few-shot learning.

“Sentence pair” relationship prediction studies
how to recognize and understand the relationship
between two sentences. The goal of topic segmen-
tation is to divide the text into smaller topics. Un-
derstanding the relationships between utterances
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can help to more accurately determine the bound-
aries of these segments. To this end, this paper
proposes a method of dialogue topic segmenta-
tion based on “utterance pair” relation modeling,
which unifies supervised and unsupervised network
architectures.At the same time, we propose both
supervised and unsupervised pre-training strate-
gies. In the supervised pre-training strategy, utter-
ance pairs are categorized into four relationships
based on whether they are adjacent and whether
they belong to the same topic. Unsupervised pre-
training utilizes two utterance pair relation predic-
tion tasks: dialogue-level (Same Dialogue Predic-
tion, SDP) and utterance-level (Next Sentence Pre-
diction, NSP). These two pre-training strategies
serve two purposes: enabling the model to adapt
to the dataset’s domain and acquiring the ability to
predict utterance pair relations.

The main contributions of this paper are listed
as follows:

(1) This study proposes a unified framework for
supervised and unsupervised dialogue topic seg-
mentation. This framework offers excellent scal-
ability as it can utilize any pre-trained language
model with an encoder-decoder structure as its
backbone.

(2) We introduce two pre-training strategies,
supervised and unsupervised, according to the
amount of labeled data available. These strate-
gies enable the model to acquire domain adaptation
capabilities for the corresponding datasets and en-
hance its ability to predict utterance pair relation-
ships.

(3) The proposed method demonstrates superior
performance in supervised, few-shot, and unsuper-
vised settings, achieving the state-of-the-art results.
Experimental results validate the effectiveness of
our proposed unified framework.

2 Related Work

Dialogue topic segmentation divides a dialogue
into sections by identifying different topics within
the dialogue, including both unsupervised (Park
et al., 2023; Artemiev et al., 2024) and supervised
methods. Previous studies have often adopted unsu-
pervised methods due to the lack of dialogue topic
segmentation datasets.Unsupervised methods gen-
erally included two steps: assessing topic similarity
and determining segmentation boundaries. Popu-
lar unsupervised methods were TextTiling (Hearst,
1997) and its improvements (Song et al., 2016).

Discourse similarity was often taken into account
when assessing topic similarity. TextTiling (Hearst,
1997) measured discourse similarity based on pat-
terns of lexical co-occurrence and distribution. (Xu
et al., 2021) leveraged BERT model embeddings
to enhance TextTiling, taking advantage of the rich
semantic information contained in pre-trained mod-
els. (Xing and Carenini, 2021) proposed training
a utterance pair coherence scoring model to mea-
sure topic relevance between utterances. (Gao et al.,
2023) introduced DialSTART, which considered
both utterance similarity and coherence.

Despite the advantages of unsupervised methods
in terms of data cost, their performance was often
difficult to match that of supervised methods (Jiang
et al., 2023). (Xia et al., 2022) proposed the PEN-
NS method, which utilized a parallel extraction
network for segment extraction and optimized the
bipartite matching cost to capture inter-segment
dependencies. (Barrow et al., 2020) proposed Seg-
ment Pooling LSTM (S-LSTM) model for joint
topic segmentation and labeling. (Arnold et al.,
2019) proposed SECTOR, an end-to-end model
that learned latent topic embeddings. Relevant ex-
periments have shown that using the entire text
as input can lead to a loss of coherence in dia-
logue. (Wang et al., 2017) demonstrated the impor-
tance of text pairs modeling for topic segmenta-
tion. They addressed the challenge of data scarcity
by constructing a dataset with pairs labeled as in-
ternal paragraph or internal document. (Xing and
Carenini, 2021) extended this to dialogue by build-
ing a corpus of consecutive and non-consecutive
utterance pairs. (Zhou et al., 2022) proposed Dia-
logue Sentence Embedding (DSE), employing con-
secutive utterances within the same dialogue as
positive pairs for contrastive learning.

In order to decrease the cost of fine-tuning pre-
trained models to downstream tasks, prompt learn-
ing becomes a mainstream method. In topic seg-
mentation tasks, when using LLMs for topic seg-
mentation, prompt templates can be used to guide
models such as GPT-3.5 (Fan et al., 2024) and GPT-
4 (Hwang et al., 2024). Topic shift is a task that
detects if the topic changes in a dialogue and has
similarities with topic segmentation. (Lin et al.,
2023) utilized label-level, topic-level, and turn-
level prompts to enhance a model’s ability to un-
derstand and predict topic shift in a dialogue.

In summary, this paper proposes a topic seg-
mentation method based on utterance pair relation-
ship modeling, which unifies the supervised and
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Figure 1: Framework of UPS. “u;” denotes an utterance,
and the same color indicates belonging to the same topic.
For instance, the boundaries between us and u3, and
between u4 and us should be topic segment points.

unsupervised learning frameworks. At the same
time, prompt learning is used to fine-tuning the pre-
trained model of the backbone network, making
full use of the advantages of the above methods.

3 Methodology

3.1 Model Overview

This paper presents UPS (Utterance Pair Segment),
a unified framework for both supervised and unsu-
pervised topic segmentation. UPS adopts utterance
pair modeling to predict whether two consecutive
utterances constitute a topic boundary. By adopting
different training strategies based on data annota-
tion availability, UPS can be applied in supervised,
few-shot, and unsupervised scenarios. The model
architecture is shown in Figure 1. To retain the
knowledge from the pre-trained model and facili-
tate knowledge transfer between pre-training and
fine-tuning, domain and task adapters are added to
the Transformer. Furthermore, to better adapt the
pre-trained model to new tasks, different prompt
templates are designed for different utterance rela-
tion prediction tasks. The model operates as fol-
lows: an encoder-decoder pre-trained model (e.g.,
BART, T5) is employed. The encoder first encodes
the entire dialogue to obtain representations for
each dialogue turn.

H = encoder (U) (1)

Where H = (hy, ha, ..., hy,) denotes the hidden
states of the utterances. The decoder predicts the
score s; of the utterance pair based on the designed

prompt template and the hidden states of the utter-
ance pair. A higher score indicates higher coher-
ence and a higher probability of belonging to the
same topic.

s; = decoder (promptis_task, (hi, hiv1))  (2)

The prompt is learnable, and its parame-
ters are initialized by the following tem-
plate: Prompt‘*=utterancel:(Textl) </s> utter-
ance2:(Text2)</s> Should utterancel and utter-
ance? be topic segmentation points?[mask]

Replace “Textl” and “Text2” with the utter-
ance pair to be predicted. “[mask]” represents
the token to be predicted. The token-to-class ver-
balizer is defined as follows:Verbalizer={“0"
[“no”, “false”, “negative”], “1” [“yes”, ¢
true”, “positive”]}. Class “0” and “1” include
three tokens respectively. The definition of “Verbal-
izer” remains consistent throughout the following
text. Finally, the TextTiling algorithm is used to
identify topic boundaries. This algorithm analyzes
the depth scores between adjacent utterances, and
selects the score at valley points as segmentation
points.

B = Texttiling (S) 3)

Where S = (s1, 2, ..., Sm—1), and m is the num-
ber of utterances in a dialogue.

Within this unified framework, this paper pro-
poses different pre-training and fine-tuning strate-
gies to effectively and flexibly address varying
amounts of labeled data, thereby enhancing the
overall performance and practicality of the model.
In supervised and few-shot scenarios, the model
employs a two-stage training strategy: pre-training
followed by fine-tuning. In unsupervised scenar-
ios, the model is pre-trained solely on the task of
predicting relationships between unlabeled utter-
ance pairs. The training strategies for different data
scenarios are elaborated below.

3.2 Supervised Setting

In a supervised setting with abundant labeled
data, the model employs a two-stage training strat-
egy: pre-training followed by fine-tuning. Dur-
ing pre-training, we propose a pre-training task
called Supervised Utterance Pair Relation Predic-
tion(SUPRP). First the input dialogue is shuffled to
randomize the order of utterances. Utterance pairs
are then categorized into four relationships based
on adjacency and topic coherence: (1) adjacent
and belonging to the same topic; (2) adjacent but
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Figure 2: Utterance pair relation prediction model in supervised setting

belonging to different topics; (3) non-adjacent but
belonging to the same topic; and (4) non-adjacent
and belonging to different topics. Subsequently,
utterances are encoded, and adjacent utterance as
a pair, along with a prompt, are fed into a decoder
to predict the relationship of utterance pair. This
calculation process is detailed in equations (4) and

(5).

H?® = encoder(shuf fle (U)) 4)
labeli' ¥ 1, labelftﬁl = Verbalizer(decoder
(promptnsp—i-stm (h thrl)))
(%)
Where H® = (hi, hS,...,h;,) denotes the hidden

states of each utterance after shuffling. label’¥ |

is the next sentence prediction(NSP) label, indi-
cating whether A7, is the next utterance of h;.
label;?, | is the same topic prediction(STP) la-
bel, indicating whether /] and h7, | belong to the
same topic. The prompt is learnable, and its pa-
rameters are initialized with the following tem-
plate: Prompt™PTs®=ytterancel :(Textl) </s>
utterance:(Text2)</s> Should utterance2 be the
next utterance of utterancel ?[mask] Are these two
utterances discussing the same topic ?| mask]

This approach combines the NSP and STP tasks
using a single template, eliminating redundant en-
coding and accelerating training. [mask] denotes
the token to be predicted.

Both tasks use Binary Cross Entropy Loss:

Lysp = BCE(y™", label}3% ) 6)

Ly = BCE(y;"” label;F, ) (7)
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Figure 3: Two-stage training architecture. In the first
stage, only the domain adapter is trainable, while other
parameters are frozen. In the second stage, only the task
adapter is trainable, while other parameters are frozen.

Ls = Lnsp + Lstp (8)

The supervised pre-training loss is the sum of the
losses from two subtasks.

The fine-tuning process for topic segmentation
is illustrated in Figure 2(b). An encoder-decoder
pre-trained model is employed. First, the encoder
processes the entire dialogue to generate represen-
tation for each utterance. During decoding, consec-
utive utterance pairs are fed into the decoder. The
decoder then predicts whether an utterance pair
constitutes a topic boundary based on the prompt
and the hidden states of the utterance pair.

H = encoder(U) 9)
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label(s | = Verbalizer(decoder(

prompttsftasm (hla h2+1))) (10)

The fine-tuning loss is calculated using Binary
Cross Entropy:

Lys = BCOE(y!*, label,, ) (11)

To facilitate knowledge transfer between pre-
training and fine-tuning, this paper introduces
two adapters to the model: a domain adapter
and a task adapter, as illustrated in Figure 3.
Adapters (Houlsby et al., 2019; Pfeiffer et al., 2020;
Hu et al., 2021) are a parameter-efficient technique
commonly used during model fine-tuning, primar-
ily to enhance flexibility and reduce training costs.
In this paper, in the first stage of training, only the
domain adapter is trainable while other parameters
are frozen. In the second stage of training, only
the task adapter is trainable while other parameters
are frozen. The adapter training in this paper is
inspired by (Diao et al., 2023). However, unlike
Diao et al., who used MLM and L2 loss to train the
domain adapter, this paper pre-trains the domain
adapter through different utterance pair relation pre-
diction tasks. Compared to MLM and L2 loss, our
method more directly enables the model to learn
the semantic coherence of utterance pairs, which is
more suitable for the topic segmentation task.

After the model training is complete, inference is
performed according to the framework UPS shown
in Figure 1.

3.3 Few-shot Setting

In this scenario, with abundant unlabeled data and
limited labeled data, we propose a pre-training

task called Unsupervised Utterance Pair Relation
Prediction(UUPRP). UUPRP contains two self-
supervised tasks: dialogue-level Same Dialogue
Prediction (SDP) and utterance-level Next Sen-
tence Prediction (NSP), as illustrated in Figure 4.
These self-supervised tasks, not requiring segmen-
tation point annotations, leverage the vast unla-
beled data for pre-training, enabling the model to
acquire domain adaptability. For sample selection:
in SDP, positive sample ' and anchor sample u
come from the same dialogue, while negative sam-
ple v~ and anchor sample v come from different
dialogues. In NSP, positive sample u™ is the next
utterance of anchor sample u, and negative sample
u~ is not. A sample pair is denoted as (u, @), u de-
notes anchor utterance, 4 denotes positive/negative
sample. The model first encodes (u, ) to obtain
hidden states, which are then fed into the decoder
along with the prompt.

(h, h) = encoder(u, ) (12)
label*™®/™P = Verbalizer(decoder(
promptsdp/nsp? (h7 B))) (13)

The prompt template is designed as fol-
lows: prompt™P =utterancel :(Textl) </s>
utterance2: (Text2) </s> Should utterance2
be the next utterance of utterancel? [mask].
prompt*® =utterancel :(Text])</s> utterance2:
(Text2) </s> Are these two utterances belonging to
the same dialogue? [mask]. The choice of which
prompt to use depends on the task.

Loss is calculated as follows:

Ly, = BCE(y; """ 1abel} /")

(14)

The fine-tuning stage is same as in the supervised
setting. The key difference is that the supervised
setting utilizes the full training datasets for fine-
tuning, while the few-shot setting employs only a
limited number of examples. Figure 2(b) illustrates
this fine-tuning process. In this scenario, the place-
ment and learning methodology of both the domain
adapter and the task adapter remain consistent with
the supervised scenario, as depicted in Figure 3.
The inference process is shown in Figure 1.

3.4 Unsupervised Setting

In unsupervised training, only unlabeled data is
available. Therefore, only pre-training for unsu-
pervised utterance pair relation prediction is per-
formed, without fine-tuning. The pre-training pro-
cess is the same as in the few-shot setting, as shown
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Scenario | Pre-training Fine-tuning Inference Datasets TIAGE SuperDialseg
Supervised SUPRP TS UPS Metrics  [Px | WD | F11 Scoref|P,. | WD | F171 Scoret
Few-shot UUPRP TS UPS BERT 41.8 435 12.4 349 |21.4 225 725 753
Unsupervised UUPRP X UPS RetroT5 [28.0 31.7 57.6 63.9 [22.7 23.7 73.3 75.1

Table 1: Usage of different modules in various scenar-
i0s. SUPRP denotes Supervised Utterance Pair Relation
Prediction. UUPRP denotes Unsupervised Utterance
Pair Relation Prediction. TS denotes topic segmentation.
“x” denotes that it’s not executed.

Dataset \ TIAGE SuperDialseg Doc2Dial ZYS
words 188.4 200.5 186.4 740.0
language | English English English  Chinese
#sent/seg | 3.7 23 23 39
#seg/doc 4.3 5.7 5.7 6.5

Table 2: Statistics of four datasets. #sent/seg is the
number of sentences per segment, and #seg/doc is the
number of segments per document.

in Figure 4. Two pre-training tasks, dialogue-level
same dialogue prediction and utterance-level next
sentence prediction, enable the model to acquire
utterance pair relation prediction abilities at both
dialogue and utterance levels. During inference, a
topic segment prompt is used to guide the model in
topic segmentation, as shown in Figure 1.

In summary, the UPS framework proposed in
this paper unifies the inference processes for super-
vised, few-shot, and unsupervised learning. This
unified framework can reduce the complexity of
designing and implementing different models in
various scenarios, making the development and
maintenance of models more efficient. Addition-
ally, we propose different training strategies based
on the scale of the labeled data. We list the modules
used in different scenarios in Table 1.

4 Experiments and Analysis

4.1 Datasets

We conducted experiments on four publicly
available dialogue topic segmentation datasets:
TIAGE (Xie et al., 2021), SuperDialseg (Jiang
et al., 2023), Doc2Dial (Feng et al., 2020) and
ZYS (Xu et al., 2021). Statistics of datasets are in
Table 2. More details of datasets are in Appendix
A.

4.2 Metrics

To evaluate model performance, we utilize the fol-
lowing metrics: (1) P error (Beeferman et al.,
1999) and (2) WindowDiff (WD) (Pevzner and
Hearst, 2002). These are the two most commonly

RoBERTa [26.5 28.7 57.2 64.8 |18.5 19.2 78.4 79.8
BART 27.3 289 573 64.6 |18.8 194 78.3 79.6
T5 27.1 289 575 64.7 (184 19.2 785 79.8
GPT-3.5 [49.6 56.0 36.2 41.7 |31.8 34.7 65.8 66.3
Oursparr|25.8 28.5 59.0 65.9 |17.8 18.5 79.8 80.8
OursTts |25.6 28.1 59.1 66.1 |17.7 18.5 80.2 81.1

Table 3: Experimental results in the supervised setting.

used evaluation metrics, with lower scores indicat-
ing better performance. Detailed introduction in
Appendix B. (3) F1 and macro F1 scores. Previous
work has employed one of the two metrics. For con-
sistency, we adopt F1 for supervised and few-shot
settings, and macro F1 for the unsupervised set-
ting. (4) Score. By considering the soft errors and
the F1 score simultaneously, we use the following
Score metric for convenient comparison:

2% F1+ (1 — P) + (1— WD)
1

Score = (15)
suggested by the ICASSP2023 General Meeting
Understanding and Generation Challenge (MUG).

4.3 Experimental Setup

The experiment is conducted on a single NVIDIA
RTX 4090 GPU, powered by an Intel i9-12900K
CPU with 64GB of memory. We use T5-base for
English dataset and mT5-base for Chinese dataset.
During adapter-only optimization, the learning rate
is set to 5e-4 with a batch size of 32. In abla-
tion studies, where all parameters are optimized, a
learning rate of 3e-5 and a batch size of 16 are used.
Both pre-training and fine-tuning are performed for
50 epochs, with early stopping employed during
fine-tuning.

4.4 Experimental Results

The paper experiments in three different data sce-
narios: supervised, few-shot, and unsupervised.
The following is a detailed explanation of the ex-
perimental results.

Supervised Setting. We design several strong
baselines based on pre-trained language models
(PLMs), including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019a), BART (Lewis et al.,
2020), T5 (Raffel et al., 2020), and Retrot-T5.
BERT, BART, T5 and RoBERTa model topic seg-
mentation as a sequence labeling task. Retrot-T5 is
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Datasets TIAGE SuperDialseg

Metrics Pr | WD | FI1 Scoret Pr | WD | F11 Scoret
BERT 43.5(1.2) 45.0(1.3) 33.0(4.2) 444 39.2(2.1) 42.3(1.8) 35.6(2.7) 474
RetroT5 44.4(0.8) 45.6(1.2) 33.1(2.8) 441 41.2(1.0) 43.6(1.2) 33.0(2.5) 45.3
RoBERTa | 42.4(1.6) 44.6(1.4) 35.2(7.3) 459 42.0(0.8) 43.1(1.0) 30.8(4.3) 44.1
BART 445(0.8) 47.3(1.3) 33.2(5.5) 437  42.3(1.3) 47.9(1.6) 31.03.1) 43.0
T5 42.3(0.6) 44.3(1.2) 35.5(1.9) 46.1 39.6(0.8) 42.0(0.7) 37.0(1.5) 48.1
GPT-3.5 49.6 56.0 36.2 41.7 31.8 34.7 65.8 66.3
Ours(T5) | 34.53.1) 36.2(3.8) 47.6(5.2) 56.1 27.2(3.2) 28.3(2.8) 73.4(5.5) 72.8

Table 4: Experimental results in the few-shot setting. The quality of samples chosen in few-shot scenarios
significantly impacts model performance, so we experiment with three different random seeds. The table shows the

mean and standard deviation.

a generative model for dialogue segmentation pro-
posed by (Xie et al., 2021). We also compare the
performance of GPT-3.5 reported by (Jiang et al.,
2023), who used a defined template as a prompt.
This prompt consists of task instructions, dialogue
input, and an output example specifying the output
format.

We conduct experiments on the TIAGE and Su-
perDialseg datasets. The results are shown in Ta-
ble 3. Our models are first pre-trained on a super-
vised relation prediction task and then fine-tuned
on the topic segmentation task. As can be seen,
our proposed method achieves the state-of-the-art
(SOTA) results and significantly outperforms GPT-
3.5 across all metrics. Compared with baseline
models, our method comprehensively outperforms
the best baseline model RoBERTa. There is also
a large gap between GPT-3.5 and baseline models
such as RoBERTa and Retro TS5, indicating that the
pre-training and then fine-tuning paradigm on the
topic segmentation task is still superior to general-
purpose large language models.

Few-shot setting.The model is first pre-trained
on an unsupervised utterance relation prediction
task and then fine-tuned with a few-shot approach.
The baseline models used for comparison follow
the same supervised setting. We randomly select
16 labeled samples for fine-tuning. Our method
achieves the state-of-the-art results. The proposed
method achieves better performance than GPT-
3.5 (Fan et al., 2024), outperforming it by 14.4%
and 6.5% on the Score metric for the two datasets,
respectively. Although GPT-3.5’s performance is
based on zero-shot learning, the significant differ-
ence in parameter size (175B vs. 0.22B) cannot be
ignored.

Unsupervised setting. In this setting, the model
is only pre-trained on the unsupervised utterance
relation prediction task, without a fine-tuning pro-

Datasets Doc2Dial 7YS
Metrics P. LWD ¢ml§CIrOT Pr L WD ¢m;°1r°T
Random 55.6 653 42.0 |52.8 67.7 39.8
GreedySeg???* 50.7 51.6 40.6 |44.1 483 502
TextTiling (TeT)'%7 |52.0 57.4 53.9 (459 49.3 485
TeT + Embedding®°'%|53.7 55.7 60.2 |43.9 45.1 51.0
TeT + CLS20%! 543 579 51.8 |43.0 43.6 50.2
TeT + NSp202! 50.8 54.9 55.0 |42.6 44.0 50.0
Mutual Learning®®®* |48.3 52.7  / /o /
CohereSeg?"?! 452 473 66.0 [41.0 41.3 52.1
DynamicCOCO?°23  [42.0 45.1 70.1 |38.1 40.1 549
DialSTART?23 38.1 40.7 / /A /
Llama3.2-3B2024 51.5 53.4 479 |433 580 54.8
GPT-3.52024 474 493 53.6 |56.2 582 49.1
Mistral-§B 2924 435 47.0 58.6 413 56.7 53.2
Ours 35.1 36.5 78.4 |36.0 36.8 55.9

Table 5: Experimental results of unsupervised methods.

Datasets TIAGE SuperDialseg

Metrics  [Px | WD | F11 Scoret|Px | WD | F11 Scoret
T5(SL) 27.1 28.9 57.5 64.7 (184 19.2 78.5 79.8
T5(UP)  [27.8 29.3 56.3 63.9 [19.5 20.2 77.8 79.0
+NSP 26.8 28.8 58.1 65.2 (18.2 18.9 78.4 79.9
+STP 26.0 28.3 58.7 65.8 |18.2 19.0 78.4 79.9
+NsP+sTP|25.8 28.1 58.8 65.9 [17.9 18.5 80.1 81.0
Ours 25.6 28.1 59.1 66.1 {17.7 18.5 80.2 81.1

Table 6: Ablation Study under Supervised Setting. SL
refers to Sequence Labeling, and UP refers to Utterance
Pair. Ours denotes T5(UP)+NSP+STP+Adapter.

cess. The pre-training stage is shown in Figure
4, and the inference process is illustrated in Fig-
ure 1. The final output of the model serves as the
depth score for the utterance pair, and topic bound-
aries are calculated using Texttiling algorithm. We
compare our approach with the following baseline
methods under the unsupervised setting:
GreedySeg (Xu et al., 2021) minimized intra-
segment similarity using a greedy approach and
a threshold to avoid over-segmentation. Cohere-
Seg (Xing and Carenini, 2021) segmented dia-
logue by capturing coherence. TextTiling (Hearst,
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1997) segmented text by identifying subtopic shifts
via lexical co-occurrence patterns. TeT + Em-
bedding (Song et al., 2016), TeT + CLS (Xu
et al., 2021) and TeT + NSP (Xing and Carenini,
2021) were extended from TextTiling. We com-
pare our method with unsupervised methods from
the past two years: DynamicCOCO (Pu and Wang,
2023), Mutual Learning (Xu et al., 2024), Dial-
START (Gao et al., 2023). In addition to above un-
supervised algorithms, this paper introduces a topic
segmentation baseline based on GPT-3.5 (Fan et al.,
2024) and a random segmentation baseline. (Fan
et al., 2024) only provided the P;, and macroF1
scores on the ZYS dataset. We run their publicly
available code to obtain the remaining GPT-3.5’s
results. Our method achieves the state-of-the-art
(SOTA) performance on both the English dataset
Doc2Dial and the Chinese dataset ZYS. GPT-3.5
still does not outperform carefully designed un-
supervised methods, although the gap is not as
significant as in the supervised setting. Llama3.2-
3B and Mistral-8B are the latest LLMs. UPS still
outperforms them. It is worth noting that the lat-
est Mistral-8B has 8 billion parameters, surpass-
ing GPT-3.5, which has 175 billion parameters,
demonstrating the advancements in large language
models.

4.5 Ablation Study

We explore the impact of different modules in three
scenarios. The experimental results and analysis
are as follows.

In the supervised setting, as shown in Table 6,
both NSP and STP pre-training tasks improve the
model’s performance, with the greatest improve-
ment observed when using both tasks simultane-
ously. The Score metric on the two datasets in-
creased by 2% and 2.1%, respectively. Adding
Adapter to +NSP+STP only yields a small improve-
ment of 0.2% and 0.1%, suggesting that the knowl-
edge retained by Adapter plays a limited role when
abundant labeled data is available.

In the few-shot setting, as shown in Table 7,
the proposed utterance pair modeling method, pre-
training tasks, and adapter all contribute to im-
proved model performance. Utterance pair mod-
eling demonstrates a significant advantage over
sequence labeling, boosting the Score metric by
3.0% and 12.7% on the two datasets, respectively.
This difference stems from the increased training
samples: in utterance pair modeling, an utterance
pair is a sample. But in sequence labeling, an en-

Datasets TIAGE SuperDialseg
Metrics Pr. | WD | F11 Scoret(Px, J WD | F171 Scoret
T5(SL) 42.3 443 35.5 46.1 [39.6 42.0 37.0 48.1
T5(UP)  [40.6 42.2 39.5 49.1 [35.5 38.4 58.6 60.8
+NSP 38.3 40.0 42.3 51.6 |34.0 36.6 63.2 64.0
+SDP 41.2 42.8 39.4 48.7 |34.5 36.8 61.2 62.8
+NsP+spp|43.8 46.2 334 442 |32.0 34.2 65.2 66.1
Ours 34.5 36.2 47.6 56.1 [27.2 28.3 73.4 72.8

Table 7: Ablation Experiments under Few-shot Setting.
Ours denotes TS(UP)+NSP+SDP+Adapter.

Datasets Doc2Dial 7YS

Metrics P, JWD ¢m;C1rOTSc0reTPk JWD ¢m;C1rOTScoreT
T5(SL) 53.8 62.1 453 437 |[44.7 483 512 524
T5(UP) 46.6 56.4 444 46.5 409 42.0 51.6 55.1
+Nsp 38.9 40.7 57.8 59.0 37.0 37.9 549 58.7
+spp 47.6 51.2 57.3 54.0|37.7 38.5 558 58.9
+nsp+sppi40.0 43.6 60.1 59.2 |37.5 38.5 56.0 59.0
Ours 35.1 36.5 78.4 71.3 36.0 36.8 55.9 59.8

Table 8: Ablation Study in an unsupervised setting.
Ours denotes TS(UP)+NSP+SDP+Adapter.

tire dialogue is a sample. Consequently, with the
same training set size, utterance pair modeling ben-
efits from exponentially more samples, leading to
significant performance improvements, especially
in few-shot setting. However, SDP negatively im-
pacts performance on the TIAGE dataset. This may
be because there is no clear thematic distinction
between the different dialogues in TIAGE.

In the unsupervised setting, as shown in Table
8, pre-training tasks significantly improve perfor-
mance on both datasets. The adapter shows greater
improvement on Doc2Dial than on ZYS. ZYS in-
cludes specific text related to finance and banking.
The original T5 contains less relevant knowledge,
so the adapter’s retention of the original model’s
knowledge has a minimal impact on performance.

5 Conclusion

This paper proposes a novel approach for topic seg-
mentation in dialogue texts based on “utterance
pair” relationship modeling, unifying supervised
and unsupervised network architectures. To ad-
dress the availability of annotated data, both super-
vised and unsupervised pre-training strategies are
employed. To facilitate knowledge transfer during
the two-stage training process, the model incorpo-
rates domain and task adapters. Experiments con-
ducted across three data scenario settings validate
the effectiveness of the proposed method. Future
work will explore more complex multi-modal sce-
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narios, and investigate the applicability across dif-
ferent languages and cultural contexts to enhance
the method’s generalizability and robustness.

Limitations

This work has two limitations. First, considering
the diversity of real-world text datasets, the pro-
posed utterance pair modeling method may only be
applicable to dialogue datasets. Second, although
this study introduces an adapter for two-stage train-
ing, there is still scope to explore different adapter
mechanisms.
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A Dataset Specifications and Split Details

Supervised datasets:TIAGE (Xie et al., 2021) is a
manually annotated dataset based on personal chat
conversations, consisting of 500 samples: 300 for
training, 100 for testing, and 100 for validation.
SuperDialseg (Jiang et al., 2023), a document-
grounded dialogue system dataset, leverages data
from Doc2Dial (Feng et al., 2020) and Multi-
Doc2Dial (Feng et al., 2021), further annotated
to comprise 6,863 training samples, 1,310 test sam-
ples, and 1,305 validation samples.
Unsupervised Datasets:Doc2Dial (Feng et al.,
2021) comprises 4,130 human-machine dialogues
sourced from the document-grounded, goal-
oriented dialogue corpus Doc2Dial. This dataset is
generated by automatically constructing dialogue
flows based on document content elements, fol-
lowed by crowd-sourced annotation to compose
utterance sequences aligned with human-like con-
versation flow. Topic segments are extracted based
on document text spans providing the correspond-
ing utterance information. ZYS (Xu et al., 2021)
is a real-world Chinese dataset containing 505 dia-
logues recorded from bank customer service calls,
with topic segments manually annotated.

B Maetrics Details

P error (Beeferman et al., 1999) which assesses
the agreement of segmentation points within a slid-
ing window between the prediction and reference.
WindowDiff (WD) (Pevzner and Hearst, 2002),
similar to Py but examining the agreement in the
number of segmentation points within the sliding
window. Both P, and WD calculate soft errors of
segmentation points within a sliding window, with
lower scores indicating better performance.

we use scikit-learn 1.0.2 to compute F1 and
macro F1. We use segeval 2.0.11 to compute Pk
and WindowDiff and set the window size to half the
length of the segment, consistent with past work.
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