FLEX: Expert-level False-Less EXecution Metric
for Reliable Text-to-SQL Benchmark

Heegyu Kim', Taeyang Jeon!, Seunghwan Choi', Seungtaek Choi, Hyunsouk Cho

1,2

'Department of Artificial Intelligence, 2Department of Software and Computer Engineering,
Ajou University, Suwon 16499, Republic of Korea
{khk6435, dnwn3311, dexrf, hyunsouk}@ajou.ac.kr, hist@134@naver.com

Abstract

Text-to-SQL systems have become crucial for
translating natural language into SQL queries
in various industries, enabling non-technical
users to perform complex data operations. The
need for accurate evaluation methods has in-
creased as these systems have grown more so-
phisticated. However, the Execution Accuracy
(EX), the most prevalent evaluation metric, still
shows many false positives and negatives. Thus,
this paper introduces FLEX (False-Less EX-
ecution), a novel approach to evaluating text-
to-SQL systems using large language models
(LLMs) to emulate human expert-level eval-
uation of SQL queries. Our metric improves
agreement with human experts (from 62 to
87.04 in Cohen’s kappa) with comprehensive
context and sophisticated criteria. Our exten-
sive experiments yield several key insights: (1)
Models’ performance increases by over 2.6
points on average, substantially affecting rank-
ings on Spider and BIRD benchmarks; (2) The
underestimation of models in EX primarily
stems from annotation quality issues; and (3)
Model performance on particularly challenging
questions tends to be overestimated. This work
contributes to a more accurate and nuanced
evaluation of text-to-SQL systems, potentially
reshaping our understanding of state-of-the-art
performance in this field.

1 Introduction

Text-to-SQL systems, which translate natural lan-
guage questions into SQL queries, have become
vital across various industries by democratizing
data access and facilitating data-driven decision-
making (Shi et al., 2024; Hong et al., 2024). As
these systems grow more complex, accurate and
efficient evaluation methods are increasingly im-
portant. While initial evaluations relied on human
experts, this approach proved too time-consuming
and costly for large-scale assessments. To address

* Corresponding author

Table 1: BIRD top 10 leaderboard re-ranked by FLEX.
A denotes underestimation error (FLEX — EX).

Rank Model FLEX EX A
1 (12) SuperSQL &% 64.08 5737 +6.71
2 (/1) CHESS-GPT-40-mini 62.71 59.13 +3.59
3 (12) TA-ACL 59.97 5567 +4.30
4 (13) DAIL_SQL_9-SHOT_MP 59.26 53.52 +5.74
5 (14) DAIL_SQL_9-SHOT_QM 58.47 53.06 +5.41
5 (13) DTS-SQL-BIRD-GPT40 5847 58.08 +0.39
7 (13) SFT_CodeS_15B_EK 56.98 5652 +0.46
8 (l2) SFT_CodeS_7B_EK 53.59 5489 —-1.30
9 (l1) SFT_CodeS_3B_EK 5326 5346 —0.20
10 (12) DAIL_SQL 51.83 4589 +5.93

this, benchmarks like Spider (Yu et al., 2018) in-
troduced the Execution Accuracy (EX) metric,
which has been widely adopted by others such as
BIRD (Li et al., 2023c).

However, the EX metric, which evaluates queries
based on their execution result, has significant
limitations that can lead to assessments diverging
from human experts. Our analysis reveals that EX
incorrectly validates queries due to coincidental
database states or unfairly penalizes correct ones
because of ambiguous questions, thus misestimat-
ing a model’s ability to generate correct and valid
SQL queries (Pourreza and Rafiei, 2023b).

Although LLM-based evaluation methods (Kim
et al., 2023; Zheng et al., 2023; Zhao et al., 2024)
have been proposed, they exhibit suboptimal per-
formance due to limited context. They fail to utilize
crucial contextual information, struggle with noisy
ground truth issues, and employ ambiguous criteria
inappropriate for text-to-SQL evaluation. Conse-
quently, they even underperform the traditional EX
metric when evaluated against established text-to-
SQL benchmarks.

To address these issues, we propose
FLEX (False-Less EXecution), a novel ap-
proach leveraging LLMs to emulate expert-level
evaluation of SQL queries. FLEX is specifically
designed for evaluating text-to-SQL tasks and

4448

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 44484475
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

92 DINSQL

ersQL
o DAILSQL_SC W
90 o
BA“_gQL TA-ACL
88 SET_CodeS_7B
C€3.5QL Sioe
b SFT_CodeS_15B .-
86 e
SFT_Deepseek Coder_7B o3
SFT_Codes-36
> a4 -
w _--~" GRESDSQL_NatsQL_3B
[e
. Graphix_PICARD 3B, ="~
RESESQ*—:iB resdsql_text2natsq|_large
80 SFT_Codes 1B~
resdsql text2sq]_largé’s —resdsql_text2natsql_base
78 /,»" Type
resdsql_text2sql_base Open SFT
76 B Proprietary

71.5 80.0 82.5 85.0 87.5
EX

Figure 1: Performance comparison of EX vs. FLEX met-
rics on Spider benchmark. The red identity line shows
an equivalent score.

overcomes existing limitations through compre-
hensive context analysis, considering the natural
language question, database schema, and external
knowledge. It also exploits elaborately devised
evaluation criteria with detailed guidelines for
assessing query correctness. Our approach is
validated through strong consistency between
FLEX judgments and human expert evaluations,
demonstrating significantly higher agreement
(Cohen’s kappa of 87.04) than the existing
EX metric (62.00) and outperforming previous
LLM-based methods.

To demonstrate the practical impact of FLEX,
we re-evaluated 50 publicly available text-to-SQL
models on the Spider and BIRD' benchmarks, re-
vealing several key insights. As shown in Table 1,
significant shifts in model rankings, particularly
for BIRD, provide a more accurate assessment
of model capabilities. Additionally, FLEX cate-
gorized the error cases and identified noisy annota-
tions as a primary factor in underestimating model
performance in current benchmarks. As illustrated
in Fig. 1, FLEX scores are generally higher than
EX scores, suggesting that FLEX captures previ-
ously underestimated aspects of model capability.
Furthermore, FLEX detected models are overesti-
mated in BIRD’s challenging questions, highlight-
ing areas for future research focus.

Our key contributions are as follows: 1) we iden-
tify key limitations in current text-to-SQL evalu-
ation metrics, especially the Execution Accuracy
(EX) metric, and 2) we introduce FLEX, a novel
LLM-based evaluation method that aligns with

'Our study utilized the 20240627 version of the BIRD-dev
set, yielding different EX scores from prior studies due to
modified ground truth.

human expert reasoning and shows better agree-
ment with expert assessments. 3) By re-evaluating
50 text-to-SQL models using FLEX, we uncover
significant ranking changes and provide a clearer
understanding of benchmarks and state-of-the-art
models, emphasizing the need for advanced evalua-
tion methods. FLEX framework is publicly avail-
able?.

2 Related Work

Exact Matching (EM) and Execution Accu-
racy (EX) were proposed to evaluate text-to-SQL
systems in the Spider (Yu et al., 2018). EM assesses
the syntax-level equivalence of two queries; how-
ever, it is prone to high false negative rates because
the same logical intent can be expressed in vari-
ous query formulations. Therefore, EX has been
utilized as a primary metric for query accuracy in
BIRD (Li et al., 2023c), focusing on the execution
results rather than the syntactic form. Despite this
improvement, EX still suffers from false negatives
due to annotation quality issues and may produce
false positives by rewarding incorrect queries that
coincidentally yield the same results as the ground
truth. These limitations underscore the necessity
for more robust semantic evaluation approaches.
LLM-based evaluation has gained popularity
as an alternative to human evaluators for assess-
ing human preference in natural language genera-
tion models. Frameworks like MT-Bench (Zheng
et al., 2023) and AlpacaEval (Li et al., 2023e) uti-
lize LLMs as judges to provide faster and more
cost-effective evaluations than human assessments.
However, these frameworks primarily rely on the
proprietary GPT-4 (OpenAl et al., 2024), which
poses reproducibility risks since providers may al-
ter or discontinue models without notice. In re-
sponse, Kim et al. introduced the open-source
LLM judge Prometheus, offering a reproducible
and cost-free alternative at GPT-4’s performance
level. Nonetheless, Prometheus is mainly focused
on general human preference evaluations rather
than specialized tasks like text-to-SQL evaluation.
To specifically leverage LLMs for text-to-SQL
evaluation, Zhao et al. proposed LLM-SQL-Solver.
Without distinguishing between the false positives
and false negatives, this approach showcases the
capability of LLMs to assess execution equiva-
lence between two queries using two prompting
strategies: Miniature-and-Mull, evaluating seman-

Zhttps://github.com/HeegyuKim/FLEX

4449

https://github.com/HeegyuKim/FLEX

tic equivalence between two queries, and Explain-
and-Compare, asking LLMs to compare their sig-
nificant logical differences. Despite its advance-
ments, LLM-SQL-Solver remains insufficient to
fully replace EX as an evaluation metric. We will
investigate these detailed limitations in section 4.3.

3 Preliminaries

This section introduces the notation and defini-
tions used throughout the paper. We begin by es-
tablishing the following conventions: Let D denote
a database, S its schema, and X a set of natural
language questions. For each question z € X, we
define contextual information C to assist in the eval-
uation of metrics, including Q4. () as the ground
truth SQL query for question z, and Q ger, () as the
SQL query generated by a text-to-SQL model for
x. We then execute these queries on the database
D to obtain their execution result sets. Specifically,
we define R, (z) = Execute(Qq:(x), D) as the
result of the ground truth query and Rge,(z) =
Execute(Qgen (), D) as the result of the generated
query. We define evaluation metrics: EM, EX, and
LLM-based evaluation (LX) as:

EM = 51 3 1(Quen(2) = Q@) (1)

zeX

1
EX::LXhz;H(RWn@ﬂ::RWQQ))

1
LX = m Z I <£L' <E> Qgen($)> (3)

zeX

where [(-) is the indicator function that returns 1 if
the condition inside the parentheses is true, and 0
otherwise. The notation x < Qgen () denotes that

the generated query () gep, () semantically matches
the question x under the contextual information C
based on an LLM.

For EM, the condition checks if Q) gen () exactly
matches the Q4 (x) syntactically. For EX, the con-
dition checks if the Ry, () exactly matches the
Ry (x). However, LX handles semantic match be-
tween Qgen () and question x under contextual in-
formation. C may vary depending on the evaluation
method. These metrics produce a score between
0 and 1, where 1 indicates perfect performance
(100% accuracy) and 0O indicates complete failure
(0% accuracy).

Table 2: Illustrated examples of false positive / negative.

Question: Who has the highest score?
Ground Truth Query

SELECT fname, Iname FROM student
ORDER BY score DESC LIMIT 1

> Emily, Carter

Example 1: False Positive

SELECT fname, Iname FROM student
WHERE age < 19 # Unnecessary condition.
ORDER BY score DESC LIMIT 1

> Emily, Carter

Example 2: False Negative

SELECT Iname, fname FROM student
ORDER BY score DESC LIMIT 1

> Carter, Emily # The column order is different
Example 3: False Negative

SELECT fname, Iname FROM student
WHERE score == (SELECT MAX (score) FROM student)
> Emily, Carter | Liam, Thompson

Two students have the highest score.

4 Analyzing the Limitations of Current
Text-to-SQL Evaluation Methods

In this section, we address key research questions
to investigate the shortcomings of existing text-to-
SQL evaluation metrics. We aim to understand the
types of errors these metrics produce and explore
whether LLMs can offer a better alternative.

4.1 What Types of Errors Occur in
Text-to-SQL Evaluation?

To identify the limitations of current evaluation
methods, we first examine the errors that arise when
using the Execution Accuracy (EX) metric: false
positives (FP) and false negatives (FN) using Ta-
ble 2.

False Positives (z @ Qgen(x),but Ryen (z) =

Rgi(x)): The generated query Qgen(x) with se-
mantically different structures or logic may pro-
duce the same execution results due to the current
database states, leading to overestimating system
performance. Example I includes an unnecessary
condition age < 19 but coincidentally produces
the same results as the ground truth because the
database has no students older than 18. Unlike hu-
mans, EX does not assess whether the generated
SQL accurately represents the intent of the natural
language question, potentially rewarding queries
that yield correct results through incorrect means.
False Negatives (v <E> Qgen (), but Ryen () #
Rgi(x)): Semantically correct queries that accu-

rately translate the natural language questions may
produce different results from ground truth queries,

4450

underestimating system capabilities. Prior stud-
ies (Pourreza and Rafiei, 2023b; Wretblad et al.,
2024) have raised concerns about annotation qual-
ity, potentially leading to false negatives during
evaluation. They reported that the Spider and BIRD
benchmarks have many annotation issues—at most
49% at specific databases—including ambiguous
questions and incorrectly annotated ground truths.

Ambiguous questions can be translated into mul-
tiple queries due to limited instruction about the
output structure. For instance, Example 2 is marked
incorrect simply because 1name precedes fname in
the column order. This structural rigidity in evalu-
ation can lead to false negatives, potentially over-
looking semantically correct queries. Additionally,
Example 3 shows noisy ground truth, which can oc-
cur when multiple students have the same highest
score. The query handles this issue correctly but is
evaluated as incorrect because its execution result
differs from the ground truth.

These limitations reduce reliability and hinder
the development of more robust text-to-SQL sys-
tems, potentially leading to deployed systems that
fail in real-world scenarios. To address these is-
sues, we must explore evaluation methods that
align more closely with human judgment.

4.2 How Closely Does EX Align with Human
Expert Evaluations?

Building on our analysis of identified errors, we
conducted a human evaluation study to assess the
alignment between EX and human experts in eval-
uating SQL query correctness. We randomly sam-
pled 200 query pairs from the BIRD dataset, gen-
erated by TA-ACL (Qu et al., 2024) and Super-
SQL (Li et al., 2024a). The samples were evenly
divided between queries that produced the same re-
sult as the ground truth (Equivalent set) and those
with different results (Not equivalent set). Three
SQL experts with over three years of experience
independently evaluated these queries for semantic
correctness. Discrepancies were resolved through
consensus. Before reaching a consensus, the inter-
annotator agreement measured by Fleiss’ kappa
was 79.32, indicating strong agreement.

We employed Cohen’s kappa and accuracy score
to measure the agreement between human experts
and EX. The agreement between human consensus
and EX yielded a Cohen’s kappa of 62.0, indicating
substantial agreement but leaving much room for
improvement, where human annotators identified
21 false positives in the Not equivalent set and 17

Table 3: Agreement between human consensus and other
evaluation methods. Acc denotes overall accuracy score,
EQ denotes Equivalent set accuracy score, NEQ de-
notes Not equivalent set accuracy score.

Model Kappa Acc EQ NEQ
EX 62.00 81.0 79 83
LLM-SQL-Solver | 5229 765 70 83
Prometheus-2-7B 61.14 805 78 83
Prometheus-2-8x7B | 60.66 80.0 78 82

false negatives in the Equivalent set.

These findings raise concerns about the relia-
bility of the EX metric and underscore the need
for evaluation methods that better reflect human
judgment by considering semantic correctness and
providing a more expert-level assessment of query
accuracy. Appendix C provides real examples illus-
trating these discrepancies.

4.3 Can LLMs Replace EX in Evaluating
Text-to-SQL Systems?

Given EX’s limitations and misalignment with hu-
man judgment, we explore LLMs as a potential
alternative for evaluating text-to-SQL systems. We
thus employed two LLM-based evaluation meth-
ods: 1) Prometheus-2 (Kim et al., 2024), an open
LM judge, and 2) LLM-SQL-Solver (Zhao et al.,
2024) with GPT-40 (OpenAl et al., 2024), a prompt-
ing method utilizing a proprietary LLM.

Human Experts vs. LLMs: Table 3 reveals that
existing LLM-based evaluation methods did not
surpass EX performance. Prometheus-2 showed
a marginally lower agreement than EX, with a
Cohen’s kappa of 61.14, while LLM-SQL-Solver
performed considerably worse, even when using a
flagship proprietary LLM. We propose three main
factors contributing to the underperformance of
current LLM-based evaluation methods:

e Limited Context and Noisy Ground Truth:
LLM-SQL-Solver neglects contextual informa-
tion C, including the natural language question,
external knowledge 3, and execution results. It
solely compares queries Qgen () to Qg (x) un-
der schema S, disregarding whether Qgen () ac-
curately represents question x, thus limiting its
ability to detect false positives and negatives.
This issue is particularly critical in the Spider
and BIRD benchmarks due to annotation quality

3External knowledge indicates the evidence field of the
BIRD, assisting text-to-SQL systems to predict accurately.

4451

concerns discussed in section 4.1.

* Ambiguous Criteria: The LLM-SQL-
Solver may underperform even with advanced
LLMs due to unspecified evaluation criteria.
Its Explain-and-Compare strategy uses vague
prompts like "Are there significant differences?"
Similarly, Prometheus-2 employs a 1-5 rubric
scoring system, but designing optimal rubrics
becomes heuristic and ambiguous, especially
for scores between 2 and 4 in binary decisions
(correct and incorrect)* We claim that LLM
should evaluate SQL queries using deeper
reasoning steps and several binary criteria;
otherwise, the LLM shows low evaluation
performance from the ambiguous criteria.

Our study empirically demonstrates that prior
LLM-based evaluation methods are insufficient
compared to EX for evaluating text-to-SQL sys-
tems. This highlights the need for a more advanced
evaluation paradigm that leverages LLMs effec-
tively while addressing their current limitations.

5 Our Proposed Metric: FLEX

{ 1
1 SaAL Execution Knowledge, Optimal Criteria, E
| Query Result DB Schema Question !
1 . ~ 1
: Z = : —@ E
& 8 8BS
Optimal
Context
No Semantic Evaluation
- Vulnerable to FP/FN FLEX

Semantic and Criteria-based Evaluation (£
- Aligning with Human Expert

0

Figure 2: Compared to conventional EM and EX,
FLEX evaluates semantic equivalence between question
and query based on holistic, contextual information.

This section introduces our proposed evaluation
metric FLEX (False-Less EXecution). FLEX ad-
dresses the limitations of existing metrics by lever-
aging LLMs to provide a more accurate and human-
like assessment of generated SQL queries.

5.1 Evaluation Process

FLEX instructs the LLM with the question,
Qgen(z) and optimal contextual information

“Therefore, we empirically selected rubrics with a thresh-
old (> 4) yielding the highest agreement scores.

CrrEx, including the question x, generated query
Qgen (), ground truth query Qg (x), execution
results Ry (x) and Rgen(x), schema S, external
knowledge K and two criteria Tpg and Ty EQS.
In other words, FLEX prompts LLM to focus on
detecting false positives or false negatives after ob-
taining EX results whether Ry, (z) = Ry ().

Ceq if Rgen(w) = Rg(x)
Cneg if Rgen(z) # R
Cbase - {1"7 S) Kv Qgt (x)7 Qgen (.’L‘)}
Ceg = Cpase U {TEQ}

(CNEQ = Cbase U {TNEQ7 Rgt(ﬂ?), Rgen(«r)}(él)

CrrLex = {

5.2 Optimal Context (Crpzx)

1) Execution Results Match (Cg()

If Ryen(x) = Rgi(x), there is a possibility of
false positives—queries that produce correct re-
sults by coincidence or through incorrect logic. To
evaluate false positives, 1) Crg does not contain
Rgi(x) and Rgen(x). LLM occasionally judges
false positives as correct due to the equivalent exe-
cution results. 2) Cgq utilized the following crite-
ria (Tg) to evaluate semantic correctness between
the questions and Q gen (2):

* Schema Alignment: Whether the tables and
columns used in Qgen () align with the intent of
question ¢ and are consistent with the schema .S.

* Correct Filtering Conditions: Whether the
WHERE clauses in Qg () accurately reflect
the conditions specified in the question .

* Handling of Nullable Columns: Whether
Qgen () properly handles cases where the nul-
lable columns in aggregation functions (SUM,
COUNT, AVG) of WHERE clauses, as improper
handling can lead to unexpected results.

¢ Accounting for Multiple Rows: Whether
Qgen () correctly handles cases where multiple
rows satisfy the query conditions such as one-to-
many relation and multiple min/max tuples.

* Abusing of Clauses: Whether clauses like
GROUP BY, HAVING, ORDER BY, or DIS-
TINCT are used appropriately, avoiding unnec-
essary complexity that could alter the intended
results.

The LLM analyzes differences between

Qgen () and Qg (z) to detect logical discrepan-

Detailed prompts are provided in Appendix F.1.

4452

cies that might not affect the current execution
result but could lead to incorrect outcomes if the
database state changes.

2) Execution Results Differ (Cnyrq)

Although Rgen () # Rgi(), Qgen () may still
be correct due to ambiguities in the question or an-
notation issues with the ground truth query. In this
scenario, Cypg contains Ry (x), Rgen(z), and
T'N g which is designed to evaluate semantic cor-
rectness between the question and Q g, () by con-
sidering:

* Acceptable Output Structure Variations:
Whether differences in the output structure (e.g.,
column order, extra or missing columns) are ac-
ceptable given the way « is phrased.

* Representation of Values: Whether differences
in value formats (e.g., numerical precision,
percentage representation, boolean values as
YES/NO) are acceptable for readability and do
not alter the meaning.

¢ Multiple Answers Available: Whether x is in-
terpretable in multiple valid ways, each leading
to different correct queries.

* Incorrect Ground Truth: Whether the ground
truth query Qg () is incorrect or suboptimal,
while Qe () correctly answers the question.

The LLM thus considers the flexibility required
due to ambiguous or underspecified questions and
assesses whether @ gcp, () is a valid translation of
the question. By focusing on semantic correctness
and closely aligning with human expert judgments,
FLEX provides a more reliable evaluation of text-
to-SQL models than traditional execution-based
metrics. It effectively mitigates issues with false
positives and false negatives, offering a more accu-
rate assessment of model performance.

6 Experiments

To validate the effectiveness of our FLEX ap-
proach, we conducted a comprehensive study com-
paring the agreement between LLM judgments and
human evaluations. We tested various state-of-the-
art language models to determine which aligns
most closely with human judgment.

6.1 Does FLEX Outperform Other Metrics?

As shown in Fig. 3, FLEX generally outper-
forms the traditional EX metric across various
LLMs, with GPT-40 achieving the highest agree-
ment with human judgments. Open-source mod-

0
—— Proprietary

Open N
— = Execution Accuracy (EX) GPT-40-May %’ L.'
“i
Claude-3-opus A\ J° Mistral-small 228)

) [4 DeepSeek-V2-Chat (236B) o

G . e
GPT-4-preview i«f Command-R-plus (104B)

__________________ g mm—m——
Qwen1.5-110B-Chat
Mixtral-8x7B-v0.1" 4
N

50 bt

GPT-40-Aug
Claude-3.5-sonnet

3]

Cohen's Kappa
3

Nov, 2023 Feb, 2024 May, 2024

Published Date

Aug, 2024

Figure 3: Agreements between human evaluation and
FLEX across LLM models over time. The red line
shows EX metric agreement. Dots represent other
LLMs, illustrating lower agreement than previous SOTA.
Details are illustrated in Fig. 8.

els like Mistral-small-Instruct-2409 (Jiang et al.,
2023) show substantial improvement over the EX
metric, indicating that expert-level evaluations are
achievable without reliance on proprietary solu-
tions. LLM performance has improved signifi-
cantly over time, with more recent models gen-
erally demonstrating higher Cohen’s Kappa scores.
Although open-source models have consistently un-
derperformed proprietary models such as GPT-4o,
they are steadily advancing and closing the gap.
For instance, DeepSeek-V2-Chat (DeepSeek-Al
et al., 2024) shows close performance to Claude-
3.5-sonnet (Anthropic, 2024), a proprietary LLM
in its contemporary time.

FLEX also offers substantial efficiency gains in
both time and cost. GPT-40 evaluated the BIRD
dev set (1,534 instances) in under 20 minutes at
approximately $6, whereas volunteers required an
average of 2 hours for 200 instances. These results
demonstrate FLEXs viability as an efficient (42x
faster) and cost-effective alternative to both EX
and human evaluation for text-to-SQL tasks. Using
Batch API ¢ can reduce the input processing cost
75% and more number of threads can reduce the
processing time of the FLEX.

6.2 What Factors are Beneficial?

Table 4: Comparison of human agreement results de-
pending on execution results.

Ckq CnEqQ
Ryon(x) Rgi(x) Reen(x) Rg(x) | KAPP2 Acc FQ NEQ
v v 87.04 935 88 99
T T T T T T T T T T 8206 91.0 88 94
v v v v 81.08 90.5 82 99

We conducted an ablation study to validate the

®https://platform.openai.com/docs/guides/batch

4453

https://platform.openai.com/docs/guides/batch

Table 5: Comparison of human agreement results using
different contextual information.

Ablation Settings | Kappa Acc EQ NEQ
w/o Question 80.10 90.0 &4 96
w/o Knowledge 79.09 895 82 97
w/o Criteria 74.08 87.0 81 93
w/o Ground Truth 29.36 640 72 56

efficacy of the optimal context Cryrpx and each
contextual information. As shown in Table 4, in-
cluding execution results only in Cgq yields the
best performance across all metrics. When execu-
tion results are included in both Crg and Cy g,
performance is strong in the Equivalent set (true
positives + false positives) but declines in the Not
equivalent set (true positives + false negatives). Ex-
cluding execution results from both contexts shows
the opposite trend. The inclusion of execution re-
sults impacts the model’s ability to detect errors.
Equivalent execution results may hinder false posi-
tive detection even if the generated query has incor-
rect logic. Conversely, for non-equivalent queries,
including execution results helps reduce false neg-
atives, as the model can directly compare minor
differences in execution results. Therefore, the opti-
mal context selection approach enhances evaluation
for Qgen (), aligning it more closely with human
expert assessments.

Table 5 shows the impact of removing different
components from the evaluation context. Removing
the ground truth query and results is the most signif-
icant factor, causing a substantial performance drop
across all metrics. This underscores the importance
of a reliable reference point in LLM-based text-to-
SQL evaluations. Removing the natural language
question or external knowledge also decreases no-
table performance, emphasizing their role in pro-
viding a comprehensive evaluation context. The
removal of evaluation criteria also impacts perfor-
mance, highlighting the importance of well-defined
guidelines. This ablation study demonstrates that
FLEXs performance stems from the synergy of all
its components, each playing a vital role in achiev-
ing high-quality text-to-SQL evaluation.

7 Leaderboard Re-evaluation

In this section, we evaluated the published result
in the Spider and BIRD benchmark using robust
capabilities of the FLEX. Three key findings were
observed to demonstrate crucial limitations of cur-
rent text-to-SQL evaluation. We first introduce ex-
perimental settings and demonstrate three crucial

70
SupersSQL -
TA-ACL CﬂESS-GIf:I:—AO-mlnl
DAIL_SQL_9-SHOT MP DTS_SQI -BIRD-GPT40-0823
DAIL_SQL_9-SHOT_QM® SE®CodeS_15B_EK
SFT_CodeS.7B_EK-~
DAIL SQL _ (3 5ot SFT_Codes 3B EK
50 DAIL_SQL_7-SHOT_QM @ tﬁ\LE_’soL_7-SHOT_TH~o.s_MP

DAIL_SQL_7-SHOT_TH-0.85_| @ SFT_CodeS_1B_EK

60

RESDSQL_3B_EK
40 GPT-4-turbo_kg-pred ft_d,ey”
_RESDSQL Large_EK

20 _RESDSQL_Base_EK

gPT-4;ta’rbo_predict_dev Type
L Open SFT
L mmm Proprietary
20
20 30 40 50 60 70
EX

Figure 4: Performance comparison of EX vs. FLEX met-
rics on BIRD benchmark. The red identity line shows
an equivalent score.

limitations.

7.1 Experiment Setup

For sections 7.2 and 7.4, we conducted experiments
using all of the publicly available 50 models on
both the Spider and BIRD benchmarks. For sec-
tion 7.3, we examine error categories on the top
ten models in BIRD and Spider benchmarks. Our
study utilizes the dev set of the BIRD benchmark
because it has not disclosed their test set. For a fair
comparison, we employed a dev set of the Spider
benchmark; most studies published their prediction
results of the dev set. GPT-40 was employed for the
query evaluation as an LLM judge, which shows an
outperforming agreement in our human evaluation.

7.2 Findings 1: Leaderboard Shifts

The change in the performance of text-to-SQL mod-
els in our re-evaluation leads to a significant shift
in the leaderboard. We found that the EX met-
ric mostly underestimates the models. As illus-
trated in Fig. 1 and 4, the average increases from
EX to FLEX are +2.63 and +2.6 in Spider and
BIRD benchmarks, respectively. This result causes
an average rank change of about 1.7 and 2.2 in
both benchmarks. Specifically, the maximum rank
changes are as large as five positions in BIRD and
eight in Spider. These findings demonstrate that
the EX metric obscures models’ true performance,
leading to inaccurate leaderboard rankings.

The extent of these shifts varies across differ-
ent model types: Proprietary, open pre-trained lan-
guage models (open PLMs), and open language
models with supervised fine-tuning (open SFT).
As described in Fig. 5, proprietary models and

4454

12.5 P
FN
10.0 FLEX - EX
7.5 I
5.0 |
1 P
2.5 l
0.0 - l |
Proprietary Open SFT Open PLM Proprietary Open SFT
Spider

Figure 5: Average model performances and error ratios
across different model types.

open PLMs show significant improvements when
re-evaluated using the FLEX, whereas open SFT
models display only marginal changes. A closer
examination of the error types explains this differ-
ence. Open SFT models have a lower false negative
ratio than proprietary and open PLM models. In
contrast, all model types show relatively similar
false positive ratios.

We hypothesize that this phenomenon can be
attributed to differences in the training approaches.
The supervised fine-tuning process enables SFT
models to predict SQL queries structurally similar
to those in the training dataset (Li et al., 2024a).
This similarity results in execution results closely
matching those of the ground-truth queries, reduc-
ing false negatives. In contrast, proprietary and
open PLM models are more likely to generate more
diverse SQL queries. This diversity increases the
likelihood of structural differences between the ex-
ecution results of the predicted and ground-truth
queries. Consequently, these models are more sus-
ceptible to false negatives under the EX metric,
which FLEX can correct.

7.3 Findings 2: Models are Underestimated
due to Annotation Quality

We analyze the causes of false negatives, which
lead to underestimation of text-to-SQL models’ per-
formance, by leveraging a categorized error sum-
mary from our framework’. As illustrated in Fig. 6,
the primary causes of false negatives are different
output structures (Struct) and incorrect ground truth
(GT). The inherent ambiguity in questions allows
for several possible answers, leading to many false
negatives due to different output structures (58.13%
in BIRD). Incorrect ground truth SQL queries also
account for a significant portion of false negatives

"Detailed process is provided in Appendix B.3.

Benchmark
| Spider
—_ BIRD
xX 40 I R
kel
=
©
& 20 |
]
| I
| I
0

Struct Value GT Multiple Ans Other

Figure 6: Categorized result of FN ratios in top 10 mod-
els. Struct denotes an acceptable output structure varia-
tion, Value denotes a different representation of value,
GT denotes incorrect ground truth, and Multiple Ans
denotes multiple answers available.

(54.54% in BIRD). These results support the ob-
servation of previous works (Wang et al., 2023a;
Wretblad et al., 2024) and show that this limita-
tion remains unaddressed even in state-of-the-art
models.

7.4 Findings 3: Models are Overestimated in

Difficult Questions
14

—— FP
12 FN
10
8 /
6 ./
4 o /

= 9
2 -
easy medium hard extra simple moderate challenge
Spider Difficulty BIRD Difficulty

Figure 7: The models’ average FP and FN ratios across
difficulty levels. The y-axis denotes the percentage (%).
In the Spider, text-to-SQL models tend to be underes-
timated as the questions become more difficult. Con-
versely, in the BIRD, models are overestimated with
more challenging questions.

Our study reveals that text-to-SQL models
demonstrate lower FLEX score than EX in BIRD’s
challenging questions while higher in easier ones.
This discrepancy can be elucidated through an anal-
ysis of false positive and false negative ratios illus-
trated in Fig. 7. In Spider, considered less complex
than BIRD, the false positive ratio is consistently
lower than the false negative ratio for text-to-SQL
models, indicating that text-to-SQL models show
higher FLEX than EX. This trend persists for sim-
ple and moderate questions in the BIRD. However,
in challenging questions of BIRD, the false positive
ratio exceeds the false negative ratio, leading to a

4455

decrease in the model’s performance. These results
underscore the significant impact of false positives
and false negatives in text-to-SQL evaluation.

8 Discussion

FLEX demonstrates promising results in LLM-
based text-to-SQL evaluation, yet it faces limita-
tions primarily due to insufficient contextual infor-
mation. To enhance the accuracy of LLM-based
evaluations, the future text-to-SQL benchmarks
should incorporate multiple ground-truth queries
per question, more comprehensive schema details,
and additional context regarding database relation-
ships and constraints. GPT-40 exhibits potential
biases in the human-Al agreement. To address this
issue in the future, we suggest implementing ad-
vanced prompting techniques such as employing an
ensemble of LLLM judges. These strategies aim to
mitigate individual model biases and enhance LLM-
based evaluations’ overall reliability and fairness.
Continuous fine-tuning of the evaluation process
based on human expert feedback is crucial for main-
taining and improving the system’s performance
over time.

FLEX uncovered a substantial performance gap
between proprietary models like GPT-4 and open al-
ternatives such as CodeS (Li et al., 2024b) and RES-
DSQL (Li et al., 2023a). While proprietary mod-
els exhibit superior performance, their use in real-
world text-to-SQL applications raises concerns,
particularly regarding data contamination (Ranaldi
et al., 2024). FLEX could be employed for diverse
and high-quality data augmentation, potentially en-
hancing open SFT models. This will narrow the
performance disparity between open-source and
proprietary models and advance the field of text-to-
SQL translation.

9 Conclusion

In this paper, we found the limitations in text-to-
SQL evaluation, the vulnerability of the EX metric
to false positives and negatives, which can result
in inaccurate model assessments. Although LLM-
based evaluations have emerged as alternatives to
human evaluators, they still reveal several limita-
tions. To overcome this, we introduce a novel met-
ric, FLEX (False-Less EXecution). It utilizes the
comprehensive context and elaborate criteria based
on the advanced language understanding of LLMs
to achieve more expert-level evaluations. Our com-
prehensive experiments show the effectiveness of

our proposed metric and provide several empirical
findings to promote future studies on text-to-SQL
evaluation.

10 Limitations

While our FLEX evaluation approach offers signifi-
cant improvements over traditional metrics like Ex-
ecution Accuracy (EX), there are some limitations
to note: FLEX has a strong agreement; Cohen’s
kappa of 87.04 is imperfect and could be further
improved through advanced reasoning (Wang et al.,
2022; Madaan et al., 2024) or fine-tuning (Wang
etal.,2023b; Zhu et al., 2023) of the LLM evaluator.
Our evaluation is currently limited to the Spider and
BIRD benchmarks, necessitating further testing on
other text-to-SQL datasets and real-world enter-
prise databases to validate FLEXs effectiveness
fully. FLEXs reliance on LLMs makes it compu-
tationally intensive and more time-consuming than
simple execution-based metrics, which may limit
scalability for million-scale evaluations. Moreover,
proprietary LL.Ms pose reproducibility risks, as
providers can change or deprecate models without
notice. While FLEX provides a more comprehen-
sive assessment, it does not eliminate the need for
human review, especially in critical applications.
Addressing these limitations presents opportuni-
ties for future work to refine further and expand
LLM-based evaluation approaches for text-to-SQL
systems.

Acknowledgements

This work was supported by the Institute of Infor-
mation & Communications Technology Planning &
Evaluation (II'TP) grant funded by the Korean gov-
ernment (MSIT) (No. 2022-0-00680, Abductive in-
ference framework using omni-data for understand-
ing complex causal relations), the National R&D
Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (RS-2024-00407282 and RS-2024-
00444182), and the Artificial Intelligence Conver-
gence Innovation Human Resources Development
Program (II'TP-2025-RS-2023-00255968) funded
by the Korean government (MSIT).

4456

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Introducing claude 3.5 sonnet.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, and et al. Luo Ji. 2023. Qwen
technical report. arXiv preprint arXiv:2309.16609.

Cohere For Al. 2024. c4ai-command-r-plus-08-2024.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingx-
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
et al. 2024. Deepseek-v2: A strong, economical,
and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv preprint
arXiv:2307.07306.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, and Aobo Yang
et al. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Gemini Team, Ving Ian Lei, Ryan Burnell, Libin
Bai, Anmol Gulati, Garrett Tanzer, Damien Vin-
cent, Zhufeng Pan, Shibo Wang, Soroosh Mari-
ooryad, Yifan Ding, Xinyang Geng, Fred Alcober,
and Roy Frostig et al. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context. Preprint, arXiv:2403.05530.

Gemma Team, Cassidy Hardin, Robert Dadashi, Surya
Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane
Riviere, Mihir Sanjay Kale, Juliette Love, Pouya
Tafti, and Léonard Hussenot et al. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence. Preprint, arXiv:2401.14196.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. Preprint, arXiv:2406.08426.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego De Las Casas,
Emma Bou Hanna, Florian Bressand, and et al.
Lengyel. 2024. Mixtral of experts.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, D de las Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023. Mistral 7b (2023).
arXiv preprint arXiv:2310.06825.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2024. Prometheus: Inducing fine-
grained evaluation capability in language models.
Preprint, arXiv:2310.08491.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al.
2023. Prometheus: Inducing fine-grained evaluation
capability in language models. In The Twelfth Inter-
national Conference on Learning Representations.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Prin-
ciples.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and
Nan Tang. 2024a. The dawn of natural language to
sql: Are we fully ready? Preprint, arXiv:2406.01265.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong
Chen. 2023a. Resdsql: Decoupling schema link-
ing and skeleton parsing for text-to-sql. Preprint,
arXiv:2302.05965.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
13076-13084.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chen-
hao Ma, Guoliang Li, Kevin C. C. Chang, Fei
Huang, Reynold Cheng, and Yongbin Li. 2023c.
Can llm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls.
arXiv:2305.03111.

4457

https://arxiv.org/abs/2303.08774
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.57967/hf/3135
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2406.01265
https://arxiv.org/abs/2406.01265
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, and
Qian Liu et al. 2023d. Starcoder: may the source be
with you! Preprint, arXiv:2305.06161.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023e. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, and Igor Babuschkin
et al. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Mohammadreza Pourreza and Davood Rafiei. 2023a.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Mohammadreza Pourreza and Davood Rafiei. 2023b.
Evaluating cross-domain text-to-sql models and
benchmarks. arXiv preprint arXiv:2310.18538.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large lan-
guage models. Preprint, arXiv:2402.01117.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Federico Ranaldi, Elena Sofia Ruzzetti, Dario Ono-
rati, Leonardo Ranaldi, Cristina Giannone, Andrea
Favalli, Raniero Romagnoli, and Fabio Massimo Zan-
zotto. 2024. Investigating the impact of data con-
tamination of large language models in text-to-sql
translation. arXiv preprint arXiv:2402.08100.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and et al.
Jérémy Rapin. 2024. Code llama: Open foundation
models for code. Preprint, arXiv:2308.12950.

Liang Shi, Zhengju Tang, and Zhi Yang. 2024. A survey
on employing large language models for text-to-sql
tasks. arXiv preprint arXiv:2407.15186.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
and Shruti Bhosale et al. 2023. Llama 2: Open
foundation and fine-tuned chat models. Preprint,
arXiv:2307.09288.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou.
2023a. Know what i don’t know: Handling ambigu-
ous and unknown questions for text-to-sql. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 5701-5714.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023b.
Pandalm: An automatic evaluation benchmark for
llm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and et al. Joe Davison. 2020. Transformers: State-of-
the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38—45, Online. Association for Computational
Linguistics.

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas,
Amin Ahmadi, and Oskar Holmstrom. 2024. Un-
derstanding the effects of noise in text-to-sql: An
examination of the bird-bench benchmark. arXiv
preprint arXiv:2402.12243.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, and
et al. Haoran Wei. 2024. Qwen?2 technical report.
arXiv preprint arXiv:2407.10671.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. arXiv:1809.08887.

4458

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2310.18538
https://arxiv.org/abs/2310.18538
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.48550/ARXIV.2405.16755
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://doi.org/10.48550/ARXIV.1809.08887
https://doi.org/10.48550/ARXIV.1809.08887
https://doi.org/10.48550/ARXIV.1809.08887

Fuheng Zhao, Lawrence Lim, Ishtiyaque Ahmad, Di-
vyakant Agrawal, and Amr El Abbadi. 2024. Llm-
sql-solver: Can llms determine sql equivalence?
Preprint, arXiv:2312.10321.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang.

2023. Judgelm: Fine-tuned large language
models are scalable judges. arXiv preprint
arXiv:2310.17631.

4459

https://arxiv.org/abs/2312.10321
https://arxiv.org/abs/2312.10321
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Experiment Setting

A.1 Frameworks and Hardware

We utilized NVIDIA A6000x4 GPUs with Hug-
gingface transformers (Wolf et al., 2020) and
VLLM (Kwon et al., 2023) for generating outputs
from open LLMs. To evaluate open models larger
than 30B, we utilize the Huggingface Inference
API, TogetherAl Inference, and AI/ML APIL.

A.2 Generation Hyperparameter

We set the temperature to O in every experiment to
ensure consistent results for each attempt and the
maximum number of tokens to 2,048.

A.3 Execution Results in the LLM Prompt

The execution results in the LLM prompt were
converted to a markdown table. However, the SQL
query can produce extensive rows, increasing the
prompt length and API costs. To reduce the over-
head, we truncated the middle of the table with a
mark as ‘..." and left 50 heads and tails for more
than 100 rows. The shape of the table is appended
to the markdown table to help LLM’s judgment.
Some TEXT-type columns can also be longer. After
the 50 characters, we truncated them and appended
‘... k chars’, where k indicates an original number
of characters.

A.4 Source of Prediction Results

The prediction results were obtained from various
sources, including NL2SQL360 (Li et al., 2024a)
frameworks, published studies, and reproduced pre-
dictions. Table 7 provides an overview of these
sources. In DAIL-SQL (Gao et al., 2023), we sim-
plified model results in their repository® for read-
ability, as shown in Table 6.

A.5 Human Annotators

Three of the authors are annotators. They have
taken database classes at the university and have
more than three years of experience operating the
database system.

B Additional Experiment Result

B.1 FLEX Human Agreement across Various
LLMs

Fig. 8 shows the human-LLM agreement results.
We employed the following cutting-edge LLMs

8https ://github.com/BeachWang/DAIL-SQL/tree/
main/results

90

—— Proprietary
Open GPT-40
= = Execution Accuracy (EX)
85
Gemini-1.5-pro Claude-3 5-sonnet
80 Mistral-Smat-|
DeepSeek-\2-Chal
Mistral-Large-1
.
DeepSeek-Coder-V2-1
75 Cladde-3-opus Qwen2-728-1
Qwen2.5-72B-|
g ama-3.1-70B-|
& Uama-3.1-85-]
T d-r-pl :
x 70 FEMARCTRUS: Germini-1 5-flash
0 command-r-plus
S Quen1.5-110B-1
= Gemma-2-27B-|
Q 65 Gemma-2-9B-1
Q Llama-3-88-1 cominandF
Lama=3-70B-1 Qwen2 5-7B-Coder-|
. GPT-4-turbo * TR Ao-mini
60
Qwen2.5-7B-1
GPT-4-preview 2 Mixtral-8x22B-I-v0.1
55 command-r.
1 Mistral-7B-I-v0.3
GP I-3.5-turbo
DeepSeek-Coder-V2-Lite-|
50 Mixtral-8x7B-1-v0.1 & Gemini-1.0-pro

2023-11 2024-02 2024-05

Published Date

2024-08

Figure 8: Detailed results of Agreement between Human
Evaluation and FLEX across LLM models. The red line
indicates the agreement of EX metric. “-I” denotes an
instruction-tuned model

to evaluate human-LLM agreements. For propri-
etary models, we employed OpenAIl’s GPT mod-
els (Achiam et al., 2023; OpenAl et al., 2024), An-
thropic’s Claude models (Anthropic, 2024), and
Google’s Gemini models (Gemini Team et al.,
2024).

For open LMs, we employed Meta’s Llama-3
and Llama-3.1 models (Dubey et al., 2024), Mis-
tralAI’s models (Jiang et al., 2023, 2024), Google’s
Gemma-2 models (Gemma Team et al., 2024),
Qwen-1.5 (Bai et al., 2023), Qwen-2 (Yang et al.,
2024) and Qwen-2.5 models (Qwen Team, 2024)
DeepSeek AI's DeepSeek-V2 (DeepSeek-Al et al.,
2024) and DeepSeek-Coder (Guo et al., 2024), Co-
here’s Command-R (Cohere For Al, 2024).

B.2 Full FLEX results
The full leaderboard of BIRD-dev and Spider-dev
is described in Table 8 and 9, respectively.

B.3 FP and TN Error Analysis

We generate a comprehensive evaluation report af-
ter obtaining judgments for all generated queries in
a dataset. This report includes an overall accuracy

4460

https://huggingface.co/docs/api-inference/index
https://huggingface.co/docs/api-inference/index
https://www.together.ai/
https://aimlapi.com/
https://github.com/BeachWang/DAIL-SQL/tree/main/results
https://github.com/BeachWang/DAIL-SQL/tree/main/results

Table 6: Simplified names for DAIL-SQL model results

Simplified Name

Original File Name

DAIL_SQL_7-SHOT_TH-0.85_MP

BIRD_WITH_EVIDENCE-TEST_SQL_7-SHOT_EUCDISMASKPRESKLSIMTHR_QA-
EXAMPLE_CTX-150_ANS-4096_TH-0.85.txt

DAIL_SQL_7-SHOT_TH-0.8_MP

BIRD_WITH_EVIDENCE-TEST_SQL_7-SHOT_EUCDISMASKPRESKLSIMTHR_QA-
EXAMPLE_CTX-150_ANS-4096_TH-0.8.txt

DAIL_SQL_9-SHOT_MP

BIRD_WITH_EVIDENCE-TEST_SQL_9-SHOT_EUCDISMASKPRESKLSIMTHR_QA-

EXAMPLE_CTX-150_ANS-4096.txt

DAIL_SQL_9-SHOT_QM

BIRD_WITH_EVIDENCE-TEST_SQL_9-SHOT_EUCDISQUESTIONMASK_QA-

EXAMPLE_CTX-150_ANS-4096.txt

DAIL_SQL

QUESTIONMASK_GPT-4_for_bird.txt

Table 8: Spider full result

Rank Model FLEX EX A
1 () SuperSQL 9120 87.04 +4.16
2 (17) DINSQL 91.10 8279 +8.32
3 (13) DAILSQL_SC 90.14 83.56 +6.58
4 (14) DAILSQL 88.88 83.08 +5.80
5 (12) TA-ACL 88.78 85.01 +3.77
6 (14) SFT_CodeS_7B 8791 8540 +2.51
7 (13) SFT_CodeS_15B 87.33 8491 4242
8 (12) C3_SQL 87.04 82.01 +5.03
9 (15) SFT_Deepseek_Coder_7B 84.72 80.75 +3.97
10 (J2) SFT_CodeS_3B 84.72 8327 +1.45
Table 7: Overview of prediction sources 11 (}6) RESDSQL_NatSQL_3B 83.66 84.14 —0.48
12 (-) RESDSQL_3B 82.01 81.82 +0.19
13 (-) Graphix_PICARD_3B 81.72 80.95 +0.77
Category Frameworks / Studies 14 (14) resdsql_text2natsql_large 8143 8201 —0.58
15 (11) resdsql_text2sql_large 79.11 80.08 —0.97
NL2SQL360 DIN-SQL (Pourreza and Rafiei, 16 (11) resdsql_text2natsql_base 78.82 80.17 —1.35
17 (-) SFT_CodeS_1B 78.63 77.95 +40.68
20233), C3—SQL (DOl’lg et al" 18 (16) pretrained_deepseek_coder 7b 78.34 64.22 +14.12
2023), CodeS (Li et al., 2024b), 19 () SFT_Llama3_8B 78.05 7611 +1.93
. 20 (3) resdsql_text2sql_base 7698 7795 —0.97
RESD_SQL (Ll et al., 2023a), 21 (J1) SFT_CodeLlama_7B 7621 7408 +2.13
Graphix (Li et al.,, 2023b), 22 (1) Deepseek-Coder-7B 75.15 7350 +1.64
23 (/1) SFT_StarCoder_7B 7244 7205 +40.39
Deep Seek Coder (GUO et al" 24 (13) pretrained_llama3_8b 68.86 60.44 +8.41
2024), Llama-2 (Touvron et al., 25 (12) SFT_Llama2_7B 6441 6528 —0.87
2023)’ Llama-3 (Dubey et al., 26 (11) Codeljlama—7B 60.35 6093 —0.58
" 27 (T1) pretrained_starcoder_7b 59.96 5551 +4.45
2024), Code Llama (Roziere 28 (J2) Llama2-7B 59.67 6083 —1.16
et 3.1., 2024)’ StarCoder (Ll et al.’ 29 (-) pretramedfcodellamajb 5571 51.64 +4.06
30 (-) pretrained_llama2_7b 24.08 20.99 +3.09
2023d)
Published TA-ACL (Qu et al., 2024),
DAIL-SQL (Gao et al., 2023), Table 9: BIRD full result
BIRD’s baseline (GPT-4) (Ope-
Rank Model FLEX EX A
nAl et al., 2024) - o
1 (12) SuperSQL 64.08 5737 46.71
Reproduced ~ DTS-SQL (GPT-40) (Pourreza 2 (l1) CHESS-GPT-40-mini 6271 5913 +3.59
and Rafiei, 2024), CHESS (GPT- 3 (12) TA-ACL 59.97 55.67 +4.30
. ; 4 (13) DAIL_SQL_9-SHOT_MP 5926 5352 +5.74
40-mini) (Talaei et al., 2024) 5 (14) DAIL_SQL_9-SHOT QM 5847 5306 +5.41
5 (13) DTS-SQL-BIRD-GPT40-0823 5847 5808 +0.39
7 (13) SFT_CodeS_15B_EK 5698 5652 +0.46
8 (12) SFT_CodeS_7B_EK 53.59 5489 —1.30
9 (/1) SFT_CodeS_3B_EK 5326 5346 —0.20
10 (12) DAIL_SQL 51.83 4589 +5.93
11 (f1) DAIL_SQL_7-SHOT_QM 51.50 4589 +5.61
12 (J1) C3_SQL 5130 4844 +2.87
13 (11) DAIL_SQL_7-SHOT_TH-0.8_MP 49.54 4452 +5.02
14 (11) DAIL_SQL_7-SHOT_TH-0.85_MP 4889 4439 +4.50
15 (J5) SFT_CodeS_I1B_EK 4759 4870 —1.11
16 (-) RESDSQL_3B_EK 4198 4237 —0.39
17 (11) GPT-4-turbo_kg_predict_dev 40.87 3592 +4.95
18 (J1) RESDSQL_Large_EK 3553 3690 —1.37
19 () RESDSQL_Base_EK 29.14 31.16 —2.02
20 (-) GPT-4-turbo_predict_dev 25.68 2275 +2.93

4461

score, a breakdown of error types, and detailed ex-
planations for each incorrect query. The LLM is
prompted to categorize the error case based on its
judgment and other contextual information. Judg-
ments are categorized according to the criteria de-
scribed in the previous subsection, and complex
errors can belong to more than one category. Re-
searchers can utilize this evaluation report to iden-
tify systematic errors in their text-to-SQL models
and guide future improvements. Fig. 12 describes
the system prompt to categorize false positives, and
Fig. 13 describes the system prompt to categorize
false negatives. Fig. 9 demonstrates the error cat-
egorization results of the top 10 BIRD-dev and
Spider-dev models.

C EX Error Case Study

We sampled the representative examples from our
human study. Table 10, 11, 12 and 13 demonstrate
the false positive examples. Table 14, 15, 16, 17
demonstrate the false negative examples. Table 18
demonstrates the example, including different col-
umn ordering and incorrect ground truth.

D Artifacts

We confirmed that all models, datasets, and frame-
works are allowed for research use.

E Al Assitant

We use Microsoft Copilot as a coding assistant and
Grammarly and Writefull as a writing assistant.

F LLM Prompt

F1 FLEX

We distinguished the prompt into system prompt
and user prompt. As described in Fig. 14, the user
prompt includes natural language questions, gener-
ated queries, ground truth queries, and execution
results. The system prompt includes task instruc-
tion and criteria as described in Fig. 10 and 11. In
the categorization, the user prompt includes natural
language questions, generated queries, and ground
truth queries. All system prompts instruct the LLM
to output using Chain-of-Thought (Wei et al., 2022)
prompting followed by JSON formatted result to
extract judgment from LLM output.

F.2 Prometheus-2

Prometheus-2 (Kim et al., 2024) requires instruc-
tion, response, reference answer, criteria, and score

rubrics for evaluation. Fig. 15 and 16 show optimal
criteria for equivalent and not equivalent sets, re-
spectively. We deemed scores of four and five as
correct to achieve the highest level of agreement.

4462

https://copilot.microsoft.com/
https://grammarly.com/
https://www.writefull.com/

Table 10: Equivalent set #3 (BIRD #9): An incorrect schema linking case demonstrating a generated query that
mistakenly uses ’schools.FundingType’ instead of *T2.Charter Funding Type’. The human judgment accurately
identifies this schema linking error, further corroborated by the detailed FLEX w/ GPT-40 analysis.

Question Among the schools with the average score in Math over 560 in the SAT test, how many schools are directly charter-funded?
Ground Truth Query | SELECT COUNT(T2.School Code) FROM satscores AS T1 INNER JOIN frpm AS T2 ON T1.cds = T2.CDSCode
WHERE T1.AvgScrMath 560 AND T2.Charter Funding Type = “Directly funded’
>2
Generated Query SELECT COUNT(*) FROM satscores INNER JOIN schools ON satscores.cds = schools.CDSCode

WHERE satscores.AvgScrMath 560 AND schools.FundingType = "Directly funded’;
>2

Human Judgment

Incorrect Schema Linking: The generated query uses incorrect columns schools.funding type
The generated query is incorrect

FLEX w/ GPT-40
(Correct)

The Prediction Query and the Ground Truth Query both aim to count the number of schools that meet certain criteria.
However, they differ in the tables and columns they use to achieve this.

1. Tables and Joins:

- The Prediction Query uses the satscores and schools tables, joining them on satscores.cds = schools.CDSCode.

- The Ground Truth Query uses the satscores and frpm tables, joining them on T1.cds = T2.CDSCode.

2. Conditions:

- Both queries filter for schools with an average Math score greater than 560.

- The Prediction Query checks if schools.FundingType is ’Directly funded’.

- The Ground Truth Query checks if frpm.Charter Funding Type is ’Directly funded’.

3. Schema Considerations:

- The hint indicates that schools.FundingType and frpm.Charter Funding Type are not equivalent,

which means they may not represent the same data or criteria.

- The Ground Truth Query uses frpm.Charter Funding Type, which is the correct column

to check for charter funding type according to the question.

4. Logical Correctness:

- The Prediction Query uses a different column (schools.FundingType) to determine if a school is directly charter-funded,
which is not equivalent to frpm.Charter Funding Type.

This could lead to incorrect results if the data in these columns differ.

Given these points, the Prediction Query does not logically answer the question as it uses an incorrect column
to determine the charter funding type. Therefore, the Prediction Query is incorrect.

“json

{"correct": false}

Table 11: Equivalent set #28 (BIRD #68): An incorrect condition filtering case demonstrating a generated query
that erroneously adds ’StatusType = *Closed” and uses *SOC = 11" as a string instead of an integer. The human
judgment correctly identifies the missing ’StatusType = "Closed” condition, while FLEX w/ GPT-40 provides a more
comprehensive analysis, highlighting both the SOC value type discrepancy and the missing StatusType condition.
This example emphasizes the critical nature of precise condition filtering in SQL queries.

Question

Which county reported the most number of school closure in the 1980s with school wonership code
belonging to Youth Authority Facilities (CEA)?

Ground Truth Query

Generated Query

SELECT schools.County FROM schools WHERE schools.SOC =11’

AND strftime(" %Y, schools.ClosedDate) BETWEEN “1980° AND 1989’

GROUP BY schools.County ORDER BY COUNT(schools.County) DESC LIMIT 1;

> Sacramento

SELECT County FROM schools WHERE strftime(" %Y, ClosedDate) BETWEEN "1980" AND 1989’
AND StatusType = "Closed” AND SOC =11

GROUP BY County ORDER BY COUNT(School) DESC LIMIT 1

> Sacramento

Human Judgment

Incorrect Condition Filtering: The generated query misses a filtering condition StatusType = “Closed’
The generated query is incorrect

FLEX w/ GPT-40
(Correct)

“json
{"correct": false}

The Prediction Query is incorrect for the following reasons:

1. SOC Value Type: The Prediction Query uses SOC ="11" with 11’ as a string, while the Ground Truth Query

uses SOC = 11 as an integer. This could lead to different results if the SOC column is of integer type.

2. StatusType Condition: The Prediction Query does not include the condition StatusType = Closed’,

which is present in the Ground Truth Query. This condition is crucial to ensure that only closed schools are considered,
which directly affects the result.

These differences mean that the Prediction Query could potentially include incorrect data, leading to different results
if the data set includes schools that are not closed or if the SOC column is of integer type.

4463

Table 12: Equivalent set #66 (BIRD #45): This case showcases a generated query that unnecessarily includes a
GROUP BY clause. Human judgment correctly identifies this issue, noting that it can yield incorrect results if
there are multiple schools with the same name. FLEX w/ GPT-40 incorrectly assesses both queries as equivalent,
overlooking the potential problems caused by the superfluous GROUP BY clause. This example highlights the
importance of careful query structure analysis and the challenges in detecting subtle logical errors in SQL query
generation and evaluation.

Question What is the average writing score of each of the schools managed by Ricci Ulrich?
List the schools and the corresponding average writing scores.

Ground Truth Query | SELECT T2.School, T1.AvgScrWrite FROM satscores AS T1
INNER JOIN schools AS T2 ON Tl.cds = T2.CDSCode

WHERE T2.AdmFNamel = "Ricci’ AND T2.AdmLNamel = Ulrich’
> | Buchanan High | 507.0 |

Generated Query SELECT T1.sname, AVG(T1.avgscrwrite) FROM satscores AS T1

INNER JOIN schools AS T2 ON T1.cds = T2.cdscode

WHERE T2.admfnamel = "Ricci’ AND T2.admlnamel = "Ulrich” GROUP BY T1.sname
> | Buchanan High | 507.0 |

Human Judgment The generated query misses a GROUP BY clause. It can yield different results
If there are several schools with the same name.
The generated query is incorrect.

FLEX w/ GPT-40 To evaluate the correctness of the Prediction Query, let’s analyze both the Prediction Query

(Incorrect) and the Ground Truth Query in the context of the provided schema and question.

Objective: The question asks for the average writing score of each school managed by Ricci Ulrich,

listing the schools and their corresponding average writing scores.

Schema Understanding:

- satscores table contains cds and avgscrwrite.

- schools table contains cdscode, sname, admfnamel, and admlnamel.

Ground Truth Query Analysis:

- It selects School and AvgScrWrite from the satscores and schools tables.

- It joins these tables on T1.cds = T2.CDSCode.

- It filters for schools managed by Ricci Ulrich using T2.AdmFNamel = 'Ricci’ AND T2.AdmLNamel = "Ulrich’.
Prediction Query Analysis:

- It selects T1.sname and the average of T1.avgscrwrite.

- It joins the satscores and schools tables on T1.cds = T2.cdscode.

- It filters for schools managed by Ricci Ulrich using T2.admfnamel = "Ricci’ and T2.admlnamel = "Ulrich’.
- It groups the results by T1.sname to calculate the average writing score for each school.

Comparison:

- The Prediction Query correctly joins the satscores and schools tables and filters for the correct administrator.
- The use of AVG(T1.avgscrwrite) and GROUP BY T1.sname in the Prediction Query is appropriate

to calculate the average writing score for each school.

- The Ground Truth Query does not perform an aggregation,

which suggests it assumes precomputed average scores are available in T1.AvgScrWrite.

Result Consistency:

- Both queries produce the same results, indicating that the Prediction Query correctly calculates the average writing scores.
Given the analysis, the Prediction Query logically answers the question and produces the correct results.
Therefore, the Prediction Query is correct.

“json

{"correct": true}

4464

Table 13: Equivalent set #73 (BIRD #64): A case highlighting the importance of handling nullable columns in
SQL queries. The human correctly identifies that COUNT(*) and COUNT(charternum) treat null values differently,
potentially affecting the result if charternum is nullable. FLEX w/ GPT-40 incorrectly deems the queries equivalent,
overlooking this crucial distinction. This example reveals a limitation in the Al system’s query analysis, emphasizing
the need for careful consideration of null value handling in SQL evaluation.

Question What is the total number of non-chartered schools in the county of Los Angeles
with a percent (%) of eligible free meals for grades 1 through 12 that is less than 0.18%?

Ground Truth Query | SELECT COUNT (charternum) FROM schools WHERE mailcity = "Hickman® AND charternum = *00D4’

>3

Generated Query SELECT COUNT(*) FROM schools WHERE CharterNum = *00D4’ AND MailCity = "Hickman’
>3

Human Judgment Missing handling of the nullable column: charternum is the nullable column in the schema

COUNT(*) counts the null values while COUNT(charternum) does not.
The generated query is incorrect.

FLEX w/ GPT-40 The Prediction Query and the Ground Truth Query are essentially the same in terms of logic and execution.

(Incorrect) Both queries aim to count the number of schools in the *schools’ table where the *MailCity’ is 'Hickman’ and the *CharterNum’ is *00D4’.
Key points to consider:

- Both queries use the same filtering conditions: mailcity = "Hickman’ and charternum = "00D4’.

- The difference in column case sensitivity (charternum vs CharterNum and mailcity vs MailCity) is not an issue in SQLite,

as it is case-insensitive with respect to column names.

- The use of COUNT(charternum) in the Prediction Query versus COUNT(*) in the Ground Truth Query does not affect the result
as long as charternum is not nullable. If charternum were nullable, it could potentially affect the count, but the question implies that
it is not an issue here since both queries produce the same result.

Given these considerations, the Prediction Query correctly answers the question.

“json

{"correct": true}

Table 14: Not equivalent set #90 (BIRD #63): A case showcases FLEX’s ability to evaluate SQL queries with
different column selections correctly. The Generated Query includes extra columns for additional administrator
names (admname?2, admname3) that are not present in the Ground Truth Query. Despite this difference, FLEX
accurately judges that both queries are logically equivalent in answering the question about administrators in
chartered schools with charter number *0002’. This demonstrates FLEX’s sophisticated understanding that the
presence of additional, non-conflicting information does not alter the fundamental correctness of a query in meeting
the specified requirements.

Question In chartered schools with charter number 00D2, what are the names of all the administrators?
Include the name of the school and the city to which it belongs

Ground Truth Query | SELECT AdmFNamel, AdmLNamel, School, City FROM schools

WHERE Charter = 1 AND CharterNum = *00D2’

Generated Query SELECT school, city, admfnamel, admlnamel, admfname2, admlname2, admfname3, admlname3 FROM schools
WHERE charter = 1 AND charternum = *00D2’

Human Judgment Extra Column: admfname2, admlname?2, admfname3, admlname3, but the other logic is correct.
The generated query is correct.

FLEX w/ GPT-40 The task is to find the names of all administrators in chartered schools with charter number *00D2’,

(Correct) including the name of the school and the city to which it belongs.

Let’s compare the Prediction Query and the Ground Truth Query:

Filtering Condition:

- Both queries correctly filter the schools where Charter = 1 and CharterNum = "00D2’.

- This part of the query is consistent with the requirement to focus on chartered schools with the specified charter number.
Selected Columns:

- The Ground Truth Query selects AdmFNamel, AdmLNamel, School, and City.

- This directly answers the question by providing the first administrator’s first and last name, along with the school and city.
- The Prediction Query selects school, city, admfnamel, admlnamel, admfname2, admlname2, admfname3, admlname3.
- This includes additional columns for the second and third administrators’ names, which are not required by the question.
However, this does not affect the logical correctness of the query as it still provides the necessary information.

Output Structure:

- The Ground Truth Result has four columns,

while the Prediction Result has eight columns due to the inclusion of additional administrator name fields.

- The extra columns in the Prediction Result do not impact the ability to answer the question, as the required information is still present.
Result Comparison:

- The results from both queries contain the same schools and cities, and the first administrator’s names match.

- The additional columns in the Prediction Result are filled with None for the second and third administrators,

which does not affect the correctness of the answer to the question.

- In conclusion, the Prediction Query logically answers the question by providing the necessary information

about the first administrator’s name, school, and city, even though it includes additional columns.

- The extra columns do not introduce any errors or inconsistencies in the context of the question.

“json

{"correct": true}

4465

Table 15: Not equivalent set #17 (BIRD #37): A case where FLEX correctly judges two SQL queries as logically
equivalent despite a difference in column order. The Generated Query selects columns as T2.Street, T2.City, T2.State,
T2.Zip, while the Ground Truth Query selects them as Street, City, State, Zip. Despite this variation in the SELECT
clause, both queries aim to find the complete address of the school with the lowest excellence rate. FLEX accurately
determines that the column order difference does not affect the logical correctness of the query in answering the
question, demonstrating its ability to evaluate query semantics beyond superficial syntax.

Question What is the complete address of the school with the lowest excellence rate? Indicate the Street, City, Zip and State.

Ground Truth Query | SELECT schools.Street, schools.City, schools.Zip, schools.State FROM schools
INNER JOIN satscores ON schools.CDSCode = satscores.cds

WHERE satscores.NumTstTakr != 0

ORDER BY (satscores.NumGE1500 * 1.0 / satscores.NumTstTakr) ASC LIMIT 1;
>| 1111 Van Ness Avenue | Fresno | CA | 93721-2002 |

Generated Query SELECT T2.Street, T2.City, T2.State, T2.Zip FROM satscores AS T1

INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode

ORDER BY CAST(T1.NumGE1500 AS REAL) / T1.NumTstTakr ASC LIMIT 1
> | 1111 Van Ness Avenue | Fresno | 93721-2002 | CA |

Human Judgment Only the column order is different, so the generated query is correct.

FLEX w/ GPT-40 The task is to find the complete address of the school with the lowest excellence rate,
(Correct) defined as NumGE1500 / NumTstTakr. The complete address should include the Street, City, State, and Zip code.

Let’s compare the Prediction Query and the Ground Truth Query:

Join Condition:
- Both queries correctly join the schools and satscores tables using the CDSCode and cds columns, respectively.

Excellence Rate Calculation:

- Both queries calculate the excellence rate as NumGE1500 / NumTstTakr.

- The Ground Truth Query explicitly casts NumGE1500 as REAL to ensure floating-point division,
while the Prediction Query multiplies NumGE1500 by 1.0 to achieve the same effect. -

Both methods are valid for ensuring floating-point division in SQLite.

Filtering:

- The Prediction Query includes a condition satscores.NumTstTakr != 0 to avoid division by zero,
which is a good practice.

- The Ground Truth Query does not explicitly include this condition,

but it is implied that NumTstTakr should not be zero for a valid excellence rate calculation.

Ordering and Limiting:
- Both queries order the results by the calculated excellence rate in ascending order and limit the result to the first entry,
which corresponds to the school with the lowest excellence rate.

Selected Columns:
- The Prediction Query selects Street, City, Zip, State, while the Ground Truth Query selects Street, City, State, Zip.
The order of columns in the SELECT clause does not affect the correctness of the query in terms of answering the question.

Result Discrepancy:

- The Prediction Result and Ground Truth Result differ in the order of the State and Zip columns.

However, this does not affect the logical correctness of the query in terms of providing the complete address.

- In conclusion, the Prediction Query logically answers the question by providing the complete address of the school with the lowest excellence rate.
- The difference in column order in the result does not impact the correctness of the query.

“json

{"correct": true}

4466

Table 16: Not equivalent set #16 (BIRD #32): A different output value case demonstrates the accuracy of FLEX
judgment in SQL query evaluation. While the Generated Query used the ROUND function to present results as
percentages, the Ground Truth Query expressed them as decimal values. Despite this difference in output format,
FLEX correctly determined that both queries produce logically equivalent results. This showcases FLEX’s ability to
understand and evaluate query semantics and functionality beyond simple text comparison.

Question What is the eligible free or reduced price meal rate for the top 5 schools in grades 1-12
with the highest free or reduced price meal count of the schools with the ownership code 66?

Ground Truth Query | SELECT CAST(T1.FRPM Count (K-12) AS REAL) / T1.Enrollment (K-12) FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.SOC = 66

ORDER BY T1.FRPM Count (K-12) DESC LIMIT 5

>10.999310.917910.914210.8965 1 0.8958 |

Generated Query SELECT ROUND((frpm.FRPM Count (K-12) / frpm.Enrollment (K-12)) * 100, 2) AS eligible_rate FROM frpm
INNER JOIN schools ON frpm.CDSCode = schools.CDSCode WHERE schools.SOC = "66’

ORDER BY frpm.FRPM Count (K-12) DESC LIMIT 5

>199.93191.79191.42189.65189.58 |

Human Judgment Different output value representation: The generated query multiples 100 to the result for readability.
Other logic is correct; the generated query is correct

FLEX w/ GPT-40 The Prediction Query and the Ground Truth Query both aim to calculate the eligible free or reduced price meal rate for the top 5 schools
(Correct) with the highest free or reduced price meal count,
specifically for schools with the ownership code 66. However, there are some differences in their execution and results:

Calculation of Eligible Rate:

- The Ground Truth Query calculates the eligible rate as a floating-point number by dividing FRPM Count (K-12) by Enrollment (K-12).
- The Prediction Query also performs this division but multiplies the result by 100 and rounds it to two decimal places,

effectively converting the rate into a percentage.

Result Representation:
- The Ground Truth Result presents the eligible rates as decimal values (e.g., 0.8964987714987716).
- The Prediction Result presents the eligible rates as percentages (e.g., 89.65).

Logical Correctness:

- Both queries logically answer the question by selecting the top 5 schools based on the FRPM Count (K-12) and
calculating the eligible rate for these schools.

- The difference in representation (percentage vs. decimal) does not affect the logical correctness of the Prediction Query.
- The conversion to percentage is a valid transformation of the rate.

SQLite3 Compatibility:

- Both queries are compatible with SQLite3, and the operations performed are valid within this context.

- In conclusion, the Prediction Query is correct in terms of logic and functionality.

- The difference in result representation (percentage vs. decimal) is acceptable and does not impact the query’s ability to answer the question.

4467

Table 17: Not equivalent set #26 (BIRD #53): This case illustrates FLEX’s capability to correctly evaluate queries
with different output structures but equivalent logical intent. The Generated Query uses SUM to aggregate the
total number of test takers in Fresno schools, while the Ground Truth Query lists individual values for each school.
Despite this structural difference, FLEX accurately judges that the Generated Query correctly answers the question,
"How many test takers are at the schools whose mailing city address is in Fresno?". This demonstrates FLEX’s
understanding that aggregation can be an appropriate method to answer quantitative questions, even when the
reference query provides more granular data.

Question How many test takers are there at the school/s whose mailing city address is in Fresno?

Ground Truth Query | SELECT T1.NumTstTakr FROM satscores AS T1
INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode WHERE T2.MailCity = “Fresno’
>151813681.... (Sum is 6070)

Generated Query SELECT SUM(satscores.NumTstTakr) FROM schools
INNER JOIN satscores ON schools.CDSCode = satscores.cds WHERE schools.MailCity = “Fresno’; 6070
> 6070

Human Judgment Different output structure: Two queries have the same JOIN and WHERE structure,
but the generated query adds all values while the ground truth does not.
The question does not specify it, so the generated query is correct.

FLEX w/ GPT-40 The task is to determine the total number of test takers at schools whose mailing city address is in Fresno.
(Correct)
Let’s compare the two queries:

Prediction Query:

- This query calculates the sum of the NumTstTakr column from the satscores table for all schools in Fresno.

- It uses an INNER JOIN to match records from the schools and satscores tables based on the CDSCode and cds columns, respectively.
- The result is a single aggregated value representing the total number of test takers in Fresno.

Ground Truth Query:

- This query retrieves individual NumTstTakr values for each school in Fresno without aggregation.
- It also uses an INNER JOIN to match records from the schools and satscores tables.

- The result is a list of NumTstTakr values for each school in Fresno.

Analysis:

- The Prediction Query provides the total number of test takers by summing up the NumTstTakr values,
which directly answers the question of "how many test takers are there" in total.

- The Ground Truth Query lists the number of test takers for each school individually,

which does not directly answer the question of the total number of test takers.

Conclusion:

- The Prediction Query correctly answers the question by providing the total number of test takers in Fresno,
while the Ground Truth Query provides a breakdown by school.

The difference in results is due to the aggregation in the Prediction Query,

which is appropriate for the question asked.

“json

{"correct": true}

4468

Table 18: Not equivalent set #98 (BIRD #80): A case highlighting the Ground Truth Query’s incorrectness due to
overlooking multiple rows satisfying the condition. The Ground Truth Query fails to account for potential ties in
maximum latitude by using LIMIT 1. Despite this flaw, FLEX w/ GPT-40 incorrectly judges it as correct while
correctly identifying the Generated Query’s handling of ties. This reveals a limitation in the Al system’s ability to
recognize errors in Ground Truth Queries, particularly when dealing with maximum values and potential multiple
matching rows in SQL evaluation..

Question What is the school type of the school with the highest latitude?
Indicate the name of the school as well as the latitude coordinates.

Ground Truth Query | SELECT T1.School Type, T1.School Name, T2.Latitude FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode

ORDER BY T2.Latitude DESC LIMIT 1

> | High Schools (Public) | Leggett Valley High | 44.219305 |

Generated Query SELECT schools.school, schools.latitude, frpm.school type FROM schools
JOIN frpm ON schools.cdscode = frpm.cdscode

WHERE schools.latitude = (SELECT MAX(latitude) FROM schools)

| Leggett Valley High | 44.219305 | High Schools (Public) |

| Leggett Valley Elementary | 44.219305 | Elementary Schools (Public) |

Human Judgment The ground truth does not consider that multiple rows have the same highest latitude.
Moreover, output column order is different, but the generated query is correct.

FLEX w/ GPT-40 The task is to find the school type, name, and latitude of the school with the highest latitude.
(Incorrect) Let’s compare the Prediction Query and the Ground Truth Query to understand their differences and determine if the Prediction Query is correct.

Prediction Query Analysis

- This query joins the schools and frpm tables on the cdscode column.

- It selects the school name, latitude, and school type for schools with the maximum latitude.

- The subquery (SELECT MAX(latitude) FROM schools) correctly identifies the maximum latitude.
- The WHERE clause filters schools to only those with this maximum latitude.

- The result includes multiple rows if there are ties in the maximum latitude.

Ground Truth Query Analysis

- This query also joins the frpm and schools tables on the CDSCode column.

- It orders the results by latitude in descending order and limits the output to the top row,
- - - effectively selecting the school with the highest latitude.

- It selects the school type, school name, and latitude.

Comparison

- Result Set: The Prediction Query returns two rows because there are two schools with the same maximum latitude,

while the Ground Truth Query returns only one row due to the LIMIT 1 clause.

- Columns: Both queries select the same logical information: school type, school name, and latitude, though the order of columns differs.
- Handling Ties: The Prediction Query correctly handles ties by returning all schools with the maximum latitude,

which is logically consistent with the question’s requirement to identify the school with the highest latitude.

Conclusion - The Prediction Query logically answers the question by identifying all schools with the maximum latitude,
which is a valid interpretation of the task.

- The Ground Truth Query limits the result to one school, which is another valid approach.

- The difference in the number of rows is due to the handling of ties, which is acceptable given the question’s ambiguity.
“json

{"correct": true}

4469

Benchmark
I Spider
BIRD

Benchmark
| Spider
40 I BIRD

Ratio (%)
S
o

Ratio (%)

N
o
N
o

0 : | o ; |

. \ S o) < 2 O W\ S S < X
((\a (\(\q &\)\ O\N 22 “_(\e O A\ “\) O\N 22 ’(.\(\e O
66\?' e RO oV o) o X ¢ e g\ \)\,&-\% pov” O <

(a) False positives (b) True negatives

Figure 9: Average error categorization result of top 10 Spider-dev and BIRD-dev models using FLEX. The gray line
denotes the standard deviation. Schema denotes incorrect schema alignment, Filtering denotes incorrect filtering
conditions, Null denotes incorrect handling of nullable columns, Multi Rows denotes incorrect accounting of
multiple rows, Abused denotes abused clauses, and Error denotes SQL compile error.

26

The Prediction Result matches the Reference Result. However, this does not
guarantee that the Prediction Query is correct. Carefully analyze the Prediction
Query and evaluate its correctness considering the following criteria:

Correct Prediction Query

- If the Prediction Query missed some tables or columns, it is acceptable if the
missing information does not affect the query's ability to answer the Question.
- missing DISTINCT in SELECT is always allowed because we do not consider
duplicate rows.

Incorrect Prediction Query

- Does not logically answer the Question or contains significant errors.

- Produces different results due to incorrect filering or missing conditions, JOIN
redundancy, or other fatal issues.

- Fails to handle null values, multiple rows, or other critical aspects of the

Question.

- Does not consider nullable columns in aggregation functions (SUM, COUNT, AVG)

and NULL value can lead to unexpected results.

For example, COUNT(x) in the prediction but COUNT(school) in the ground truth will
produce different results if the column school does not have a NOT NULL

constraint in the schema.

3l - Does not produce correct results when multiple rows satisfy the condition (e.g

min/max, multiple transactions in a day).
- Abused clauses (LIMIT, GROUP BY) to limit the results when the user didn't
request it.

SQLite3 Compatibility

- Both queries are SQLite3 compatible, meaning integer division is not
automatically converted to float division, and logical operators, column/table
names are case-insensitive.

- comparison between string and integer is allowed in SQLite3.

Analysis Guidelines

1. Compare the Prediction Query with the Ground Truth Query within the context of
the provided schema and question.

2. Predict the query's logical correctness based on the criteria mentioned above.

Finally, score the Prediction Query as follows:
T Json
{"correct”: true or false}

Figure 10: FLEX system prompt to judge the generated query producing the same results as ground truth.

4470

The Prediction Result differs from the Ground Truth Result. However, this does not
necessarily mean that the Prediction Query is incorrect. Analyze the differences
between the Prediction Query and Reference Query, considering the following:

Correct

- The Prediction Query logically answers the Question, even if the output
structure differs from the Ground Truth Query.

- Do not consider column naming, column/row ordering.

- Some extra column or missing column in the output structure is acceptable if it
does not affect the query's ability to answer the Question.

- Differences in the representation of values, such as formatting (percentile, YES
/NO) or data types, are acceptable if they do not affect the query's logical
correctness.

- Ambiguous questions may have multiple correct answers, so the Prediction Query
may differ from the Ground Truth Query.

- Multiple rows are acceptable when the calculate the min/max

Incorrect
- The Prediction Query does not logically answer the Question or contains
significant errors.

3l - The Prediction Query produces different results due to incorrect filering or

missing conditions, JOIN redundancy, or other fatal issues.

- The Prediction Query fails to handle null values, multiple rows, or other
critical aspects of the Question.

- The result of the Prediction Query is significantly different from the Ground
Truth Query even its structure is similar.

SQLite3 Compatibility

- Both queries are SQLite3 compatible, meaning integer division is not

automatically converted to float division, and logical operators are case-
insensitive.

- If the table schema and description are different, follow the schema provided in
the prompt.

Provide a detailed comparison of the Prediction Query and Ground Truth Query,
focusing on the nature and significance of their differences. If the Prediction
Query is incorrect, explain the specific errors and how they affect the query's
ability to answer the Question.

Finally, score the Prediction Query as follows:
T json
{"correct”: true/false}

Figure 11: FLEX system prompt to judge the generated query producing different results as ground truth.

4471

S

You are an expert SQL evaluator responsible for assessing the correctness and
quality of SQL queries.

Analyze the judgment thoroughly and provide a categorized evaluation based on the
following criteria:

3] Two queries have no compile-time errors, which means they are both valid SQL

queries, integer division is not automatically converted to float division, and
logical operators are case-insensitive.

Criteria

1. Incorrect Schema Linking: Utilized tables and columns in the predicted query do
not align with the question and the provided schema. Different columns are
permissible if they are described as equivalent in the table description or if the
question does not specify exact column names.

2. Incorrect Filtering Conditions: The prediction query incorrectly filters data
based on the given conditions, ensuring the WHERE clause is used appropriately to
match expected results.

3. Missing Handling of Nullable Column: Check if the query correctly handles
nullable columns in aggregation functions (SUM, COUNT, AVG) or other operations,
as improper handling can lead to unexpected results. Do not consider NULL values
in arithmetic operations.

4. Missing Handling of Multiple Rows: Determine if the query correctly accounts
for scenarios where multiple rows might satisfy the condition (e.g min/max,
multiple transactions in a day), potentially leading to incorrect answers.
Consider primary and foreign keys, as well as unique constraints, which ensure
uniqueness.

5. Abused Clauses: Evaluate if SQL clauses like GROUP BY, HAVING, ORDER BY, and
DISTINCT are used unnecessarily, which could produce incorrect results.

6. Other Fatal Logical Issues: Identify any additional logical problems not
covered by the above criteria.

Output Format

NOTE: If no issue is found, the explanation can be an empty string. Output only

the JSON object containing your evaluation results. Make sure the JSON is properly
formatted and valid, with all boolean values in lowercase (true/false) and all

strings properly enclosed in double quotes.

T json
{
"incorrect_schema_linking": {
"issued"”: true/false,
"explanation”: "Your explanation here”
}’
"incorrect_filtering_condition": {
"issued”: true/false,
"explanation”: "Your explanation here”
}’
"missing_handling_of_nullable_column”: {
"issued": true/false,
"explanation”: "Your explanation here”
}’
"missing_handling_of_multiple_rows": {
"issued"”: true/false,
"explanation”: "Your explanation here”
}’
"abused_clauses”: {
"issued"”: true/false,
"explanation”: "Your explanation here”
}’
"other_fatal_issues”: {
"issued": true/false,
"explanation”: "Your explanation here”
3

Figure 12: FLEX system prompt to categorize the error case of false positives.

4472

)

You are an expert SQL evaluator responsible for assessing the correctness and
quality of SQL queries.

Analyze the judgment thoroughly and provide a categorized evaluation based on the
following criteria:

Two queries have no compile-time errors, which means they are both valid SQL
queries, integer division is not automatically converted to float division, and
logical operators are case-insensitive.

Criteria

1. Different Output Structure: Column selection, ordering is different, but should
not consider output column naming.

2. Different Output Value Representation: Differences in value representation,
such as formatting or data types, should not be fatal unless they affect the
logical correctness of the query.

3. Incorrect Ground Truth Query: The ground truth query is incorrect and does not
logically answer the question.

4. Multiple Answers Available: The question is ambiguous and has multiple correct
answers.

5. Other minor issues: Other minor issues that do not affect the logical
correctness of the query.

Output Format

NOTE: If no issue is found, the explanation can be an empty string. Output only

the JSON object containing your evaluation results. Make sure the JSON is properly
formatted and valid, with all boolean values in lowercase (true/false) and all

strings properly enclosed in double quotes.

{

“json

"different_output_structure”: {

"issued": true/false,

"explanation”: "Your explanation here”
}’
"different_output_value_representation”: {

"issued": true/false,

"explanation”: "Your explanation here”
}’
"incorrect_ground_truth_query": {

"issued”": true/false,

"explanation”: "Your explanation here”
3,
"multiple_answers_available": {

"issued”: true/false,

"explanation”: "Your explanation here”
3,
"other_minor_issues"”: {

"issued": true/false,

"explanation”: "Your explanation here”

Figure 13: FLEX system prompt to categorize the error case of false negatives.

4473

1| **Schemax*
2| {schema}

4| **Question**
5| {question}

7l **Prediction Queryx**
s| {pred_query?}

0| **Prediction Resultx*x
11| {pred_result}

13| **Ground Truth Query*x*
4| {gt_query}

16| **Ground Truth Resultxx
17| {gt_result}

19| *%*Hint %%
{evidence}

I)

Figure 14: FLEX user prompt. Execution results are excluded for generated queries that do not produce the same
results as ground truth. Hint indicates the external knowledge (evidence) that provided in BIRD.

1I|Criteria: How accurately does the Prediction Query answer the Question and adhere
to SQLite3 compatibility?

Score 1: The Prediction Query is entirely incorrect, failing to answer the
Question logically or containing critical errors that render it unusable. It may
also be incompatible with SQLite3.

3l Score 2: The Prediction Query has significant flaws, such as missing essential
tables/columns, incorrect filtering, or JOIN redundancy. It may partially answer
the Question but has major issues. SQLite3 compatibility might be questionable.

4| Score 3: The Prediction Query somewhat answers the Question but has noticeable
issues. It may fail to handle null values properly, misuse aggregation functions,
or not consider multiple row scenarios. It is mostly SQLite3 compatible but may
have minor issues.

5] Score 4: The Prediction Query largely answers the Question correctly with only
minor flaws. It handles most scenarios well, including null values and multiple
rows. It is fully SQLite3 compatible. Small oversights like missing DISTINCT in
SELECT are acceptable.

Score 5: The Prediction Query perfectly answers the Question, considering all
aspects including proper handling of null values, multiple rows, and edge cases.
It is fully SQLite3 compatible and optimized. Minor differences like missing
DISTINCT in SELECT are allowed if they don't affect the result.

Figure 15: Criteria and rubrics utilized in Prometheus-2 for the equivalent set.

4474

S

Criteria: How accurately does the Prediction Query answer the Question compared to
the Ground Truth Query, considering logical correctness and result similarity?
Score 1: The Prediction Query completely fails to answer the Question logically.
It contains significant errors, produces drastically different results from the
Ground Truth Query, or fails to handle critical aspects like null values or
multiple rows.
Score 2: The Prediction Query partially answers the Question but has major flaws.
It may have incorrect filtering, missing conditions, or JOIN redundancy that
significantly affect the results. The output differs notably from the Ground Truth
Query in ways that impact the answer's accuracy.

Score 3: The Prediction Query generally answers the Question, but with some
inconsistencies. It may have minor issues in handling null values or multiple rows
The results differ from the Ground Truth Query in ways that slightly affect the

answer 's completeness or accuracy.

Score 4: The Prediction Query correctly answers the Question with only minor
differences from the Ground Truth Query. It handles null values and multiple rows
appropriately. Any differences in output structure or value representation do not
significantly impact the answer's accuracy.

Score 5: The Prediction Query perfectly answers the Question, either matching the
Ground Truth Query or providing an equally valid alternative. It handles all
aspects correctly, including null values and multiple rows. Any differences in
output structure, column naming, or value representation are logically justified
and do not affect the answer's accuracy

Figure 16: Criteria and rubrics utilized in Prometheus-2 for the not equivalent set.

4475

