ReachAgent: Enhancing Mobile Agent via Page Reaching and Page
Operation

Qinzhuo Wu, Wei Liu*, Jian Luan, Bin Wang
XiaoMi Al Lab
{wuginzhuo, liuwei4®, luanjian, wangbinl1}@xiaomi.com

Abstract

Recently, mobile Al agents have gained increas-
ing attention. Given a task, mobile Al agents
can interact with mobile devices in multiple
steps and finally form a GUI flow that solves
the task. However, existing agents tend to focus
on the most task-relevant elements at each step,
leading to local optimal solutions and ignoring
the overall GUI flow. To address this issue,
we constructed a training dataset called Mobil-
eReach, which breaks the task into page reach-
ing and operation subtasks. Furthermore, we
propose ReachAgent, a two-stage framework
that focuses on improving its task-completion
abilities. It utilizes the page reaching and page
operation subtasks, along with reward-based
preference GUI flows, to further enhance the
agent. Experimental results show that ReachA-
gent significantly improves the Intersection
over Union (IoU) Accuracy and Text Accuracy
by 7.12% and 7.69 % on step-level and 4.72%
and 4.63% on task-level compared to the
SOTA agent. Our data and code are available
at https://github.com/XiaoMi/reachagent.

1 Introduction

With the quick advancement of visual language
models (VLMs) (Wang et al., 2023; Bai et al.,
2023), it has become more feasible to create
mobile Al agents that can operate mobile devices
(Yang et al., 2023; Ding, 2024; Li et al., 2020).
Some early works (Yang et al., 2023; Zhang
et al., 2024; Yan et al., 2023) have attempted to
combine powerful general VLM models, such as
GPT-4V (OpenAl, 2023), with prompt engineering
and retrieval modules to generate UI actions for
mobile control. Other works have used GUI
navigation datasets (Rawles et al., 2023; Zhang
et al., 2024) to fine-tune the base VLMs to improve
their stability in generating UI actions. Subsequent
works (Baechler et al., 2024; Wu et al., 2024)

* Corresponding author.

Task: Add Product A with attribute B to the shopping cart.

Subtasks:

1. Reach (“Product A” Page)

2. Operate (“Product A” Page, click “Add to cart”)

3. Operate (“Add to cart” Page, select the “B” attribute)
4. Operate (“B” Page, click “OK”)

GUI Flow:
Complete

Home . “ProductA” “Add to cart’} cee |:| “B” D cee
page Page Page Page Page
o “lick “Add to cart) Select “ﬁick “OK”

Reach Operate
| Subtask 1 | Subtask2 |

Operate
Subtask3 |

Operate
Subtask4 |

Figure 1: An example of a task and its subtasks and
possible GUI flows. Green boxes represent the pages
that need to be reached, and orange arrows represent the
actions that need to be operated. To complete this task,
the agent must reach 5 pages and do 3 operations.

have built mobile-specific datasets to pre-train
VLMs so that the model can better understand
graphical user interface (GUI) elements and page
structure. Specifically, mobile Al agents use the
VLM as their base model and the mobile device as
the environment. The agent iteratively interacts
with the mobile’s GUI for each mobile control
task, by generating actions based on environmental
information and executing those actions to update
the GUI environment. This interactive process
forms a GUI flow.

Although existing mobile Al agents have shown
good performance, they still have some limitations.
Existing agents focus on interacting with the most
task-relevant elements of the current page, and
ignore whether the entire GUI flow solves the
task. This method sometimes causes them to focus
on single-step action accuracy and select tasks-
related actions greedily, thus falling into a local
optimal solution. As shown in Figure 2, for the
task of adding Xiaomi 14 to the shopping cart, the
agent should first reach the product page, but the
homepage does not contain elements related to the

4760

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 4760-4775
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/XiaoMi/reachagent

Task * Add a white Xiaomi 14 tothe | SUPt@SKS { 1. Reach (“Xiaomi 14” Page) . i
: shopping cart : 1 2. Operate (“Xiaomi 14” Page, click “Add to cart”) :
: ' ' 1 3. Operate (“Add to cart” Page, select the “white” attribute) |
N ¥ \ 4. Operate (“white” Page, click“OK™) /
T TR e)
GUI Hma f’;- = -~ = T Wy 3 a—
fow 1= R renreemicemil e
P = . b
e | 3= seil & (&)w
*h_w,ﬁﬁi—gﬂ | e
Actions | click(“seatch”, | input(“water click(“search”, click(“Xiaomi/| click(*Add to | scroll([0,585][| click(* thite”, click(“OK”, [STATUS_TASK
[177,96][273, | purifier”, [231, [597,48][702, 14, [425,107/ | cart”[294,112 | 720,1088], [187,693][235 | [333,1121][38 | -COMPLETE
168]) | | 72)[s55.168], 192]) 4][628,1125]) | 2][429,1154]) | “up”) 722) | 7,1153])
Home a‘e “xiaomi 147) | FXiaomi 147 “Add to I “white” | Complete
(Homep2ge) “_Page Aeart"Page) | _Page A_Page)
 \
B o ~ I
1 o o ° ° . N
R | e %
Other N el
GUI Flows

Browse the product catalog to go to the
“Xiaomi 14” page.

Enter the “cart”
page and return.

Select the “rock cyan”
color and cancel.

Figure 2: The complete 9-step GUI flow for a task. Green boxes represent the pages that need to be reached, and
green circles represent the operations that need to be done. Orange arrows are the actions in the golden flow. Blue
arrows are the actions in other GUI flows. Both the orange and blue flows can complete the task.

product name. In this case, it might go directly
from the homepage to the shopping cart page.

Therefore, we break down the task into several
subtasks and focus on the agent’s subtask com-
pletion abilities. Intuitively, these subtasks can
be divided into two categories, reach and operate.
Reach only requires the agent to reach a specific
page, regardless of the path taken. Operate requires
the agent to reach a specific page and perform some
specific operations. Figure 2 shows a task and its
GUI flow, consisting of a 9-step chain, the key to
solving this task is to reach the product page first,
and then click the "Add to Cart" pop-up window
and select the attributes and "OK" button in the
pop-up window in sequence, as shown in Figure
1. For the product page reach subtask, it can be
done either through product search or by browsing
the product catalog. Similarly, the operate subtask
only requires the agent to select the "B" attribute in
the pop-up window, and browsing other attributes
does not affect the task completion.

To address these limitations, we collected a
training dataset called MobileReach, which con-
tains three types of tasks: page navigation, page
reaching, and page operation. In addition, we
propose ReachAgent, a two-stage framework that
focuses on the ability to complete subtasks. In the
first stage, in addition to page navigation abilities,
it also learns how to reach a specified page and

complete operations on a specified page. In the
second stage, a 4-level reward function is used to
weigh different GUI flows and construct preference
data to further reinforce ReachAgent, Furthermore,
an action alignment mechanism is proposed to
reduce the difficulty of action generation. The main
contributions of this paper can be summarized as
follows:

e We break down the mobile control task into
page reaching and page operation subtasks, and
construct a mobile control dataset called Mobil-
eReach consisting of three types of tasks.

e We proposed ReachAgent, a two-stage frame-
work that utilizes page reaching and page operation
to enhance the agent’s subtask completion abilities.
In addition, it uses reinforcement learning to
further enhance the agent’s overall task completion
ability. ReachAgent includes an action alignment
mechanism that decreases the number of candidate
actions, thereby reducing the difficulty of the task.

e Experimental results show that ReachAgent
outperforms existing state-of-the-art agents. It also
demonstrates stronger page reaching and operation
abilities.

2 Related Work

Mobile AI Agent. Many recent studies have
proposed mobile Al agents for device control.
Appagent (Yang et al., 2023) and Mobileagent

4761

Action Type Parameter

Action List | click(“search”, [177,96][273,168]) Click [name, box]
input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192]) Input [name, box, input text]

click(“Xiaomi 14, [425,1074][628,1125])

click(“Add to cart”, [294,1122][429,1154])

scroll([0,585][720,1088], “up™) Scroll [box, direction]
click(“white”, [187,693][235,722])

click(“OK”, [333,1121][387,1153])

STATUS_TASK_COMPLETE Complete -

Step-by-step
Description

of the phone.

1. On the homepage of Xiaomi Mall, click the search icon to enter the search page.

2. On the search page, enter "xiaomi 14" in the search box to search.

3. On the search page, click the search icon to search.

4. On the search results page, select the detailed information of "xiaomi 14".

5. On the detailed information page, select and click "Add to Cart" to enter the parameter page of the phone.
6. On the parameter page, scroll the page to view more parameter information.

7. On the parameter page, select “white" to confirm the parameters of the phone.

8. On the parameter page, click the "Confirm" button at the bottom to confirm the parameter configuration

Brief Task

Help me find detailed information about xiaomi 14, and add a white one to the shopping cart.

Figure 3: Actions and tasks for a GUI flow. The step-by-step description provides a set of action history, where each
step corresponds to an action performed on that GUI page. The brief task is a concise task description that aligns

with this GUI flow.

(Ding, 2024) use prompt engineering methods and
rely on existing closed-source models (e.g., GPT-
4V, GPT-40) to achieve mobile control. Other
studies like CogAgent (Hong et al., 2023) and
Agenttuning (Zeng et al., 2023) use data-driven
methods to fine-tune the open-source VLMs. In
order to improve the device control abilities of
mobile Al agents, large-scale datasets with diverse
scenarios and accurate annotations are needed.

Rico (Deka et al., 2017) and AITW (Rawles
et al., 2023) are two publicly available large-scale
GUI datasets, containing 72,219 single-step GUI
tasks and 715,142 multi-step page navigation tasks,
respectively. They are widely used in multiple
GUI modeling works (Wang et al., 2021; Li et al.,
2021; Hsiao et al., 2022). However, they are
constructed by combining crowdsourcing workers
and automated annotation, which also leads to
noise and wrong labels. To this end, a series of
published works clean and filter these datasets to
improve their quality. Enrico (Leiva et al., 2020),
Ul-Bert (Bai et al., 2021), Vins (Bunian et al.,
2021) extended the Rico dataset and proposed new
GUI tasks such as Ul layout classification and
Ul element retrieval. AutoUI (Zhan and Zhang,
2023) further filtered the GooglePlay tasks in the
AitW dataset. However, these datasets mainly
contain screenshots and OCR text, lacking GUI
raw data such as xml documents, which limits

the agent to further obtain mobile environment
information. MobileVLM (Wu et al., 2024) and
ScreenAl (Baechler et al., 2024) build large-scale
pre-training datasets to enhance the agent’s Ul
understanding ability. Here, Mobile3M (Wu et al.,
2024) proposed by MobileVLM uses a breadth-
first approach to explore the GUI pages of each
APP and forms these pages into a graph structure.
This allows us to obtain environmental information
about different paths and operations, for example,
the next pages after performing different actions
in a page, and how many paths there are from one
page to another. However, as a pre-training dataset,
MobileVLM lacks fine-tuning tasks. Most of their
tasks are UI understanding and single-step action
generation. A small number of multi-step tasks can
be summarized as navigate to a page with a certain
button.

Therefore, based on Mobile3M, we extracted
available GUI flows and annotated a page nav-
igation dataset. Using the graph structure envi-
ronment, we further extracted page reaching and
page operation datasets, and scored and paired
preference datasets for RL learning. We used the
three page datasets for one-stage SFT fine-tuning
of ReachAgent and the preference datasets for two-
stage RL optimization.

Reinforcement Learning (RL). RL-based fine-
tuning methods have shown great potential in

4762

improving the generation quality of LLMs (Liu
et al., 2023; Shen et al., 2023; Yuan et al., 2023).
For mobile device control, some agents use RL
methods to further optimize fine-tuned models.

DigRL (Bai et al., 2024) uses Gemini 1.5 Pro
(Team et al., 2024) as an automatic evaluator
to assign rewards to each GUI flow generated
by the agent, and updates the model with the
annotated GUI flows through online RL. DistRL
(Wang et al., 2024) uses multiple workers to collect
interaction data and then sends them to a central
learner for learning, focusing more on distributed
frameworks. These works are limited by data
collection efficiency and labor-intensive manual
annotation, and therefore cannot be well expanded.

Our work combines agent generation and graph
path sampling to obtain a large number of GUI
flows, uses page reaching and operation subtasks
to set reward rules, and builds preference data for
each step of the GUI flow.

3 Dataset Construction

3.1 Data Definition

GUI flow: Given a user’s instruction, an agent will
conduct multiple rounds of interactions with the
mobile device to complete the task and record the
process as GUI flow. Specifically, the GUI flow is a
chain structure with the GUI page as the head node,
the agent’s action as the edge, and the resulting

GUI page after executing the action as the tail node.

Figure 2 shows a GUI flow. It is defined as a 9-step
chain sequence, which includes a complete set of 9
GUI Pages and 9 actions.

GUI page: Our algorithm uses an Android

emulator to run the apps and display the GUI pages.

A typical GUI page consists of a screenshot and
an XML document containing multiple elements
such as buttons, text boxes, icons, and images.
These elements have unique identifiers, such as
text, bounds, and resource IDs, used to interact
with them programmatically. Figure 4 shows a
GUI page example.

Action: Our action set includes four types of
actions: Click, Scroll, Input, and Complete. Figure
3 summarizes the parameters and examples of these
actions. When the agent interacts with the UI page,
such as clicking a button or entering text, Appium!
sends an action command to the Android emulator,
which then performs the corresponding action. The
changes of the GUI page are then captured as a new

"https://appium.io/docs/en/latest/

screenshot and XML document, which are used as
the environment for the next step.

3.2 Page Navigation Dataset

Our page navigation dataset is built using Mo-
bile3M’s GUI flows. Mobile3M (Wu et al., 2024)
uses random walks to explore the page jump paths
of 49 apps and combines them into a graph format.
We sample GUI flows from the graph and generate
corresponding tasks to build the page navigation
dataset. The construction pipeline is as follows:

1. GUI flow extraction: Select GUI flows with
path lengths of 3-10 steps from Mobile3M.

2. Image Caption: Generate image captions for
each GUI page in the flow with InternVL(Chen
et al., 2024).

3. Task Generation: Use GPT-4V to generate
a step-by-step description and a brief task for the
GUI flow based on the captions of each page and
the actions between pages, as shown in Figure 3.
The prompt for task generation is in Appendix B.

4. Data cleaning: Filter out low-quality GUI
flows with duplicate tasks or invalid GUI pages.

After the above steps, we have a total of 53,832
GUI flows and 259,742 action steps, approximately
4.8 steps per task. Each task includes a brief task,
GUI pages, and corresponding actions, along with
a step-by-step description of the task.

3.3 Page Reaching and Operation Dataset

To improve the model’s ability to reach and operate
mobile GUI pages, we break down the GUI flow
into multiple subtasks. There are two types of
subtasks described as follows:

Page reaching task. It takes an instruction for
reaching a specific page as input and a GUI flow
from the app homepage to that page as output.
Here, each GUI page is named in three ways.

1. If the corresponding step in the step-by-step
description mentions the name of a page, we use
that name directly, such as "search results page."

2. We extract the element name or text input
from the action as the page name, such as "white"
or "add to cart".

3. If the name is invalid or too common, we use
GPT-4 to summarize the page name based on the
GUI page’s caption.

We use page names and templates to construct
page reaching tasks. The pre-defined task templates
are shown in Appendix B.

Page operation task. It requires the agent to
complete a specific task on a page, which requires

4763

https://appium.io/docs/en/latest/

the model to have two abilities: navigate to a page
that can complete the task, and then complete the
specific task. There are two extraction methods for
this task:

1. In the step-by-step description, if a step
involves a scroll or input action, it is usually a
page operation task. We extract the sub-flow from
the GUI flow to pair with this step’s description.

2. In the GUI flow, if an action has similar
pages before and after execution, it is usually a
page operation task. We use GPT-4V to construct

a task for the sub-flow that ends with this action.

Similar to Wu et al. (2024), the definition of similar
pages is based on page similarity and the number
of co-occurring elements.

Eventually, we have a page reaching dataset
with 67,920 GUI flows and 374,834 action steps, a
page operation dataset with 76,252 GUI flows and
368,942 action steps. See Appendix C for details.

4 Models

4.1 Action Alignment Mechanism & Action
Space Generation

The mobile control task can be represented as a
multi-round interaction process, which generates
an action sequence A = {ay, ag, ..., a;} based on
a given user instruction X and GUI pages P =
{P1,Py,...,P;} in the mobile environment. This
multi-round interaction process forms a GUI flow.

Action Alignment Mechanism. As shown in
Figure 4, the GUI page P; contains two forms:
screenshot P}** and XML document P!, The
screenshot shows multiple elements of the GUI
page, while the XML document provides text
descriptions and attributes for these elements.
While users can touch any point on the screen, their
goal is to interact with an element on the page. To
narrow down the range of candidate actions, we
propose an action alignment mechanism. That is,
we suggest that the agent only clicks on the center

point of an element or scrolls along its central axis.

For a candidate box [273,84][324,180], we can
click or enter at position (298, 132). For a candidate
box [0,528][720,960], we can scroll left from (360,
744) to (180, 744).

Action Space Generation. With the action
alignment mechanism, we can extract all the
candidate actions in the GUI page as the candidate
action space P2°*s, Each element in the screenshot
corresponds to an element description in the XML
document. We extract the element’s bounding box

and its attributes, such as whether it is clickable,
scrollable, and inputtable, from the description and
form an action. As shown in Figure 4, the "search
box" element can be formed into an input action
and a click action. The "RecyclerView" element
can be formed into scrolling actions in 4 directions.

4.2 First Stage SFT Framework

Given a task X, in the t-th step, the screenshot P}’is
is encoded into the image representations hy'® by a
frozen visual encoder as follows:

h's = ViT(P}™). (1)

Here, visual encoder ViT is ViT-bigG (Dosovit-
skiy et al., 2020). The candidate action space P2t
is extracted from P¥™! and encoded into the text
representation h2°* as follows:

hat — E(ActionSpaCC(P)t{ml))- 2)

Here, E(-) is a wording embedding layer. The
candidate action space ActionSpace(PF™) is a list
of all possible actions that can be used to interact
with the page, as described in Section 4.1.
Similarly, instruction X and action history X<t
= {a1, ...,a;_1} are also encoded as hX, and h2,.
ReachAgent uses a position-aware visual language
adapter to align visual representations with text
representations, and generate the the action a;:

%
hi, h2, = E(X),E(A),
h'}"™ =Adapter(h}™), (3)
P(a;) =ReachAgent(hX, h’ Zis, hi<® h2,).

After generating the action a;, we execute a; in
the mobile environment to update the GUI page P,
to Py 1. Therefore, in the next step, ReachAgent

has instruction X, screenshot P}’®;, candidate ac-

tion space P?ff and action history A ;11 as inputs
for action a4 generation. ReachAgent needs to
go through multiple rounds of action generation
and execution loops until it finally generates the
action "STATUS_TASK_ COMPLETE" to end the
mobile-control process, or until it exceeds the
maximum number of interaction steps.

In the first stage, ReachAgent fine-tuned its
ability to reach pages and perform actions on them
by using all three datasets. The cross-entropy loss
is defined as:

L= logP(a:/X,Py", P Ay). (4)
t

4764

GUI Page P, XML documen pxm!

Screenshot PYiS

~

<android.widget. TextView index="0" package="com.xiaomi.shop" class="android.widget. TextView" text="washing machine" content-desc="search box"
checkable="false" checked="false" clickable="true" enabled="true" focusable="true" focused="false" long-clickable="false" password="false"
scrollable="false" selected=""false" bounds="[273,84][324,180]" displayed="true" /> </android.widget. TextSwitcher>

<androidx.recyclerview.widget.RecyclerView index="1" package="com.xiaomi.shop" class="androidx.recyclerview.widget.RecyclerView" text=""
resource-id="com.xiaomi.shop.plugin.nomepage:id/recycler_homev5_box" checkable="false" checked="false" clickable="false" enabled="true"
focusable="true" focused="false" long-clickable="false" password="false" scrollable="true" selected="false" bounds="[0,528][720,960]" displayed="true">

<android.view.View index="1" package="com.xiaomi.shop" class="android.view.View" text="" content-desc="cart" resource-
id="com.xiaomi.shop.plugin.nomepage:id/main_bottom_cart" checkable="false" checked="false" clickable="true" enabled="true" focusable="true"
focused="false" long-clickable="false" password="false" scrollable="false" selected=""false" bounds="[432,1058][576,1184]" displayed="true" /

J

iy
DPO
SFT Framework Optimization

Task X
i 2 Y
i I§ p? aai@ GUI Flows i
Action I} S, i
History A, ’IE a3 '
I

-
[! [
y |
Action Space Pacts } ‘
VIiT
E)
! click(“search box", [273,84][324,180]) Adapter &
! soroll([0,528][720,960], “up”)
1 scroll([0,528][720,960], “down”) Concat

1 scrol([0,528][720,960], “left”)
1 scrol([0,528][720,960], “right”)

&9 6

GO |f

click("cart”, "[432,1058][576,1184])

STATUS_TASK_COMPLETE

(a) Action Alignment &
Action Space Generation

*_I
LLM @ —] action o, | e
:

(b) Fisrt Stage SFT Framework

i I Longer
i CJincomp-

A\ invalid

(c) Second Stage RL Framework

Figure 4: The overview of our proposed ReachAgent. (a) Extracting action space from XML document. (b) In the
first stage, the framework generates a GUI flow through multiple interaction steps with the GUI page. (c) In the
second stage, it uses the reward function to construct preference data to further reinforce the SFT framework.

4.3 Second Stage RL Framework

Preference data construction. To further rein-
force ReachAgent, we constructed a preference
dataset D = {(X,P;,al’,al)}. Here, a’ is the
chosen action at step t, and ! is the rejected action.
Our construction approach is based on two key
principles: 1. The GUI flow should reach the
required page and complete the required operation
in the instruction; 2. The GUI flow should be as
short as possible.

Given an instruction X and the current page Py,
we can divide all potential actions into four levels:

Golden: The action is in the golden GUI flow,
or in a GUI flow that can complete the instruction
and has the same length as the golden flow.

Longer: The action is in a GUI flow longer than
golden, but can still complete instruction X.

Incomplete: The action is not in a GUI flow that
can complete the instruction.

Invalid: The action cannot be executed or is not
in the action space of the current page.

Naturally, for these four levels, we expect their
reward scores to be:

R(Golden)>R(Longer)>R(Incomplete)>R(Invalid) (5)
Given a task, "add product A to the shopping

cart", the subtasks it needs to complete are simpli-
fied into Reach(P2): Go to the "Product A" page,

and Operate(P2, "add to cart"): Add Product A to
the cart on the product page. Figure 4 shows several
GUI flows for this task. "Pg, P1, P2, P3" and "Py,
P%, Py, P3" are the 4-step golden GUI flows. "Pg,
P2, P2, Py, P3" takes 5 steps to complete the task
and marked as Longer. "Py, Pi, P3" doesn’t reach
the P, page and marked as Incomplete.

Based on the 4-level reward function, we identify
the chosen and rejected actions for the shared
history flow. Start with GUI page Py, a8 and atl) are
in the Golden flow, while a3 leads to a Longer flow.
Therefore, R(a)|Po)>R(a?|Py) and (X, Py, al, a?)
is a preference data. Start with page Pi, al, a},
and aj lead to a Golden, Longer, and Incomplete
flow respectively. The preference data could be
(X,P},ai,a?) and (X, P}, af, af).

To collect preference data, we use the SFT
agent to regenerate the training split of the page
navigation dataset. If the reward of an action is less
than the golden action, we use it to construct the
preference data. Otherwise, we randomly select an
action with a lower reward in the action space of
each page to pair with the golden action.

DPO Optimization. Direct Policy Optimization
(DPO) (Rafailov et al., 2024) does not require an
explicit reward score, but only requires a preference
for paired data, which is more suitable for our 4-
level reward function. Therefore, we adopt DPO to

4765

Step-level Acc Task-level Acc Task Success

Model Method ToU Text ToU Text

GPT-40 (OpenAl, 2023) FewShot | 19.44% 17.06% - -
Qwen-VL (Bai et al., 2023) FewShot | 0.05% 1.49% - -
MobileVLM ypified (Wu et al., 2024) FewShot | 2.43% 4.91% - -
MobileVLMgeperate (Wu et al., 2024) FewShot | 1.75% 10.60% - - -
Qwen-VL (Bai et al., 2023) SFT 73.38% 72.14% | 30.13% 26.22% 35.77%
Auto-Ulypified (Zhan and Zhang, 2023) SFT 73.26% 70.88% | 29.60% 22.20% 33.40%
MobileVLM (Wu et al., 2024) SFT 76.20% 74.08% | 34.03% 28.43% 39.78%
ReachAgent-stage 1 SFT 83.34% 81.47% | 37.82% 31.31% 44.85%
ReachAgent-stage 2 SFT+RL | 83.32% 81.77% | 38.75% 33.06% 46.37 %

Table 1: Main Result(%) on MobileReach. SFT baselines are fine-tuned for 2 epochs on page navigation split.

Dataset Train Test
Chain Step Chain Step
Page Navigation 53,832 259,742 2,689 12,922
Page Reaching 67,920 374,834 3,385 16,253
Page Operation 76,252 368,942 3,798 18,338

Table 2: The statistics of MobileReach dataset.

optimize ReachAgent. The DPO loss is defined as:

£DPO (7T9; ’/TSFT) - - E(X7Pt,d?,ai)~D[10g g
(Blog _mo(a’|X,Py) Blog M)]'
msrr(a’[X, Py) mser(al|X, Py)
(6)

Here, 7y is the DPO agent to learn and 7spr is the
first stage SFT agent. 6 is the sigmoid function and
B is a hyperparameter that controls the deviation
from wqpT.

5 Experiment

5.1 Datasets and Benchmarks

The MobileReach dataset contains 3 splits: page
navigation, page reaching, and page operation. We
used the GUI graph from Mobile3M to build the
MobileReach dataset. The detailed information
of the MobileReach dataset is shown in Table
2. For preference data, 48,013 rejected actions
are generated by the agent, and 211,729 rejected
actions are sampled from the action space.

We used the page navigation split of the Mo-
bileReach dataset and the Auto-UI dataset (Zhan
and Zhang, 2023) for testing. For the Auto-UI
dataset, we follow the official split and method
for finetuning. For the MobileReach dataset, we
randomly selected 5% of the GUI flows as a test
set before data construction. Therefore, there was
no overlap between the training set and the test set.

5.2 Evaluation Metrics

We use two objective metrics to evaluate the
position and text of the generated action. IoU Acc
evaluates the bounding box accuracy. Text Acc
evaluates the text accuracy. Step-level accuracy
evaluates whether each action in a GUI flow
is correct, while task-level accuracy evaluates
whether all actions in an entire GUI flow are correct.
See more metric details in Appendix A.

5.3 Implementation Details and Baselines

ReachAgent chose MobileVLM as the backbone
model. We use 8 80GB Nvidia A100 GPUs for fine-
tuning. The learning rate is le-5, and the agent’s
max length is 4,096. For the MobileReach dataset,
in the first stage, ReachAgent was trained for 2
epochs on all three splits. In the second stage, it
was trained for 2 epochs on 259,742 preference
data. For the Auto-UI dataset, ReachAgent is fine-
tuned for 1 epoch on its training data using the
first-stage framework. For specific information on
parameters and baselines, refer to Appendix A.

5.4 Main results

The main experimental results are presented in
Table 1 and 4. We can observe that:

e For MobileReach dataset, ReachAgent im-
proves the IoU Accuracy, and Text Accuracy by
+7.12%, +7.69% on step-level and +4.72% and
+4.63% on task-level compared to fine-tuned Mo-
bileVLM. It also raises +6.59% on Task Success
Rate. This proves that ReachAgent is not only good
at generating actions at each step, but also provides
a more efficient GUI flow to successfully complete
the task.

e At both step-level and task-level, ReachAgent-
stagel has a significantly higher IoU and Text
accuracy than other SFT baselines. We attribute
this to our action alignment mechanism and the
introduction of page reaching and page operation

4766

Model Reach SubTask Operate SubTask All SubTask
IoU Acc Text Acc IoU Acc Text Acc | IoU Acc Text Acc
MobileVLMgpt 5144% 53.87% 56.62% 37.89% | 53.19% 48.48%
+ action alignment 53.90% 5491% 5397% 3939% | 53.92% 49.82%
+ action alignment & page reaching 55.79% 56.83% 59.57% 43.39% | 57.03% 52.42%
+ action alignment & page operation 57.36% 58.24% 60.93% 46.42% | 58.53% 54.37%
+ action alignment & page reaching & page operation 57.84% 58.94% 59.96% 43.33% | 58.53% 53.82%
ReachAgent 5991% 60.57% 62.35% 47.45% | 60.71% 56.27%

Table 3: The task level accuracy (%) of different ablations for completing subtasks.

Model General Install GoogleApps | Overall
GPT-4V 43.01% 46.14% 49.18% 48.91%
Qwen-VL Max | 46.22% 50.30% 49.16% 49.21%
GPT-40 47.06% 49.12% 52.30% 52.04%
Llama 2+plan | 53.77% 69.10% 61.19% 61.57%
MobileAgent 55.80% 74.98% 63.95% 64.51%
Auto-Ulypified | 68.24% 76.89% 71.37% 71.71%
CoCo-LLaVA | 58.93% 72.41% 70.81% 70.72%
CogAgent 65.38% 78.86% 74.95% 75.05%
MobileVLM 69.58% 79.87% 74.72% 74.99%
ReachAgent 70.27% 80.76 % 74.94% 75.27%

Table 4: Main Result(%) on Auto-UI dataset. The first
column shows few-shot agents. The second column
shows the SFT agents.

Step-level Task-level

Model IoU Text IoU Text

MobileVLMgpr 76.20% 74.08% 34.03% 28.43%
+ Al 81.55% 79.86% 35.37% 30.01%
+ Al & Re 82.34% 80.49% 36.37% 29.64%
+ Al & Op 82.54% 8122% 37.19% 32.87%
+Al&Re & Op 83.34% 8147% 37.82% 31.31%
ReachAgent 83.32% 81.77% 38.75% 33.06%

Table 5: Ablation study on the action alignment
mechanism (Al), page reaching subtask (Re), page
operation subtask (Op), and reinforcement learning.

subtasks. ReachAgent achieves better page navi-
gation abilities by learning how to go to specific
pages and complete specific operations.

e Compared to ReachAgent-stagel, ReachAgent
significantly outperforms it at the task level and is
competitive with it at the step level. This can be at-
tributed to our reinforcement learning mechanism,
which encourages the agent to generate GUI flows
that can complete the task.

e For the Auto-UI dataset, ReachAgent outper-
formed the SOTA baselines in all tasks. Note that
ReachAgent achieves this result without building
subtask data on Auto-UI. This proves the gener-
alizability of the agent’s page reaching and page
operation abilities.

5.5 Ablation Study

Table 5 shows several ablation experiment results.

Effects of Action Alignment Mechanism:
Through the action alignment mechanism, the
performance of the agent (+Al) is improved by
5.55% and 1.46% on average at the step level and
task level. This is because the action alignment
mechanism helps to narrow down the range of
possible actions that the agent can take, reducing
the generation difficulty.

Effects of Page Reaching and Page Operation
Subasks: Adding the page reaching subtask and
the page operation subtask both improve the agent’s
performance. The accuracy of the "+ Al & Re &
Op" increases by an average of 1.7% and 1.87% at
the step level and task level compared to "+ Al".
These subtasks enhance the agent’s understanding
of the task goal and the order of actions, making the
agent generate actions that are more aligned with
the overall goal of the task. This leads to better
performance at both the step and task levels.

Effects of Reinforcement Learning: ReachAgent
further adds RL to "+ Al & Re & Op". It mainly
improves the task-level accuracy. This is because
our reward focuses more on whether the agent can
generate a short GUI flow that can complete all
subtasks, rather than whether the action of each
step is exactly the same as the golden answer.

Ability to complete subtasks: We also compared
the ability of different ablations to complete the
Reach and Operate subtasks. As shown in Table
3, ReachAgent improves the overall IoU accuracy
by 1.9% and the Text accuracy by 2.18%, outper-
forming the agent without RL in all subtasks. This
shows that the RL mechanism improves the agent’s
ability to complete various subtasks. In addition,
adding the page operation subtask contributes
more to the agent’s performance than adding the
page reaching subtask. This is because the page
operation subtask not only improves the agent’s
ability to operate pages, but also requires the agent
to be able to reach the specified page.

4767

ReachAgent
QO Helpme - e =
() planawalking @ evemg= o
route from my current
location to a nearby

restaurant. ?

e

O it
0009q%g
- - - - -]
| Reach(“walking” Page)

Operate(“walking” Page, search
| “nearby restaurant”)

MobileVLM
cegec
- - |
Operate(“search™ Page, Wrongly go to Wrongly go to

|choose a restaurat) “public transportation” “running route”

Help me find
& new housing
projects that are about
to be launched in
Chongging, and get
detailed information
of one of the
properties that is
about to be sold.

e

Reach(“new Operate(“new housing” Page,

|_housing” Page) | search “to be sold”) | Page)

Reach(“property” Operate(“property” Page,

Wrongly scroll up to Wrongly click

|9et detailed information) browse the page “call sales office”

Figure 5: Two cases of generated GUI flow by ReachAgent and MobileVLM.

5.6 Case Study

Figure 5 shows two generation cases. MobileVLM
tends to greedily choose task-related actions at each
step, leading to local optima. In the first case, it
goes directly to the "Public Transportation" page
on the homepage, or clicks on "Running Routes"
before finding nearby restaurants. In the second
case, when the task is to search for a property that
is about to be sold, MobileVLM keeps scrolling
down, trying to browse directly to find the required
property, and gets stuck in an endless loop. In
contrast, ReachAgent improves the ability to reach
and operate on task-related pages, and further
completes the task based on these subtasks.

6 Conclusion

In this work, we propose ReachAgent, a two-
stage framework that leverages page reaching
and page operation tasks to enhance the agent’s
subtask completion abilities. Besides, we use a
4-level reward function to collect preference GUI
flows, and further enhance the agent’s overall task
completion ability with reinforcement learning. In
addition, we construct a mobile control dataset
called MobileReach, which contains 3 categories
of tasks: page navigation, page reaching, and
page manipulation. Experimental results show that
ReachAgent significantly improves IoU and Text
accuracy by 7.12% and 7.69 % at the step level and
4.72% and 4.63 % at the task level, respectively.
Our ReachAgent shows strong task completion
abilities by addressing the challenge of mobile
Al agents focusing more on single-step action
accuracy rather than completing the entire task
flow. We hope that MobileReach can serve as a
useful resource for breaking down tasks, solving

page reach and operation subtasks, and provide
assistance for future research.

Limitations

Our training data is built on a graph consisting of
GUI flows of 49 commonly used apps. Since the
method of exploring the GUI graph is random walk,
this may not cover all the functions of the app. In
addition, we select GUI flows by random sampling,
which may result in many invalid GUI flows that
do not have corresponding tasks.

Ethics Statement

This paper was conducted in accordance with the
ACM Code of Ethics. Our MobileReach dataset
is constructed using publicly available platforms
and data sources, ensuring that there are no privacy
issues or violations. All data used in our research
was obtained following legal and ethical standards,
and we do not collect any personally identifiable
information.

4768

References

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Carbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, et al.
2021. Uibert: Learning generic multimodal
representations for ui understanding. arXiv preprint
arXiv:2107.13731.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024.
Digirl: Training in-the-wild device-control agents
with autonomous reinforcement learning. arXiv
preprint arXiv:2406.11896.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Sara Bunian, Kai Li, Chaima Jemmali, Casper
Harteveld, Yun Fu, and Magy Seif Seif El-Nasr.
2021. Vins: Visual search for mobile user interface
design. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1—
14.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su,
Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. 2024. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185-24198.

Bowen Cheng, Ross Girshick, Piotr Dollér, Alexander C
Berg, and Alexander Kirillov. 2021. Boundary iou:
Improving object-centric image segmentation evalu-
ation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
15334-15342.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. 2017. Rico: A
mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual
ACM symposium on user interface software and
technology, pages 845-854.

Tinghe Ding. 2024. Mobileagent: enhancing mobile
control via human-machine interaction and sop
integration. arXiv preprint arXiv:2401.04124.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Yu-Chung Hsiao, Fedir Zubach, Gilles Baechler, Victor
Carbune, Jason Lin, Maria Wang, Srinivas Sunkara,
Yun Zhu, and Jindong Chen. 2022. Screenqa:
Large-scale question-answer pairs over mobile app
screenshots. arXiv preprint arXiv:2209.08199.

Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. 2020.
Enrico: A dataset for topic modeling of mobile
ui designs. In 22nd International Conference on
Human-Computer Interaction with Mobile Devices
and Services, pages 1-4.

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell,
and Brad A Myers. 2021. Screen2vec: Semantic
embedding of gui screens and gui components. In
Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1-15.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and
Jason Baldridge. 2020. Mapping natural language
instructions to mobile ui action sequences. arXiv
preprint arXiv:2005.03776.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao
Han, Wei Yang, and Deheng Ye. 2023. RItf:
Reinforcement learning from unit test feedback.
arXiv preprint arXiv:2307.04349.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 9097-9110.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in
Neural Information Processing Systems, 36.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang
Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. 2023. Pangu-coder2:
Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang,
et al. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

4769

https://arxiv.org/abs/2303.08774

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen,
Tovi Grossman, and Yang Li. 2021. Screen2words:
Automatic mobile ui summarization with multimodal
learning. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 498—
510.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao,
Jun Wang, and Kun Shao. 2024. Distrl: An
asynchronous distributed reinforcement learning
framework for on-device control agents. arXiv
preprint arXiv:2410.14803.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. 2023. Cogvim:
Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079.

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng
Liu, Ang Li, Jian Luan, Bin Wang, and Shuo
Shang. 2024. Mobilevim: A vision-language model
for better intra-and inter-ui understanding. arXiv
preprint arXiv:2409.14818.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-
4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint
arXiv:2311.07562.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen,
Zebiao Huang, Bin Fu, and Gang Yu. 2023.
Appagent: Multimodal agents as smartphone users.
arXiv preprint arXiv:2312.13771.

Hongyi Yuan, Zheng Yuan, Chuangi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank
responses to align language models with human
feedback. In Thirty-seventh Conference on Neural
Information Processing Systems.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Zhuosheng Zhan and Aston Zhang. 2023. You only
look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024. Android in the zoo: Chain-of-action-thought
for gui agents. arXiv preprint arXiv:2403.02713.

4770

A Experiment Settings

A.1 Baselines

ReachAgent was compared to four other baselines
as follows: GPT-40, Qwen-VL, Auto-UI, Mo-
bileVLM.

* GPT-40, GPT-4V (OpenAl, 2023) are most
advanced VLMs currently available.

* Qwen-VL, Qwen-VL-Max (Bai et al., 2023)
are large-scale visual language models de-
signed to perceive and understand text and
images. They have demonstrated significant
performance in tasks such as image caption-
ing, question answering, visual or document
visual question answering, and localization,
and have been applied as the base model for
multiple mobile Al agents.

* Auto-UI (Zhan and Zhang, 2023) is derived
from AITW (Rawles et al., 2023), which uses
a chain-of-action composed of a series of
action histories and future action plans to
improve the agent’s action prediction ability.

* MobileVLM (Wu et al., 2024) builds a large-
scale Mobile3M dataset in the graph struc-
ture and uses multiple pre-training tasks to
enhance the agent’s Ul understanding ability.

* MobileAgent (Ding, 2024) builds a GUI agent
based on prompt engineering based on GPT-
4V.

e CoCo-LLaVA (Ma et al., 2024) leverages
comprehensive environment perception (CEP)
and conditional action prediction (CAP) to
enhance the agent’s understanding of GUI
pages and tasks.

* CogAgent (Hong et al., 2023) is built on
CogVLM, adding pre-training tasks and sup-
porting higher-resolution images.

For in-context learning, we provided them with
several few-shot examples. For SFT learning, we
use the page navigation split of the MobileReach
dataset to fine-tune them for two epochs. We
maintain consistent hyperparameters across all the
baselines for fair comparisons.

A.2 Metric

We use two objective metrics to evaluate the model
at the step-level:

IOU Acc: Intersection over Union (Cheng
et al., 2021) evaluates if the bounding box of the
generated action intersects with the golden action.
We allow a 14% margin of error relative to the
screen size.

Text Acc: It evaluates if the text in the generated
action matches the golden one. This includes
the name of the click action, the direction of the
scroll action, the name and input text of the input
action, and the text of the complete action. For the
input text, which may have varied descriptions,
we require an F1 value greater than 0.8 to be
considered consistent. The remaining text must
be entirely consistent.

We use two metrics to evaluate the model at the
task-level:

Task-level Acc: As described in Section 5.2,
task-level accuracy evaluates whether all actions
in an entire GUI flow are correct. That is, all
actions in the reasoning process are exactly the
same as all actions in the ground truth. This is a
very strict method for judging task success and has
been applied in previous works.

Task Success Rate: This metric considers a
GUI flow that completes all subtasks as correct.
In our reward scoring principle, if the model can
complete all subtasks, it does not need to be exactly
the same as the ground truth to be considered
complete. However, since the Auto-UI dataset does
not contain explored paths other than the golden
answer, we only use this evaluation metric in the
Mobile3M dataset.

A.3 HyperParameter

We present the hyperparameters for the first stage
SFT framework and second stage RL framework
in Table 6. ReachAgent chose MobileVLM as the
backbone model. We use 8 80GB Nvidia A100
GPUs for fine-tuning. The learning rate is le-5,
and the agent’s max length is 4,096.

For the MobileReach dataset, in the first stage,
the model was trained for 2 epochs on all three
splits with a batch size of 4. In the second stage,
it was trained for 2 epochs on 259,742 preference
data with a batch size of 1. During testing, the max
step is set to 15.

For the Auto-UI dataset, we fine-tuned the
MobileReach-stagel on its training split for 1

4771

Suppose you are the best mobile smart assistant, | need you to help me complete the following task.

Input format:

You will be provided with a set of user interaction history, each interaction description contains the current page caption and an
action action;

Your task is:

Analyze what actions each action takes on the corresponding page, and summarize these action sequences into a task
description. Please note that the task description should be a requirement, for example: | want to see what VIP privileges are;
help me see the discounted pants; tell me what is in the current shopping cart.

Please note! There should be a corresponding logical relationship between the task description and the action sequence.
Output format:

""Step-by-step description™: "A set of interaction history is provided, in which each entry corresponds to a caption of the current
mobile phone screenshot and an action action for the page."

"Brief task": "Based on the step-by-step description, generate a task that conforms to this action sequence*

Here is an example:

Input:

Caption 1:

This picture shows a mobile phone screenshot, specifically the interface of a shopping application.

Action 1:

click(skin care set)

Caption 2:

This picture shows a mobile phone screenshot. At the top, there is a search bar that says "Skin Care Set". In addition, at the
bottom of the page, there is a navigation bar with options such as "All Products"”, "New Arrivals", "Moisturizing", "Dry Skin",
"Niacinamide”, and "Hyaluronic Acid", and the current status is "All Products”

Action 2:

click(New Arrivals)

Caption 3:

This image shows a mobile phone screenshot, specifically the interface of a shopping app. At the top, there is a search bar that
says "Skin Care Set". In addition, at the bottom of the page, there is a navigation bar with options such as "All Products”, "New
Avrrivals", "Moisturizing", "Dry Skin", "Niacinamide", and "Hyaluronic Acid", and the current status is "New Arrivals". There
are multiple product recommendations below.

Action 3:

click(Advertisement)

Caption 4:

This image shows a product details page. At the top of the page, there is a banner with a pink background that says "Buy a Set,
Get 13 Items™ and a product photo.

Output:

Step-by-step description:

1. In the "Beauty" subcategory under the "Recommendations” category of the shopping app, click the "Skin Care Set" product.
2. On the search results page for Skin Care Sets, continue to click on the product with the “New Arrivals" label.

3. On the product details page, click the "Advertisements" label.

Brief Task:

Help me find a new skin care set that is on sale.

Here is what you need to answer:

Input:

{chain_description}

Please generate "Step-by-step description™ and "Brief Task":
Output:

Figure 6: The prompt for step-by-step description and brief task generation.

epoch. Similar to its official method, we only used B Prompt
10% of the GoogleApps data of AITW to save the
training time. All SFT baselines are also fine-tuned
for 1 epoch on this split with the same parameters.
During testing, we removed WebShopping tasks
because they are control tasks performed on a
computer screen rather than a mobile screen.

For the page navigation task, we use the few-shot
prompt to guide the GPT-4 in building tasks, as
shown in Figure 6. The inputs are image captions
generated by Intern-VL and actions between GUI
pages. The outputs are step-by-step description and
brief task.

For the page reaching task, we use the follow-
ing pre-defined task templates to build tasks. We
replace the {text} in the template with page names.

4772

Hyperparameter Stage 1 | Stage 2
epoch 2 2
batch_size 4 1
learning_rate le-5 le-5
warmup_ratio 0.02 0.02
optimizer Adam | Adam
max_sequence_length | 4096 4096
GPUs 8 8

Table 6: Hyperparameters.

C Page Reaching and Operation Dataset
Construction

C.1 Subflow Filtering

Figure 7 shows the page reaching subtasks and
page operation subtasks extracted from the GUI
flow example in Figure 3.

Here, we provide a step-by-step data construc-
tion process from GUI flow to task and subtask
generation. Take the case in Figure 3 and Figure 7
as an example:

1. First, we will observe such a GUI flow:

Navigate to {text} page.

Go to {text} page.

From the current page, what interactions
should be performed to reach {text} page?
What actions need to be performed to reach
{text} image?

Determine the actions that need to be taken to
display {text} page.

Visit the {text} page.

What actions should you take to advance to
the page showing {text}?

I want to go to {text} interface.

What actions will take you to {text} image?
Describe the steps that need to be taken on the
current image to find {text} image.

Is the page showing {text}?

First, find {text} page.

Help me find the page with {text}.

Perform a series of actions to reach {text}.
First visit {text} page.

What actions do I need to take to find {text}
page?

How do I get to {text} page?

Help me navigate to {text} interface.

Go to {text} interface.

Jump to {text} page.

Next, enter {text} page.

Visit the page showing {text}?

Find the image with {text}?

How to get to the page with {text}?

I want to go to {text} page.

Open {text} image?

Next, go to {text} page.

Need to visit {text}.

Enter {text} page.

Navigate to {text}.

How to get to the page with {text}?

Guide to the image with {text}.

GUI Page | Action

P_1 a_l1, click(“search”, [177,96][273,168])

P2 a_2, input(“water purifier”, [231,72][555,168],
“xiaomi 14”)

P_3 a_3, click(“search”, [597,48][702,192])

P_4 a_4, click(“Xiaomi 147, [425,1074][628,1125])

P_5 a_5, click(“Add to cart”, [294,1122][429,1154])

P_6 a_6, scroll([0,585][720,1088], “up”)

P_7 a_7, click(“white”, [187,693][235,722])

P_8 a_8, click(“OK”, [333,1121][387,1153])

P_9 -

2. Then, we need to check the validity of this
flow, generate corresponding tasks, and filter.

Check the validity

e Whether this path of Py, P, ..., Py has already
appeared in the current training set.

e Whether all actions in the action sequence have
already appeared in the current training set.

e Whether the action sequence contains consec-
utive repeated actions.

e Whether there is an action a; that is not
included in the action space of P;

Generate Corresponding Tasks. We use In-
ternVL to genenrate image captions for each GUI
page in the flow and use GPT-4V to generate a
step-by-step description and a brief task as follows:

Step-by-step Description:

1. On the homepage of Xiaomi Mall, click the
search icon to enter the search page.

2. On the search page, enter "xiaomi 14" in the
search box to search.

3. On the search page, click the search icon to
search.

4. On the search results page, select the detailed
information of "xiaomi 14".

5. On the detailed information page, select and
click "Add to Cart" to enter the parameter page of
the phone.

6. On the parameter page, scroll the page to view
more parameter information.

4773

Page Reaching Task

Page Operation Task

Actions

On the search page,
enter "xiaomi 14" in the
search box to search

click(“search”, [177,96][273,168])
input(“water purifier”, [231,72][555,168], “Xiaomi 14”)
STATUS_TASK_COMPLETE

Visit the search result
page.

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192])
STATUS_TASK_COMPLETE

Help me navigate to
“Xiaomi 14” interface.

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192])

click(“Xiaomi 147, [425,1074][628,1125])
STATUS_TASK_COMPLETE

Navigate to “Add to
cart” page.

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192])

click(“Xiaomi 147, [425,1074][628,1125])

click(“Add to cart”, [294,1122][429,1154])
STATUS_TASK_COMPLETE

On the parameter page,
scroll the page to view
more parameter
information

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192])

click(“Xiaomi 147, [425,1074][628,1125])

click(“Add to cart”, [294,1122][429,1154])
scroll([0,585][720,1088], “up”)
STATUS_TASK_COMPLETE

29

I want to go to “white
interface.

On the parameter page,
select “white" to
confirm the parameters
of the phone

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “xiaomi 14”)
click(“search”, [597,48][702,192])

click(“Xiaomi 147, [425,1074][628,1125])

click(“Add to cart”, [294,1122][429,1154])
scroll([0,585][720,1088], “up”)

click(“white”, [187,693][235,722])
STATUS_TASK_COMPLETE

What actions do | need
to take to find “text”
page?

On the parameter page,
click the "Confirm"
button at the bottom to
confirm the parameter
configuration of the
phone.

click(“search”, [177,96][273,168])

input(“water purifier”, [231,72][555,168], “Xiaomi 14”)
click(“search”, [597,48][702,192])

click(“Xiaomi 147, [425,1074][628,1125])

click(“Add to cart”, [294,1122][429,1154])
scroll([0,585][720,1088], “up™)

click(“white”, [187,693][235,722])

click(“OK”, [333,1121][387,1153])
STATUS_TASK_COMPLETE

Figure 7: Page reaching subtasks and page operation subtasks extracted from the GUI flow example in Figure 3.

7. On the parameter page, select “white" to

confirm the parameters of the phone.

8. On the parameter page, click the "Confirm"
button at the bottom to confirm the parameter

configuration of the phone.

Brief Task:

Help me find detailed information about xiaomi

14, and add a white one to the shopping cart.

Here, each step s; corresponds to a GUI Page P;

and an action g; in the GUI flow.
Filter:

quality. For example:

A. The brief task already appears in the current

training set.

in the GUI flow.
4774

We filter out some tasks and GUI flows with low

B. The number of steps in the distribution
description is inconsistent with the number of steps

C. The brief task is too long.

C.2 Subtask Generation

After obtaining the GUI flow, step-by-step de-
scription, and a brief task, we can split them into
page arrival and page operation subtasks. This
splitting operation is mainly based on the step-by-
step description and actions.

Page Reaching Subtask Generation

1. If a page is referred to by a unique name in the
step-by-step description, we split out the sub-page
flow leading to that page and assign a task through
template to reach that page. For example:

Description: 4. On the search results page, select
the detailed information of "xiaomi 14".

Task: Visit the search result page.

GUI Flow: P1 ->a] -> P2 ->ag -> P3 ->asz ->
Py

2. If the element name of a click action does not
appear in the existing dataset, we name the next
page of clicking on the element with that element
name and assign a task to reach that page. For
example:

Action: ay, click(“Xiaomi 147, [425,1074][628,
1125]).

Task: Help me navigate to “Xiaomi 14” inter-
face.

GUI Flow: P1 ->a] -> P2 ->ag -> P3 ->asz ->
Py -> a4 > P5

Page Operation Subtask Generation

1. If the action type is scroll or input, we assign
an operation task as referenced in the step-by-step
description, including reaching the current page
and performing this action.

Action: ag, scroll([0,585][720,1088], “up™).

Task: On the parameter page, scroll the page to
view more parameter information.

GUI Flow: P1 ->aq -> P2 -> a9 -> P3 ->as ->
Py->ay > P5 ->as -> P6 -> ag -> Py

2. If an action has similar GUI pages before
and after execution, we assign an operation task ac-
cording to the step-by-step description, describing
the process of reaching this page to perform this
action.

Similar Pages: P7, Pg

Task: On the parameter page, select “white" to
confirm the parameters of the phone.

GUI Flow: P1 ->a] -> P2 ->ag -> P3 ->as ->
Py->a4 > P5 -> a5 -> PG ->ag -> P7 > ay -> Pg

4775

