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Abstract

As Large Language Models (LLMs) increas-
ingly influence content generation across di-
verse platforms, there is a heightened urgency
to regulate their outputs to ensure safe usage.
However, defining “safety” is complex, given
that entities across domains may interpret it
through varied lenses and develop safety detec-
tors—models trained to identify specific unsafe
content based on predefined criteria. To address
this complexity, we introduce the approach of
Adaptive Integration of Detectors (AID) to or-
chestrate the strengths of multiple pretrained
detectors to ensure comprehensive effective-
ness in diverse scenarios. AID employs a
Mixture-of-Experts (MoE) framework, wherein
it dynamically assigns and learns data-adaptive
weights for each detector using domain-specific
annotated data and LLM-extracted features.
We provide theoretical insights into why MoE
can be effective by showing its optimality in
a Neyman-Pearson setting. Our experimental
studies using various detection tasks curated
from benchmark datasets demonstrate AID’s
ability to synergistically combine the unique ca-
pabilities of individual detectors. For example,
it is observed that AID can improve the area
under the curve (AUC) by an absolute value of
0.07 to 0.21, with a median of 0.12, compared
to the best individual detectors developed for
specific safety aspects. The improvement is
particularly significant for complex detection
tasks that mix different unsafe data sources.

1 Introduction

Large language models (LLMs) have seen
widespread use across diverse domains, including
healthcare, education, finance (Wu et al., 2023),
and more, due to their remarkable ability to process
and generate human-like text. However, with the
increasing deployment of LLMs, safety concerns
have emerged, including issues of bias, misinforma-
tion, and potential ethical implications. To address

these challenges, there is a pressing need for cus-
tomized, scalable safety detection mechanisms spe-
cific to LLMs, enabling effective and responsible
application in various domains.

This has motivated recent advancements in devel-
oping content safety detectors, which are pretrained
models designed to identify specific types of un-
safe content by outputting a score that quantifies
the likelihood of unsafety. Notable examples in-
clude Perspective API (Lees et al., 2022) by Jigsaw
and Google for detecting toxic comments, Hate-
BERT (Caselli et al., 2020), a BERT-based model
fine-tuned for hate speech detection, ROBERTa-
based models trained on abusive language (Baruah
et al., 2020; Ali et al., 2022; Xu and Liu, 2023),
and Detoxify (Hanu and Unitary team, 2020), an
open-source tool for predicting toxic comments.

However, the concept of “safety” in digital con-
tent can be multifaceted and subjective, varying
across different domains and societal norms. The
existing developed detection models are either
closed-source or pretrained from a specific data
source that focuses on a specific type of unsafe con-
tent. As a result, despite their individual strengths,
these state-of-the-art detectors typically operate in
isolation. This siloed approach leads to limited
effectiveness when encountering complex content
that spans multiple categories of unsafety. Fur-
thermore, fixed trained models may not adapt to
evolving online data, leading to reduced efficacy
over time. These challenges motivate our work to
adaptively integrate diverse detection mechanisms.

This paper proposes a perspective to address
the safety detection through an Adaptive Integra-
tion of Detectors (AID), which seeks to leverage
the strengths of various pretrained detectors for
comprehensive and effective safety regulation in
content generation. Existing Al safety approaches
focus on single-task detection, training specialized
detectors to identify predefined safety tags. In con-
trast, our approach addresses compound-task detec-
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Figure 1: Illustration of the detection system that aims
to detect user-specified set of unsafe tags.

tion by flagging an input as positive if it matches
any tag within a supported set. Specifically, we for-
mulate the problem as detecting whether the gener-
ated content should be tagged as “unsafe” based on
user-selected unsafe aspects, such as insult, hate,
offense, sex, and violence, each corresponding to a
pretrained safety detector. Figure 1 shows the use
scenario of our detection system.

Then, we train an AID model, inspired by the
Mixture-of-Experts (MoE) framework (Masoud-
nia and Ebrahimpour, 2014; Shazeer et al., 2017;
Riquelme et al., 2021; Fedus et al., 2022; Chen
et al., 2022). Here, the experts represent pretrained
detectors, and we learn to aggregate their outputs
using data-adaptive weights to support various user-
selected tasks without intensive retraining. In deep
learning, MoE divides tasks among specialized neu-
ral networks, with only relevant experts activated
for each input through a routing function. This
framework is recently used in large language mod-
els to reduce memory costs by selectively activat-
ing subsets of the model. Unlike standard MoE
approaches that train new experts, our method in-
tegrates pretrained detectors into the MoE archi-
tecture. Our work also relates to ensemble meth-
ods like bagging, stacking, and boosting (Breiman,
1996; Freund and Schapire, 1997), which com-
bine multiple models to improve generalization
and reduce variance. However, these methods typ-
ically assume homogeneous models and are not
designed for adaptive integration of heterogeneous
pretrained detectors.

The main contribution of this work is as follows:

* We develop an AID approach based on the
MoE framework to integrate multiple content
safety detectors. This approach parameter-
izes data-adaptive weights assigned to each
detector to integrate and then learns those in-
tegration weights in a data-driven way.

* We provide a theoretical analysis of AID from

a Bayesian perspective, demonstrating its op-
timality and showing that it can significantly
outperform standard ensemble methods, par-
ticularly for complex detection tasks.

* We conduct extensive experimental studies
using open-source benchmark datasets and cu-
rated user-specified detection tasks that mix
different unsafe tags to mimic real-world com-
plexities where data have multiple safety is-
sues. Our results show that AID can syner-
gistically combine capabilities of individual
detectors to achieve significant improvements.
For example, AID improves the AUC by an
absolute value of 0.07 to 0.21, with a median
improvement of 0.12, compared to the best
individual detectors.

* We also propose data-free integration meth-
ods for the scenario where annotated data are
unavailable. Our experiments show that the
performance of data-free integration is not as
effective as AID-based integration.

2 Problem Formulation

Setup and Notation. We formulate the problem
as follows. Suppose the input is represented by
a variable x € X. A detection task is to decide
whether the input is associated with a tag, denoted
by ¢, that represents the safety aspect of interest.
A detector associated with this task is defined as
a function that maps from X" to )/ = {0, 1}, writ-
ten as d; : © — dy(z), where dy(x) = 1 means z
should be tagged as positive t. Suppose d(z) can
be written as d(x) = 14—, for a score function
s (Ding et al., 2018), in which varying choices of 7
determine the tradeoffs between the false positive
rate and detection power. A classical score func-
tion is s(x) = log p;(x), where p; is the density
of z associated with positive t. A larger s(z) is
interpreted as more likelihood of z following p;.
While this logarithmic score has been widely used
in decision theory and anomaly detection (Pang
et al., 2021) due to its deep root in the uniformly
most powerful test (Casella and Berger, 2021, Ch.
8) and Kullback-Leibler divergence (Shao et al.,
2019; Wu et al., 2022). In practice, the distribu-
tion p; is often approximated through generative
models such as the autoencoders (Elkhalil et al.,
2021; Bank et al., 2023). Our evaluation metric for
detection performance is the area under the curve
(AUC), which measures the two-dimensional area
underneath the ROC curve determined by the score
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function s. AUC is a suitable metric for detection
as it is less affected by data imbalance. In practice,
it is common for most content to be safe, with only
small unsafe data available for curation.

Formulation. Suppose a user can access a set of
K pretrained detectors from several entities, e.g.,
companies and research labs that release models or
their APIs, through private or public clouds plat-
form such as Huggingface (Jain, 2022). Each de-
tector dj has been trained to detect a tag ¢, for
k € [K]. The union of all tags is denoted by
T = {tx,k € [K]}. Suppose a user is interested
in detecting whether any given input is associated
with a particular subset of unsafe tags C C 7. Our
problem is to develop a detection strategy to meet
any user-specific need, namely to accurately flag
an input as positive if it is associated with any tags
within C (as shown in Figure 1).

Rationale. To put this problem into perspective, let
us consider two special cases as examples. In the
first case, C = {t} is a singleton set corresponding
to a classical detection problem that uses only the
detector associated with ¢. Our insight is that de-
tectors associated with tags in 7 — C can possibly
provide side information to enhance detection ac-
curacy if they contain mutual information (from an
information-theoretic perspective) with the tag of
interest conditional on the input. As a result, there
should exist a way to utilize detectors associated
with seemingly unrelated tags to contribute to the
decision about ¢. For example, detecting whether
content has ‘toxicity’ could be closely related to
detecting ‘violence’. The second case is C = T,
which concerns a union of the existing tags avail-
able, e.g., detecting whether content falls into either
‘toxic’, ‘violent’, or ‘offensive’ as they may consti-
tute all those that should be moderated. The two
cases show the interest for integrating detectors for
any user-specific task C.

3 Adaptive Integration of Detectors (AID)

This section proposes 1) an approach to learn the
integration mechanism, 2) a theoretical justifica-
tion of using the MoE structure for detection, 3)
an example to show why data-adaptive integration
can perform significantly better than nonadaptive
methods, and 4) natural baselines of data-free inte-
grating detectors to be revisited in the experiments.

3.1 Description of AID

We construct a detector in the form of dr ¢ (z) 2
L(z)>r the subscript C highlights the user’s inter-
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Figure 2: Illustration of the AID approach, which aims
to construct a data-adaptive weighting of detectors to
integrate for detecting a user-specified set of unsafe tags.

est of detection and s is in the form of

s(z; ©) 2 Z w(z; 0) - sg(z), )

ke[K]

a weighted sum of detectors associated with 7.
Here, the weights wy(x; ©) are adaptive to x and
satisfy D _pc(x) we(2; ©) = 1. The 7 is a threshold
that, once sweeping from —oo to oo, produces an
ROC of the decision rule. We parameterize

wn (1, 0) = exp{—07 hp(z)} @)

Zke[K] exp{—0; hi(z)}’
where hy(x) is an embedding of z, e.g., from
pretrained sentence-transformer (SBERT) mod-
els (Reimers and Gurevych, 2019), and ©® =
{0k, k € [K]} are learnable parameters.

To learn ©, consider a set of data inputs anno-
tated with tags in C, denoted by (z,y',t € T).
From this, we can create a set of n training data
in the form of (z,y¢) where ¢ = 1 if and only if
there exists a ¢ € C such that y* = 1.

Loss function. Optimizing directly for AUC,
which is the area under the ROC curve, is not
straightforward because the AUC itself is not dif-
ferentiable with respect to the model parameters.
Thus, we need a loss function as a surrogate for the
AUC. A common method is to use a pairwise rank-
ing loss, which encourages the model to correctly
rank positive samples higher than negative sam-
ples. Given that AUC is the probability a randomly
chosen positive example is ranked more highly
than a randomly chosen negative example (Fawcett,
2006), it is natural to minimize the following rank-
ing loss to indirectly optimize for AUC:

; A
min L(®) = Z
(i,): y§=1,45=0

with 6;;(0) 2 s(2;©) — s(;;©)

log (1 + e M0 (@))
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Algorithm 1 AID algorithm
Input: Detectors represented by functions s, t €
T, input representations h; : x +— hy(x), t € T,
training data (x;,v¢), i = 1,...,n, pertaining to
the user-specified task
Parameter: O as introduced in (2)
Output: = — s(z; 0)

1: Initialize parameter ; = 0,t € T

2: Run SGD to optimize the Objective (3)

3: return ©

where s was introduced in Equation (1) and A is a
tuning parameter. However, the above problem is
computationally costly. To see that, consider opti-
mizing the above loss with the stochastic gradient
descent approach and a batch size of b. Each batch
requires O(b?) computation and memory costs to
evaluate the gradient of the loss function. More-
over, the optimization results could be sensitive to
hyperparameters such as .
Alternatively, we propose to minimize the loss:

m@in L(©) = (E{Dneg} + S{Dneg}) —
(E{Dpos} = ${Dpos}) 3

where [E and S denote the empirical expectation
and standard deviation of a dataset,

{s(z;;0) : j : y§ =0}
{s(2;0) :i:yf =1}

11>

Diee(©)
Dipos(O)

1>

The intuition of the above loss function is to maxi-
mize the gap between the average score of the pos-
itive example and that of the negative example, ac-
counting for their uncertainty given a finite sample
(as reflected by one standard deviation). From our
experimental studies, the detection performance is
not sensitive to the use of other multiplies of the
standard deviation, such as two and three. With the
above loss function, each batch would require only
O(b) computation and memory costs.

Figure 2 shows the AID approach. The pseu-
docode is summarized in Algorithm 1.

3.2 Why Using Linear Aggregations

It is natural to consider a broader form of aggre-
gating the individual detectors’ scores to target any
user-specific detection task. We theoretically show
that linear aggregation can be AUC-optimal from
a Bayesian perspective when the data distributions
associated with each tag are known.

First, we introduce some background notations
needed for the theory. Recall the simple-versus-
simple hypothesis testing problems. Let pg and p;
be two distribution densities that represent “safe”
and “unsafe” data. The classical Neyman-Pearson
Lemma (Neyman and Pearson, 1933) states that for
detecting the presence of an alternative hypothesis,
x ~ p1, against a null hypothesis, x ~ pg, the
likelihood ratio test is uniformly the most powerful,
giving the largest AUC. Specifically, one decides
to reject the null, or claim “unsafe”, if the statistic

log i:)g; = logpi(x) —logpo(x)  (4)

is above a threshold 7. In our detection problem
setup, the optimal score knowing the unsafe data
source is from p; would be

s1(x) 2 log p1(z) — log po(z). 5)

However, in a general setting where unsafe con-
tent could be generated from diverse sources, the
notion of optimality relies on the formulation of the
user-specified detection task. Consider a mixture
of p1, ..., px thatrepresent K unsafe data distribu-
tions, in the form of } -, 5 wipy. Let W € [K]
denote a Multinomial random variable with proba-
bilities wy, = P(W = k), k € [K]. Then, we can
represent the user-specified unsafe data X as

X ~ pw, W ~ Multinomial(wy, ..., wg). (6)

Based on Equation (5), the optimal score involv-

ing a random data source W would be S 2

log pw () — log po()- .
Consider S as an unknown quantity, and let S(z)
be an estimator of it given measurements x. Recall
that the mean square risk is defined by E(S(x) —
S)2, where the expectation is taken over the joint

distribution of .S, z.

Theorem 1 The Bayes estimate of the optimal
score, namely the one that minimizes the Bayes risk
among all estimators, is given by (for any given x)

SBayes(m) — Z wk(:L') logpk($) - Ing()(‘r))
ke (K]

A wpg(z)
where wy () = .
> jeik) wips(x)

(7

Theorem 1 gives a theoretical justification for
using a linear MoE architecture—it contains the best
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estimator (under square loss) of the score. More-
over, the optimal mixing weights w(x) correspond-
ing to Equation (1) can be interpreted as the poste-
rior probability of x belonging to the unsafe distri-
bution. This is intuitive as the user-specified task
is to detect a mixture of individual unsafe distri-
butions. Without knowing where x comes from,
we use its posterior probability of belonging to the
training data of each expert as a soft indicator, and
specify the prior probabilities as w;, i € [K].

3.3 Why Using Data-Adaptive Weights

Next, we provide an example to quantitatively show
that using data-adaptive weights can be signifi-
cantly better than any non-adaptive weighted aver-
age in integrating detectors.

Consider the safe data distribution pg and two
unsafe data distributions pq, p» are Gaussian with
means 0, 41, pa, respectively, and unit variance.
The user-specified task is to detect unsafe data
drawn from an equal mixture of p; and ps. In
other words, we have  ~ pg under the null hy-
pothesis, and x ~ (p1 + p2)/2 under the alterna-
tive hypothesis. Consider two integration schemes
based on the MoE model: 1) data-adaptive weights
following Theorem 1, and 2) non-adaptive weights

s"e(z) = 35y 3 logpi(z) — log po().

Theorem 2 Suppose the safe data input is gener-
ated from x ~ pg and the unsafe data input is from
x € p1. Suppose 1 < 0 < |p1| < pg and |pe /11|
is bounded by a constant. Using the data-adaptive
integration introduced in Equation (7) with equal
prior weights w1 = wy = 1/2, the AUC converges
to one as o + (1 and —py converge to infinity.
Meanwhile, using the non-adaptive, equal-weight
integration, the AUC would be no larger than 0.5
offered by the random guess.

The above theorem shows the necessity of inte-
grating detectors adaptively to the inputs.

3.4 Data-Free Alternatives to AID

In case there is no annotated data for the user-
specified detection task for AID training, we pro-
pose some data-free integration methods as natural
baselines, which will be revisited in our experi-
ments. In these methods, we suppose the input x is
represented by the SBERT embedding vector.
Equal-weight integration (“Avg”). We use

s(x) 2 >_re(k) Sk(@)/ K for detection.

Max-score integration (“Max”). We use s(x) 2
maxye (k) Sk(z) for detection. The intuition is that

the larger the score, the more tendency the input is
generated from one of the unsafe distributions.
Similarity-based integration using input embed-
dings (“Similarity”). Suppose a user can access the
mean of the training inputs’” SBERT embeddings
for each detector k, denoted by Z. The cosine sim-
ilarity (“cos”) between an input x and Ty, is used
to quantify the relevance of the kth detector. Then,
the user uses s(x) = ¢k WkSk(z), where w
the Softmax applied to cos(zg, x), k € [K].
Bayesian integration using input embeddings
(“Bayes-Input”). Inspired by Theorem 1, we use
data-adaptive weights as defined in (7), but approx-
imating wy(x) by assuming wy, = 1/ K, pg(x) is
Gaussian whose mean and covariance matrix are
estimated from training data for detector k.
Bayesian integration with variational autoen-
coder (VAE) embeddings (‘“Bayes-VAE”). We use
a similar approach as the above, but approximat-
ing py using the Gaussian distribution of the VAE
embeddings (Xu et al., 2017).

4 Experimental Study
4.1 Experimental Setups

Data sources. We use a public dataset called
“Toxic Comment Classification Challenge” (Jigsaw
and Conversation-Al, 2018) (referred to as Tox-
icComment), which contains a large number of
Wikipedia comments. Each comment has been la-
beled by human raters for safety behavior, where
the data curator names the safety as “toxicity”. The
subtypes of annotated toxicity includes: “toxic”,
“severe_toxic”, “obscene”, “threat”, “insult”, “iden-
tity_hate” (id-hate). In other words, each sentence,
if unsafe, is annotated with one or more of the
above six tags; otherwise, it is regarded as “safe”.
We also use a dataset called “Hate Speech and Of-
fensive Language” (referred to as HateOffensive)
made by the authors of (Davidson et al., 2017),
which contains a large number of tweets origi-
nally collected from Twitter API and annotated by
CrowdFlower (Van Pelt and Sorokin, 2012) work-
ers. Each tweet in HateOffensive was annotated
with one of three categories: hate speech (‘“hate”),
offensive but not hate speech (“offensive”), or nei-
ther offensive nor hate speech (“safe”).

User-specified safety detection task and ratio-
nale. Traditional Al safety approaches train detec-
tors for specific safety tags, but users often need
to detect unsafe content in contexts where these
predefined tags may not be fully relevant. To sim-
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ulate complex real-world settings where a user’s
unsafe data distribution deviate from pre-defined
categories, we construct user-specified safety detec-
tion tasks by mixing data from the various unsafe
tags. For example, the unsafe data distribution of a
user’s interest consists of 50% “toxic” from the Tox-
icComment data source and 50% “offensive” from
the HateOffensive data source. Accordingly, our
performance evaluation of detectors is based on test
data constructed for various user-specified safety
detection tasks.

Data preparation. For each data source, we split
it into three sets: pretraining, training, and test-
ing. The pretraining set is used to pretrain safety
detectors that are integrated for a variety of user-
specified safety detection tasks. The training set
is used to construct data for integrating pretrained
detectors. Depending on the user-specific safety
detection tasks that we simulate, the training data
is constructed accordingly by mixing the annotated
data from the original data sources. The testing set
is used to evaluate the performance of integrated
detectors and baselines. Its construction is in line
with the training set to follow the same distribution
as designated by the user’s need. To avoid double
use of data in both training and testing, we evenly
split each data source into three sets at the begin-
ning of all the experiments. For our ablation study
of the influence of training size, we resample with
replacement from the pre-split training set.

Pretrained detectors to integrate. To demonstrate
the proposed approach of integrating detectors, we
need to curate several pretrained detectors. The de-
tector employs a hybrid model architecture that in-
tegrates a Variational Autoencoder (VAE) with em-
beddings derived from a transformer-based model
(bert-base-uncased from Huggingface). Specifi-
cally, the VAE utilizes the averaged embeddings
from the transformer model’s last hidden state as
its input. This setup enables the VAE to be trained
on user-specific data deemed unsafe, without re-
quiring curation of safe data during the training
process. For detection purposes, a future input
sentence is processed, and the VAE generates a
score based on the negative log-likelihood of the
output—the higher the score, the greater the like-
lihood of the input being safe. For the above data
sources, we would have a total of 8 pretrained de-
tectors. For AID integration, we use the embedding
extracted from a public SBERT model (Reimers
and Gurevych, 2019; Huggingface, 2023) as the

representation of each input sentence.

Metrics. Each detector takes an input sentence
and outputs a score. In practice, one needs to set
a threshold to determine whether the score is suffi-
ciently large to claim it as safe. As different thresh-
olds lead to varying tradeoffs in Type I/II error
rates, we use AUC as a quantitative measure to
evaluate the performance of detectors.

4.2 User-Specified Safety Detection Tasks

We first summarize the performance of AID and
two data-free integration approaches: Avg and Max
introduced in Subsection 3.4, and those pretrained
detectors on the same detection tasks (denoted by
Dyag). Other data-free methods will be studied in
the ablation studies. In training AID, we use 2000
sentences randomly sampled from the data distri-
bution as defined by the detection task and 10000
sentences from the same distribution for testing.
The results are summarized in Table 1 and Table 2.

In Table 1, the detection tasks are defined by
whether a sentence is associated with a particu-
lar unsafety tag as in the original data source. In
Table 2, we curate several user-specified tasks by
mixing data of different tags from the original anno-
tated data sources. Specifically, the detection tasks
are defined by whether a sentence is associated
with either one of two unsafety tags, e.g., “toxic or
offensive”. We implement this by a sampling of
50% “‘toxic” and 50% “offensive” from the original
data sources as the task-specific unsafe data.

The results show that the proposed integration
method can achieve much better performance when
compared with baseline methods. For example, Ta-
ble 1 indicates that by integrating detectors whose
associated tags are not directly relevant to the task
could significantly boost the detection power. Ta-
ble 2 shows the inadequacy of a single detector to
complicated tasks and how combining detectors
could help gain. For example, on the task that spec-
ifies “toxic” and “offensive” (“toxic/offensive”) as
unsafe tags, the AID achieves an AUC of 0.92,
while an individual detector could only achieve
0.70 or 0.62.

4.3 Sparse AID and Computation Analysis

This section analyzes the computational efficiency
of the AID approach. The computation for each
input can be divided into three main steps: 1) Rep-
resentation, where a sentence is converted into a
numerical vector, 2) AID Processing, where the
vector undergoes a forward pass through the AID
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Method toxic severe obscene threat insult id-hate hate offensive
AID 092 099 0.95 097 096 097 090 0.93
Avg 0.76  0.85 0.80 080 0.79 0.78  0.67 0.70
Max 079  0.85 0.82 083 0.82 0.80  0.66 0.70

Similarity 075 084 0.79 079 079 0.76  0.65 0.71
Bayes-Input  0.51  0.63 0.51 0.70  0.52 0.76  0.57 0.76
Bayes-VAE  0.68  0.78 0.72 073 0.71 0.71  0.58 0.62

Dioxic 072 0.8l 0.76 072 0.75 0.72  0.66 0.70
Dsevere 082 092 0.86 088  0.85 085  0.69 0.74
Dopscene 073 0.83 0.77 075 076 074 0.68 0.73
Dipreat 079  0.88 0.83 088  0.83 0.80  0.66 0.71
Dinsuit 0.70  0.80 0.74 072 0.73 072 0.65 0.68
Dig-nate 0.76  0.84 0.80 0.80  0.80 081  0.67 0.71
Dhate 073 0.80 0.77 074 077 076  0.63 0.65

Dofiensive 0.69 075 0.73 074 0.72 071  0.58 0.61

Table 1: Performance comparison of AID that integrates
pretrained detectors, baseline methods, and individual
pretrained detectors, evaluated by AUC. The safety de-
tection task is defined by declaring the sentences drawn
from a tag shown as the column name. Let Dy,; denote
pretrained detectors on the same detection tasks.

Method toxic/offensive  toxic/hate toxic/severe obscene/threat
AID 0.92 0.91 0.95 0.96
Avg 0.71 0.70 0.80 0.80
Max 0.74 0.72 0.82 0.83
Similarity 0.72 0.70 0.80 0.79
Bayes-Input 0.64 0.62 0.72 0.72
Bayes-VAE 0.55 0.60 0.56 0.61
Dioxic 0.70 0.69 0.76 0.74
Dgevere 0.77 0.76 0.68 0.87
Dobscene 0.72 0.71 0.69 0.76
Dihreat 0.74 0.73 0.69 0.86
Dinsult 0.68 0.68 0.69 0.73
Did-hate 0.73 0.72 0.68 0.80
Dhate 0.66 0.65 0.68 0.76
Doffensive 0.62 0.61 0.68 0.74

Table 2: Like Table 1, but with safety detection tasks
defined by sentences drawn from a mixture of 50% tag
A and 50% tag B indicated by the column name.

model to compute K weights, and 3) Score Ag-
gregation, where scores from K detectors are cal-
culated and aggregated to derive a final decision
score. The AID Processing step as defined in Equa-
tion (2) incurs a constant time cost per input and is
substantially less time-consuming than the Score
Aggregation step. Notably, the latter’s overall com-
putational demand increases with the number of de-
tectors K, which is also the computation required
for the Avg and Max baseline methods.

To enhance efficiency, we introduce a variant of
the AID method that sparsify the smaller weights
to zero on a per-input basis, thereby only keeping
L < K non-zero weights wg(z; ©), which are then
normalized to sum to one. This adaptation ensures
that only L detectors are evaluated, significantly
decreasing the computational load in the Score Ag-
gregation step to a ratio of L/ K.

Employing the same experimental setup as pre-
sented in Table 1, we conducted tests to assess both
the accuracy and the computation time of the origi-

Comparison of AID Variants: Average AUC and Times
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Figure 3: Performance, accumulated resource computa-
tion time, and system time comparison of AID and its
variants that retain only L active detectors (“AID-L"),
with the same setup as Table 1. System time stays al-
most constant as detectors can operate in parallel.

Method toxic/offensive  toxic/hate toxic/severe_toxic —obscene/threat

AID (n = 200) 0.89 0.89 0.93 0.94
AID (n = 600) 0.91 0.90 0.94 0.94
AID (n = 2000) 0.92 0.91 0.95 0.96
AID (n = 6000) 0.92 0.90 0.95 0.96
Avg 0.72 0.70 0.80 0.80
Max 0.74 0.72 0.82 0.83

Table 3: Ablation on sample sizes used for AID training.

nal AID utilizing all 8 detectors (“AID-8) and its
adaptive variant that selectively activates only L
detectors, for L = 7,...,1 (“AID-L”). In Figure 3,
we report both the detection performance and com-
putation time. The AUC was averaged across all
the tasks. The computation time was measured
in seconds, run on an A100 GPU, averaged over
batches of 1024 inputs. Values are reported at a
scale of 10~%, and standard errors are within 107>,
As shown in Figure 3, this adaptive pruning ap-
proach maintains performance integrity until the
number of activated detectors is reduced to one.
Moreover, implementing L < K substantially low-
ers the overall computational burden. Additionally,
we recorded the time costs for executing the AID
forward pass and generating per-detector scores,
which were 1.7 and 5.1 seconds per 1024 inputs,
respectively. As illustrated in Figure 3, the AID
component introduces a negligible increment in
computation time to the overall detection process.

4.4 Ablation Studies

Different training sizes. We vary the sample size
used for training AID to n = 200, 600, 2000, 6000,
and consider the same experimental setting as in
Table 3. The results show that AID is not much
sensitive to training sample size.

Other baseline methods. We perform an abla-
tion study of all the data-free baseline methods
in Section 3.4, using the same setting as Table 1.
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Method toxic severe obscene threat insult id-hate hate offensive

AID 092 099 0.95 097 096 097 0.90 0.93
Avg 076  0.85 0.80 080 079 078 0.67 0.70
Max 079 085 0.82 0.83 082 080 0.66 0.70
Similarity 075 0.84 0.79 079 079 076 0.65 0.71
Bayes-Input  0.51  0.63 0.51 070  0.52 076 0.57 0.76
Bayes-VAE  0.68  0.78 0.72 073 0.71 0.71 0.58 0.62

Table 4: Extended performance comparison incorporat-
ing data-free integration methods. The safety detection
task is defined by sentences drawn from tags indicated
by the column names.

toxic +severe +obscene +threat +insult +id-hate +hate + offensive

AID  0.70 0.90 0.95 0.91 0.91 0.95 0.95 0.92
Avg  0.70 0.73 0.80 0.74 0.73 0.81 0.81 0.71
Max  0.70 0.77 0.87 0.75 0.75 0.84 0.81 0.74

offensive +hate +id-hate +insult +threat +obscene +severe + toxic

AID 0.62 0.88 0.90 0.91 0.91 0.91 0.92 0.92
Avg 0.62 0.64 0.67 0.68 0.70 0.70 0.71 0.71
Max 0.62 0.66 0.71 0.70 0.73 0.73 0.74 0.74

Table 5: Ablation studies on various user-selected detec-
tors to integrate. Each row corresponds to a sequence
of expanding set of pretrained detectors, as indicated by
the column names.

We report the results in Table 4. The results show
that the data-free integration approaches do not
perform better than the simpler approaches based
on average or max score. We believe the “Bayes-
Input” and “Bayes-VAE” approaches suffer from
a poor estimation of the posterior probabilities
wg(z) = P(W = k | x), and the “Similarity”
approach requires a temperature parameter, which
is infeasible to train due to a lack of annotated data.
Overall, this ablation study indicates the impor-
tance of learning the integration weights.

Sequential increase of detectors. In this ablation
study, we explore the integration of detectors in a
sequential manner, as specified by users. The safety
detection task is defined by declaring the sentences
drawn from a mixture of 50% “toxic” and 50%
“offensive”. Our investigation involves two sets of
pretrained detectors, detailed in Table 5, which are
introduced incrementally. For example, the first
row examines the integration starting with a single
“toxic” detector, then progressively adding “severe’
and other detectors in sequence. The findings in-
dicate that augmenting the number of detectors
typically enhances overall performance. However,
it is observed that the addition of certain detectors
may marginally impact the integration outcomes.

[}

Integration of SOTA detectors. We integrated
publicly available SOTA detectors, ensuring their
training data did not overlap with ours. The
first, “Unitary-toxicity,” predicts toxic comments,
trained on the “Unintended Bias in Toxic Com-
ments” dataset (Hanu and Unitary team, 2020).

The second, “Unitary-sexual,” follows a similar
structure, predicting the “sexual_explicit” label.
We also used “Twitter-roBERTa-base” (Barbieri
et al., 2020), trained on 58 million tweets and fine-
tuned for hate speech detection with TweetEval.
Table 6 shows AID’s consistent advantage in de-
tecting “hate” and “offensive.”

Method hate offensive
AID 0.93 0.96
Avg 0.92 0.95
Max 0.84 0.92
Unitary-toxicity 0.91 0.90
Unitary-sexual 0.89 0.91

Twitter-roBERTa-base  0.85 0.92

Table 6: Performance comparison of the AID approach
that integrates three publicly released pretrained detec-
tors and baseline methods, evaluated by AUC.

Compatibility with detectors of different model
architectures. We explored the synergistic effects
of combining classifier-based and VAE-based de-
tectors, trained from two different datasets, in Ta-
ble 7. The results demonstrate the stability of the
AID approach when integrating detectors that yield
output scores at different scales.

Method toxic-clf toxic-vae toxic-clf toxic-clf  toxic-vae
+ offensive-clf  + offensive-clf + offensive-vae + hate-vae  + hate-clf
AID 0.94 0.92 0.90 0.91 0.92
Avg 0.92 0.70 0.62 0.66 0.71
Max 091 0.91 0.90 0.89 0.89

Table 7: Performance comparison of the AID approach
that integrates both classifier-based and VAE-based de-
tectors, evaluated by AUC. The safety task is defined
based on half-half mixture of “toxic” and “offensive”
tags as from their respective data sources.

5 Conclusion

We introduced an AID approach to harness the col-
lective strengths of pretrained detectors to enhance
content safety detection. We theoretically eluci-
dated the adaptability of its Mixture-of-Experts
structure, and empirically demonstrated its effec-
tiveness through several detection tasks and input
distributions. However, we acknowledge the techni-
cal limitations of our work. The efficacy of AID is
contingent upon the quality and diversity of the de-
tectors it incorporates. When domain-specific data
is scarce or lacks comprehensive representation,
AID’s ability to generalize across distinct domains,
such as identifying moral hazards in healthcare
or detecting money laundering in finance, may be
compromised. Addressing these challenges will be
a focus of our future research endeavors.
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Ethical Considerations

The use of Al for content moderation raises ethical
concerns, particularly around bias, fairness, and un-
intended censorship. AID’s reliance on pretrained
detectors means its performance may reflect biases
present in the original data, potentially limiting its
effectiveness across diverse contexts. Striking a
balance between protecting users and preserving
free expression is essential. Ongoing evaluation
and refinement will be necessary to ensure fair and
responsible deployment, especially as content and
societal norms evolve.

Moreover, the lack of interpretability in complex
systems like AID can present challenges in sensi-
tive decision-making contexts. Future work could
explore mechanisms to improve transparency, such
as visualizing how adaptive weights change based
on input data or developing sparse models to sim-
plify decision paths. Addressing these issues will
be critical to ensuring that AID aligns with ethical
principles in real-world applications.

Limitations

This paper presents new approaches and insights to
enhance content moderation within artificial intelli-
gence. We expect our work to foster safer online
environments, reduce the spread of harmful content,
and strengthen trust in digital platforms. These ad-
vancements are intended to promote community
well-being and user safety. However, the following
limitations should be considered:

* The effectiveness of AID relies on the quality
and diversity of incorporated detectors, which
may limit its ability to generalize across do-
mains with limited or underrepresented data.

* While the Sparse AID ablation study demon-
strates potential for simplifying interpretabil-
ity by reducing active detectors, systematic
methods for explaining complex interactions
between detectors in larger-scale deployments
remain an open challenge.

* The current system does not include online
updating mechanisms, which could enhance
adaptability to shifts in data distributions or
detector performance over time.

* AID has not yet been extensively tested in
real-world content moderation settings. Fur-
ther validation in such environments would

provide deeper insights into its practical im-
pact and feasibility.

* The robustness of AID against adversarial
threats, such as backdoor attacks (Xian et al.,
2023a,b; Wang et al., 2024) and prompt in-
jection attacks (Xian et al., 2025), has not
been studied. Future work should investigate
whether compromised detectors or adversar-
ial triggers could manipulate AID’s adaptive
weighting mechanism, and whether this am-
plifies or mitigates adversarial effects (Ding,
2024).

Beyond optimizing detector selection, future
work should investigate how to jointly miti-
gate safety risks by aligning the generative
model as well as input detection. This could
be achieved through fine-tuning the model to
better adhere to safety constraints or incorpo-
rating decoding-stage alignment techniques
that steer outputs toward safer responses from
multiple safety perspectives (Wang et al.,
2025).
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A Appendix: Experiments Related to Classifier-Based Detectors

Recall that our pretrained detectors were based on the BERT-VAE architecture. Specifically, for each
unsafe tag from each data source, e.g., “offensive” from HateOffensive, we trained a VAE that takes
the BERT embeddings of user-specific unsafe data as inputs. The VAE was chosen due to its ability
to effectively model complex high-dimensional data distributions, which is suitable for the goal of
identifying deviations from the unsafe data distribution. To use it for detection, we forward-pass a future
input sentence and obtain the negative log likelihood from the VAE output as the score—the larger the
score, the more likely the content is safe. Moreover, the VAE-based pretrained detector does not require
any safe data for training, making it flexible in settings where safe data may be unavailable.

To demonstrate the generalizability of the proposed approach, we curate another type of pretrained
detectors based on classification models. Specifically, we introduce a binary classifier based on a feed-
forward neural network with a hidden layer, which takes the average of the embeddings from the last
hidden state of BERT as input, and safe/unsafe label as output. Data are tokenized and padded using
BERT’s tokenizer to a maximum length of 512 tokens and the labels are balanced by randomly resampling.
To use it for detection, we forward-pass a future input sentence and obtain the prediction score associated
with the safety output, a value between 0 and 1-the larger, the more likely to be safe.

Classification-based pretrained detectors. We have run experiments on classification-based pretrained
detectors, summarized in Table 8 and Table 9. In these experiments, the pretrained detectors perform well
enough on most of the tasks that the gain brought by AID is incremental. Nevertheless, the performance
of AID is consistent as before.

Method toxic severe_toxic obscene threat insult identity_hate hate offensive
AID 0.96 1.00 0.98 099 0.98 0.99 0.88 0.91
Avg 0.96 1.00 0.98 098  0.98 0.99 0.87 0.9
Max 0.94 0.99 0.97 097 0.96 0.96 0.87 0.91
Similarity 0.96 1.00 0.98 098  0.98 0.98 0.88 0.91
Bayes-Input 0.94 0.99 0.96 097 097 0.98 0.88 0.89
Bayes-VAE 0.96 0.99 0.98 0.99 0.98 0.98 0.82 0.83
toxic-clf 0.96 1.00 0.98 098  0.98 0.99 0.84 0.83
severe_toxic-clf  0.94 0.99 0.97 097 097 0.97 0.83 0.86
obscene-clf 0.96 1.00 0.98 097  0.98 0.99 0.84 0.86
threat-clf 0.93 0.99 0.95 0.99 0.96 0.96 0.81 0.83
insult-clf 0.96 1.00 0.98 097  0.98 0.99 0.84 0.84
identity_hate-clf  0.94 0.99 0.96 097 0.96 0.99 0.84 0.83
hate-clf 0.91 0.98 0.94 094 095 0.97 0.9 0.89
offensive-clf 0.88 0.99 0.94 092 093 0.92 0.87 0.95

Table 8: Performance comparison of the AID approach that integrates classifier-based pretrained detectors, baseline
methods Avg and Max, and pretrained detectors, evaluated by ROC. The safety detection task is defined by declaring
the sentences drawn from a tag indicated by the column name.

Integration of heterogeneous detectors. We show the performance of combining a mixture of
classifier-based and VAE-based detectors. The results, as summarized in Table 10, show the AID
performance is stable even though the detectors’ output scores are of different scales.

B Appendix: Summary of Data Statistics

Tables 11 and 12 summarize the dataset statistics for the pretraining, training, and testing phases of the
Hate Speech Offensive Dataset and the Toxic Comment Challenge Dataset. The statistics include the total
sample size for each split, along with the number of positive samples for each safety tag (labeled as ‘1’).

B.1 Appendix: Simulation for Positively and Negatively Correlated Tags

To illustrate that safety tags can exhibit both positive and negative correlations, we simulate a data scenario
where each input x is associated with two tags, y4 and yp, corresponding to tags A and B.
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Method toxic/offensive toxic/hate toxic/severe_toxic obscene/threat

AID 0.9 0.91 0.98 0.98
Avg 0.91 0.9 0.98 0.98
Max 0.91 0.89 0.96 0.97
Similarity 0.91 0.91 0.98 0.98
Bayes-Input 0.90 0.90 0.96 0.96
Bayes-VAE 0.89 0.90 0.98 0.98
toxic-clf 0.89 0.9 0.98 0.98
severe_toxic-clf 0.87 0.86 0.97 0.97
obscene-clf 0.9 0.9 0.97 0.98
threat-clf 0.87 0.87 0.97 0.97
insult-clf 0.9 0.9 0.97 0.98
identity_hate-clf 0.85 0.86 0.97 0.96
hate-cIf 0.89 0.9 0.96 0.94
offensive-clf 0.9 0.87 0.96 0.93

Table 9: Performance comparison of the AID approach that integrates classifer-based pretrained detectors, baseline
methods Avg and Max, and pretrained detectors, evaluated by ROC. The safety detection task is defined by declaring
the sentences drawn from a mixture of 50% tag A and 50% tag B indicated by the column name.

toxic-clf + offensive-clf toxic-vae + offensive-clf toxic-cIf + offensive-vae toxic-clf + hate-vae toxic-vae + hate-clIf

AID 0.94 0.92 0.9 0.91 0.92
Avg 0.92 0.7 0.62 0.66 0.71
Max 0.91 0.91 0.9 0.89 0.89

offensive-vae offensive-clf toxic-vae toxic-clf hate-vae hate-clf

0.62 0.91 0.7 0.89 0.64 0.65

Table 10: Performance comparison of the AID approach that integrates both classifer-based and VAE-based
pretrained detectors, and baseline methods Avg and Max, evaluated by ROC. The first table summarizes the
performance of integrating five user-selected pairs of detectors, and the second table summarizes the performance of
pretrained detectors. The underlying safety task is defined based on a half-half mixture of “toxic” and “offensive”
tags as from their respective data source.

Table 11: Hate Speech Offensive Dataset Statistics

Split Total Size Hate (1) Offensive (1) Normal (1)
Pretraining 8426 466 6565 1395
Training 8178 489 6332 1357
Testing 8179 475 6293 1411

Table 12: Toxic Comment Challenge Dataset Statistics

Split Total Size Toxic (1) Severe Toxic (1) Obscene (1) Threat (1) Insult (1) Identity Hate (1) Normal (1)
Pretraining 54250 5228 550 2864 167 2677 499 48719
Training 52655 4986 517 2759 155 2521 455 47355
Testing 52656 5078 527 2824 156 2677 451 47264

In real-world data, labels are often positively correlated, meaning that the presence of one unsafe tag
increases the likelihood of another. To explore a contrasting scenario, we focus here on the negatively
correlated case, where y4 = 1 implies yp = 0 (and vice versa). This implies that the unsafe distributions
for A and B are well-separated. According to Theorem 1, the AID weights can be interpreted as:

wpk(x)
jelkx) wips (T)

wi(z) = 5

For separable distributions of = | y4 = 1 and x | yg = 1, the weights wy,(z) naturally approach 1 for one
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(a) Separation a =1, Correlation 0.27

(b) Separation a =5, Correlation -0.50
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Figure 4: Visualization of simulated datasets with positively correlated (left plot, a = 1) and negatively correlated
(right plot, a = 5) safety tags.

detector and O for others, depending on x. This behavior effectively reduces AID to a threshold-based
rule: decisions rely solely on the detector associated with the unsafe region z falls into.

To demonstrate this, we simulate 2D data where unsafe data for tag A are sampled from N'([—a, 0], I),
and unsafe data for tag B are sampled from N ([a, 0], I). Safe data are sampled from A/ ([0, 0], 1001) to
ensure wide coverage. The dataset consists of three groups:

* Unsafe tag A data labeled as (z,y4 = 1,yp = NA),
* Unsafe tag B data labeled as (x,y4 = NA,yp = 1),
o Safe data labeled as (z,y4 = 0,y = 0).

To assign the missing labels in the first two groups, we compute probabilities based on density ratios.
For unsafe tag A data, yp = 1 is assigned with probability:

pB(z)
PB (!T) =+ Dsafe (x) '

Plyp=1]z) =

where pp(x) and pgf () are the densities under the unsafe tag B and safe distributions, respectively.
Similarly, for unsafe tag B data, y4 = 1 is assigned with probability:

pa(z)
paA (37) + Dsafe («73) ’

Plya=1|z) =

where p4 () is the density under the unsafe tag A distribution.

The resulting dataset is visualized in Figure 4, showing cases for a = 1 and a = 5, which correspond
to positive and negative correlations, respectively. For the negative correlation case, AID is observed to
approximate a threshold-based integration of two detectors individually developed for A and B.

C Appendix: Proofs of Technical Results

Proof 1 (Proof of Theorem 1) The Bayes estimate (Jaynes, 2003, Ch. 6), namely the one that minimizes
the mean square risk among all estimators, is given by the posterior mean

sBaves () 2 E{S | 2. (8)
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Let 1yy—y, denote the indicator random variable for each k € [K|. Then, we can rewrite S as

S= Y Lw—k-logpi(z) —logpo(), €))
ke[K]

and its posterior mean conditional on x is

PO () = E{S | «}

= E{ Z ]IW:k . logpk(x) - Ing()('x) ‘ l’}

ke[K]
= > E{lwx | 2} - log pr(z) — log po(x)
ke[K]
= Z P{W =k | z} - log pi(z) — log po(z). (10)
ke[K]
By Bayes’ Theorem, we have

> jeir) PAW = jip; ()
wgpy ()

- : (1D
ZjE[K] w;p; ()
Taking Equation (11) to (10), we conclude the proof of Theorem 1.
Proof 2 (Proof of Theorem 2) Based on the Gaussian assumptions of pg, p1, P2, we have
21 L
sV (z Zi T — ;) toat = (11 + p2)z/2+ ¢ (12)

A . . .
where ¢ = —(u2 + p3)/4 is a constant that does not depend on x. Thus, the detection rule associated
with the score function V¢ is to identify the input as unsafe if (111 + p2)x/2 > 1. Recall that the false
alarm rate and detection power are respectively defined as

o™ (n) = P{(1 + p2)z/2 > n |z ~ po}, (13)
BY8(n) =P{(u1 + po)z/2 >n |z ~ p1}. (14)

Let ¢ : R — R denote the cumulative distribution function of a standard Gaussian distribution. Then,
under our setup of pg and p1, and the assumption 1 + 2 > 0, we can rewrite

g () = g — 21 > 1

a™8(n) <¢( ) (15)
Avg _ . 277 >

BE(n) ¢</ﬂ+u2+m . (16)

Thus, for 11 < 0, we have o' > 48 regardless of the values of 1. Therefore, the AUC is no larger than
0.5.

On the other hand, the data-adaptive score can be written as

B (1) = (wy(w) 1 + wa(z) o)z — %(wl(w)u? + wa()p13) (17)

where the data-adaptive weights can be calculated as

where w1 () 2 pi(2)/2 _ b1 _ 1
Zﬂe 22i(@)/2 pi(z) +pa(e) L+ exp{(uz — pa) (@ — (1 + p2)/2)}

wa(x) =1 —wi(x).
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In this case, the detection rule is to identify the input as unsafe if (w1 (x)p + wa(2)p2)x — & (w1 (z)pd +
wo(x)u3) > n for any threshold . Let Ay denote the event that x is no larger than 0, which indicates that

— (1 +p2)/2 < —(u + p2)/2 <0, (18)

1
> . 19
2 T e 08— A2 )

For an arbitrarily small 6 > 0 such that

(1—8)p1 + Suz <0, (20)

Inequality (19) implies that we have w1 (x) > 1 — § for all sufficiently large ,U,% - u% Note that if o + 111
goes to infinity, so does 113 — 1i3. Then, the detection power can be lower bounded by

pBaves () & P{(m(w)m + wa(x)pg)x > }(wl(x)/ﬁ +wa(@)p3) + | @~ p1} @D

2
510 + a(oh) 4, Ar |2~ |
+P{A [z~ pi} -1 (22)

ZP{((1—5) 1+ 0p2)x > (1—5)M?+5u§+n,A1!x~p1}+¢(—m)—1 (23)

zwﬁmwMmeme>l

3((L— )i +0p3) +n
=Pz — 2 L2 — 1, Ay |~ —p1) — 1 24
{95 s oy s p, A | @ Pl}-i-(l)( f1) (24)
1 2 2
(L =0)pi +0p3) + 1 )
¢>< (1= 0% + 0112 p ) +¢(=p) (25)
1
] - 26
o(~gm+ L)+ olomn) - 26)
Likewise, let Ag denote the event that x is no larger than (1 + p2)/4, which indicates that
z— (1 + p2)/2 < —(p1 + p2) /4 <0, (27)
1
wy(z) > (28)

14 exp{—(u3 — p?)/4}

For any arbitrarily small 6 > 0, Inequality (28) implies that we have wi(x) > 1 — ¢ for ,u% — u% larger
than clog(0) for some constant c. The false alarm rate can be upper bounded by

y)es 1
aP@es (i) £ P{(wl(w)m +wa(@)p2)w > S (wi(@)pt + wa(w)pz) +n |z ~ po} (29)

1

< P{(’wl(iﬂ)#l + wa(x)p2)r > §(w1(fb‘)/ﬁ +wo(z)p3) + 1, As | T ~ po}
L 1-P{Ay |z~ po) (30)
2,2 1
s@{mx+ﬁb4“1>2ﬁ+w~%|x~m}+1—¢0“zm) (31)
P{MH(S"? >2u%+n|x~po}+1—¢<“14”2> (32)
§]P’{$ - “1+”\x~p0}+1—¢<“1+’”) (33)
2M2 4M2 2 4
2 9
:¢<—— 5M‘Q>+1—¢<m*ﬁm>- (34
2puz  po Apio 4
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Recall that the AUC is defined as the area under the curve formed by (a2%¢(n), 3B (n)) sweeping
n € (—o0,00). We let U be a uniform random variable that equals the first term on the right-hand side of
Inequality (34). This induces a random variable n defined by

2 2 2
-1 251 1 — U3
= —l9 - U)+-— -9 , 35
n 2 <¢ (U) 2 e > (35)

where 7 2 ¢~ 1(U) follows the standard Gaussian by the definition of ¢. Recall that the AUC can be
equivalently written as TE{ 3875 ()} where the expectation is over a uniformly distributed o*®* (n). Also,
1 — ¢((p1 + p2)/4) converges to one as p1 + e goes to infinity. Thus, using Inequalities (26) and (34),
we obtain

AUC:Eﬂﬁmﬂm}ZEM<_;“+jZ>+¢@ﬂﬂ_1+oﬂ) GO
2,2
:E¢(¢u+5m4’@—JQZ>+¢GWQ—1+OQL 37)
U1 H1

where o(1) is a small term in the asymptotic regime. From Equation (37), the derivation that &(j3 — u?)
can converge to zero, and the assumption that |y / 1| is bounded, we conclude that the AUC converges
to one as —u1 goes to infinity.
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