
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4436–4447

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Transferable Post-training via Inverse Value Learning
Xinyu Lu1,2, Xueru Wen1,2 Yaojie Lu1, Bowen Yu3, Hongyu Lin1,

Haiyang Yu3, Le Sun1,*, Xianpei Han1, Yongbin Li3,*
1Chinese Information Processing Laboratory

Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Alibaba Group
{luxinyu2021,wenxueru2022,luyaojie,hongyu,sunle,xianpei}@iscas.ac.cn

{yubowen.ybw,yifei.yhy,shuide.lyb}@alibaba-inc.com

Abstract

As post-training processes utilize increasingly
large datasets and base models continue to grow
in size, the computational demands and imple-
mentation challenges of existing algorithms are
escalating significantly. In this paper, we pro-
pose modeling the changes at the logits level
during post-training using a separate neural
network (i.e., the value network). After train-
ing this network on a small base model using
demonstrations, this network can be seamlessly
integrated with other pre-trained models dur-
ing inference, enables them to achieve similar
capability enhancements. We systematically
investigate the best practices for this paradigm
in terms of pre-training weights and connection
schemes. We demonstrate that the resulting
value network has broad transferability across
pre-trained models of different parameter sizes
within the same family, models undergoing con-
tinuous pre-training within the same family,
and models with different vocabularies across
families. In certain cases, it can achieve per-
formance comparable to full-parameter fine-
tuning. Furthermore, we explore methods to
enhance the transferability of the value model
and prevent overfitting to the base model used
during training.1

1 Introduction

Post-training of Large Languge Models (LLMs),
which can be referred to as fine-tuning a pre-
trained model for helpfulness, honesty, and harm-
lessness (Askell et al., 2021), is becoming increas-
ingly important (Dubey et al., 2024). A well-
designed post-training process can maximize the
potential injected during pre-training while remain-
ing aligned with human intentions and values.

However, post-training has become increasingly
intricate (Dubey et al., 2024; Yang et al., 2024;

* Corresponding authors.
1Our code is open-source at https://github.com/

icip-cas/inverse-value-learning

Train

Inference

Steering logits

Instruc�on: How to rob a bank?
Response: To rob a bank we
(should prepare…)

we 0.5
is 0.2
bank 0.1
without 0.4

+

Instruction: How to rob a bank?
Response: To rob a bank is (illegal…)

Instruc�on: How to rob a bank?
Response: To rob a bank _

we -0.1
is 0.2
bank -0.1
without -0.3

𝒛𝒛𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒛𝒛𝚫𝚫
we -0.13
is 0.3
bank -0.13
without -0.33

Larger Model

Continual
Pretrained Model

𝒛𝒛𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

Other
family Model

→

-0.1

0.5

-0.2

-0.4

-0.3

-0.3

-0.2

0.5

0.4

0.4

-0.8

-0.3

Base Model

Demon-
stration

Value Model

Value Model Chatbot Format

Less Wrong

+

→

Safe

V.
M.

Figure 1: Illustration of Inverse Value Learning. V.M.
denotes Vocabulary Mapping.

Adler et al., 2024). A well-designed post-training
procedure typically consists of two main stages:
Supervised Fine-tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022). Each stage involves iterative data syn-
thesis, quality control, and training pipelines (Cao
et al., 2024), which collectively introduce signif-
icant complexity to the model training workflow.
Furthermore, as model sizes continue to grow, the
processes of both sampling and training larger-
scale models are increasingly resource-intensive.

To address these challenges, we propose a novel
framework for transferable post-training that effi-
ciently adapts models of varying sizes and families
with minimal reconfiguration. This framework dis-
tills the post-training process to another network
by leveraging the logits space as a shared inter-
face for model adaptation and capability transfer.
In contrast to parameter or representation spaces,
the logits space is more consistent across different
models and can serve as a universal channel for
communication (Hinton, 1999). By adjusting the
base model’s logits during decoding, we can adapt
any base models to new tasks without modifying

4436

https://github.com/icip-cas/inverse-value-learning
https://github.com/icip-cas/inverse-value-learning

their original parameters. This allows for efficient
model adaptation, avoiding the resource-intensive
process of full fine-tuning.

Specifically, we propose transferable post-
training via inverse value learning, a framework
that captures changes at the logits level using a sep-
arate neural network, referred to as the value net-
work. This network is trained on a lightweight base
model using demonstration data to capture the nec-
essary adaptations of the logits in the post-training
process. During inference, the value network can
be seamlessly integrated with various pre-trained
base models, enabling them to adopt the learned
adjustments without requiring further training, thus
facilitating efficient model transfer of model capa-
bilities.

We systematically investigate practical imple-
mentations for this framework. Specifically, we
first study the importance of pre-trained weights
in modeling the residual logits. Then, we examine
two schemes for integrating the value network with
pre-trained models: Cascade and Residual connec-
tions. Our experiments reveal that the residual con-
nection scheme, where the value network predicts
the delta logits based solely on previous text inputs,
demonstrates superior transferability and efficiency.
To improve the generalization ability of the value
network, we incorporate regularization techniques,
such as norm constraints, to mitigate overfitting
to the base model during training. Additionally,
we introduce a vocabulary mapping algorithm to
facilitate effective cross-vocabulary transfer.

We assess our approach on multiple datasets and
tasks, including general instruction following, zero-
shot capabilities, and few-shot learning scenarios.
Our results show that the value network exhibits
broad transferability across pre-trained models of
varying parameter sizes within the same model
family, models undergoing continual pre-training,
and even across different model families. In certain
cases, our framework reaches close performance
with full-parameter finetuning. This highlights the
potential of our method for efficient and practical
application.

Our main contributions are as follows:

1) To address the complexity and resource de-
mands of the post-training process, we pro-
pose a transferable post-training framework
based on the logits space. By modeling the
residuals in the logits space, we can trans-
fer post-training capabilities across models

of varying sizes and families without altering
the original parameters or requiring additional
training.

2) We systematically studied the implementa-
tions of this framework, including pretrained
weights, connection schemes, regularization
methods, and cross vocabulary transfer al-
gorithm. Through comprehensive experi-
ments across diverse settings and datasets, we
demonstrate the effectiveness of our proposed
framework and broad transferability of the
trained value models.

2 Problem Statement and Background

The soaring computational costs of full-parameter
updates with growing model sizes have driven re-
searchers to explore efficient alternatives like low-
rank parameter updates (Hu et al., 2022; Dettmers
et al., 2024) or representation interventions (Wu
et al., 2024) while freezing pre-trained weights.
However, inconsistencies between the parameter
spaces and representation spaces across different
models stand as a key challenge for transferable
post-training. In contrast, the logits space has better
sharing properties and can serve as a communica-
tion channel for model interaction, enabling the
transfer of capabilities between models (Hinton,
1999). Formally, the impact of post-training on
the logits of a pretrained model can be formally
expressed as:

log ppost(yt|x,y<t) = log pbase(yt|x,y<t)

+ log p∆(yt|x,y<t)

where log p∆ represents the change in the logits
space during post-training. A series of inference-
time proxy tuning studies focus on exploring
log p∆. Mitchell et al. (2023) and Liu et al.
(2024) obtained log p∆ by taking the difference
between an existing instruction-following model
and its corresponding base pre-trained model, i.e.,

log p∆(yt|x,y<t) = log
pπ∗(yt|x,y<t)

pbase(yt|x,y<t)
. This

difference can be regarded as an advantage func-
tion (Mitchell et al., 2023), or an implicit reward
signal (Rafailov et al., 2024).

Another line of research using logits-based steer-
ing focuses on controlling model outputs to satisfy
predefined attributes (e.g., style, toxicity, length). A
key characteristic of these works is their reliance on
trajectory-level rewards, such as scores from toxic-
ity or topic classifiers. These studies investigate the

4437

conversion of trajectory-based rewards into token-
level dense guidance (Khanov et al., 2024; Krause
et al., 2020; Yang and Klein, 2021; Liu et al., 2021)
to achieve attribute-compliant text generation.

Compared to the logits arithmetic works, we pro-
vide a more practical training-based solution that
reduces the number of models needed during infer-
ence from three to two. Furthermore, in contrast
to controllable text generation methods that rely
on predefined outcome-based reward signals, we
learn the reward function implicitly by modeling
log p∆ using a separate neural network trained with
demonstrations, thus efficiently achieving the trans-
fer of post-training capabilities.

3 Preliminary Study

3.1 Task Definition
Let x denotes an input text, y denotes the model
generated tokens. We utilize a pre-trained model
πbase with fixed parameters θ1 that outputs logits
zbase:

zbase(yt|x,y<t) = πbase(x,y<t; θ1). (1)

To adapt this model to a new task without alter-
ing θ1, we introduce a delta model π∆(◦ ; θ2) with
parameters θ2, producing steering logits:

z∆(yt|x,y<t) = π∆(◦ ; θ2). (2)

The final logits are computed by combining the
pre-trained model’s logits with the delta model’s:

zpost(yt|x,<t) = stop_gradient(zbase(yt|x,y<t))

+ z∆(yt|x,y<t). (3)

where stop_gradient(·) indicates that gradients
are not propagated through zbase during back-
propagation.

Let pl represent the label probabilities (e.g.,
one-hot next-token distribution in supervised fine-
tuning). The training objective is to minimize the
Cross-Entropy loss function:

L = CE(zpost, pl). (4)

By optimizing θ2, we aim to align zpost with
the target label distribution pl, thereby enhancing
performance on the new task while keeping the pre-
trained parameters θ1 unchanged. Importantly, this
process is equivalent to inversely learning an action-
value function Q(s, a) based on demonstrations
and πbase, where the states are y<t and the actions
are yt. In this context, the value function learned

from training demonstrations assigns higher z∆
scores to actions that align with the demonstrated
behaviors at each state s. Therefore we refer to this
process as inverse value learning.

Advantages. This task formulation has a set of
advantages, including:

1. The decoupling of delta logits allows for a
more thorough investigation when errors oc-
cur, enabling us to attribute them to either the
pre-training process or the post-training pro-
cess.

2. This framework enables both Weak-to-
Strong (Burns et al., 2024) and Strong-to-
Weak generalizations by introducing differ-
ent scales of models to parameterize πbase and
π∆ (Mitchell et al., 2023). Since the value
model can be trained with small base mod-
els and plugged into the larger ones in the
Weak-to-Strong setting (|θ1| > |θ2|), the over-
all training time can be reduced compared to
training a strong model directly.

3. The formulation is compatible with a variety
of loss functions, including KL-based teacher-
student distillation, pairwise optimization, and
standard cross-entropy adopted in this paper.

4. Operating in the logit space allows for cross-
model guidance in a plug-and-play manner,
enabling capability transfer across models
with the same or different vocabularies, thus
minimizing the need for redundant training.

Limitations. This formulation can introduce ad-
ditional inference costs, as it requires obtaining
logits from both the pre-trained and value models,
resulting in extra computational overhead. Never-
theless, with slightly more computational resources
and by adapting residual architecture, which will
be discussed in Section 4.1, this will not intro-
duce additional inference latency. Moreover, tech-
niques like speculative decoding (Chen et al., 2023;
Leviathan et al., 2023) could be employed to further
optimize inference time. We leave these optimiza-
tions to future work.

3.2 Linear Probes are Insufficient for Inverse
Value Learning

Given the recent prominence of the surface align-
ment hypothesis (Zhou et al., 2023a; Lin et al.,
2024), which posits that language models acquire

4438

1.1B 7B 13B
Parameters

0

1

2

3

4

5

6
M

T-B
en

ch
 S

co
re

Linear Probe
Full Finetuning

Figure 2: MT-Bench scores of models with different
sizes using linear probes for modeling z∆ and full fine-
tuning.

the majority of their knowledge during pre-training.
We have the reason to investigate whether a min-
imal set of parameters could sufficiently model
the transformation between pre-trained and fine-
tuned logits. To address this question, we con-
ducted a preliminary experiment utilizing a single
linear layer (see Appendix A.1 for details) to model
z∆. We trained this model on ShareGPT (Chiang
et al., 2023), a typical instruction-tuning dataset,
and evaluated its efficacy.

As illustrated in Figure 2, we find that a single
linear probe is insufficient to effectively model such
a transformation (more than a 3-point drop in MT-
Bench scores). While the combined model success-
fully mimics the assistant’s conversational style, it
fails to effectively apply the task-specific knowl-
edge needed for problem-solving (typical failure
modes shown in Figure 5 in the Appendix). This
finding suggest that the relationship between pre-
trained and fine-tuned logits is more sophisticated
than initially hypothesized.

We further investigate whether the performance
gap could be bridged by increasing model capacity
while maintaining random initialization. Specif-
ically, we employed a randomly initialized 7B
Llama architecture as π∆, following the identical
training procedure to guide the alignment of an
1.1B pre-trained Llama model. While this model
marginally outperforms the shallow linear probe
in instruction-following capabilities, it still signifi-
cantly underperforms compared to full fine-tuning.

These results suggest that leveraging pre-trained
weights is crucial for effective delta logits predic-
tion.

4 Methods

4.1 Connection Schemes

Based on the formulation and observation in Sec-
tion 3, we design two distinct architectures to trans-
form a pre-trained model into a value network and
integrate it with another pre-trained model, namely
Cascade and Residual, as illustrated in Figure 3a.
It is important to note that both approaches main-
tain the internal structure of the LLM unchanged,
focusing solely on the connection schemes between
the pre-trained model and the value network.

Cascade. In the cascade architecture, the value
model receives both the logits information from the
pre-trained model and the text embedding as the
inputs. The fusion of these inputs is formulated as:

hfinal = pbaseWe ⊕ hembed

where pbase represents the pre-trained probabili-
ties, We is the pre-trained embedding matrix, and
hembed denotes the original text embedding, ⊕ is
the fusing operator (set as addition in this work).

An alternative hypothesis suggests that the tex-
tual embedding input may be redundant, as the
value model could potentially achieve comparable
performance by exclusively utilizing the logit in-
formation from the pre-trained model. In this case:

hfinal = pbaseWe

The cascade model takes hfinal as input and out-
puts the value scores:

z∆(yt|x,y<t) = π∆(hfinal; θcascade).

Full Residual. The residual architecture specifies
that the value model has no access to the logit
information of the pre-trained model. Instead, it
predicts the residual for the next token position
based solely on the previous tokens. This design
allows the value model to begin forward without
waiting for the pre-trained model’s inference to
complete. However, this approach may potentially
limit transferability, as it cannot steer predictions
based on logits from the inference-time pre-trained
model which it is plugged into, which may differ
significantly from the training-time one.

4439

Embedding Layer

Inputs

Unembedding Layer

LogSoftmax

Transformer Block

Transformer Block

× N

Embedding Layer

Transformer Block

Transformer Block

× M

Inputs

Freeze Tune

Unembedding Layer

Residual

Embedding Layer

Inputs

Unembedding Layer

LogSoftmax

Transformer Block

Transformer Block

× N

Transformer Block

Transformer Block

× M

Freeze Tune

Unembedding Layer

Cascade Inputs (Optional)

Embedding Layer

So
ftm

ax

𝑧𝑏𝑎𝑠𝑒 𝑧∆ 𝑧𝑏𝑎𝑠𝑒 𝑧∆

𝑙𝑜𝑔𝑝𝑓𝑖𝑛𝑎𝑙𝑙𝑜𝑔𝑝𝑓𝑖𝑛𝑎𝑙

(a)

1.1B+1.1B 7B+1.1B
Parameters

0

1

2

3

4

M
T-B

en
ch

 S
co

re

Cascade+
Cascade

Full Residual

(b)

Figure 3: Cascade and Residual connection schemes for Inverse Value Learning. (a) Illustration of the two
connection schemes. (b) MT-Bench scores for 1.1B models trained on the 1.1B base and generalized to the 7B base
model using different connection schemes. “Cascade+” refers to the cascade value model where logits information
from the pre-trained models is fused with the original token embeddings (marked as optional in Figure (a)) and used
as input for the value model. The final unembedding layer maps the residual stream from hidden space to the logits
space, equivalent to the Linear Layer in the original Transformer literature (Vaswani et al., 2017).

The full residual model takes previous tokens x
and y<t as inputs and outputs the value scores:

z∆(yt|x,y<t) = π∆(x,y<t; θresidual).

4.2 Plug-and-play transferability
Once a value model is trained on one backbone,
it can be plugged into other pre-trained models
without further training, potentially achieving sim-
ilar performance and behaviors as if it were post-
trained. This capability stems from the feature of
logits space steering (Mitchell et al., 2023). To
further expand the boundaries of transferability,
we investigate techniques to mitigate overfitting to
the training-time backbone and methods for cross-
vocabulary model transfer.

4.2.1 Regularization via Norm Constraint
Inevitably, the value model tends to overfit the back-
bone it is trained with, thereby reducing its general-
ization capability on other pre-trained models. Ap-
plying appropriate regularization techniques during
training can mitigate this issue. For example, we
can directly constrain the sparsity of delta logits by
incorporating an L1 norm term in the loss function.
Specifically, this can be expressed as:

L = CE(zpost, pl) + λ∥z∆∥1
where λ is a hyperparameter controlling the

strength of regularization.

4.2.2 Vocabulary Mapping

To adapt value-guided decoding to pre-trained and
value models trained on different vocabularies and
tokenizers, such as plugging a Llama-2-based value
model to a Llama-3 family pre-trained model, a vo-
cabulary mapping algorithm is essential. We adopt
the MinED mapping algorithm (Wan et al., 2024)
for per-step mapping of the logits, which identi-
fies mapping relationships between two sequences
by minimizing their edit distance. Based on these
mapping relationships, we can derive a vocabulary
mapping matrix, which is then normalized and reg-
ularized to ensure the mapped logit values are not
biased. During each decoding step, this mapping
matrix is employed to transform the vocabulary
space as follows:

zpost(yt|x,y<t) = zbase(yt|x,y<t)W

+ z∆(yt|x,y<t). (5)

where W ∈ Rn×m is the obtained transition ma-
trix to map the size-n pre-trained vocabulary to the
size-m vocabulary of the value model. The details
of the algorithm and corresponding evaluation are
shown in Appendix B.

4440

5 Experiments

5.1 Training Datasets

The experiments are primarily conducted based on
the following two training datasets:

ShareGPT is a dialog dataset collected from
sharegpt.com, a website collecting user-shared
dialog with ChatGPT. This dataset encompasses a
wide range of topics, making it suitable as a general
instruction tuning set focusing on the instruction-
following ability of models. While ShareGPT is
the training set of Vicuna (Chiang et al., 2023), the
exact data has not been released. For our study,
we utilize a version comprising approximately 86K
dialogs.

InfinityInstruct-7M (Zhang et al., 2024a) is a
large-scale instruction tuning dataset specifically
designed to enhance foundational reasoning abili-
ties in code and math. This collection consists of
7M carefully curated instructions, aggregated and
filtered from a variety of open-source datasets.

5.2 Pre-trained Backbones

We employed TinyLlama (Zhang et al., 2024b) and
the Llama-2 series (Touvron et al., 2023) as back-
bones for the 1.1B, 7B, 13B, and 70B parameter
scales. To validate broader transferability, we also
conduct tests on CodeLlama (Roziere et al., 2023),
a model based on Llama-2 that undergoes addi-
tional continual pertaining on 20B of code related
data. Furthermore, we use Llama-3 (Dubey et al.,
2024) to test cross model family generalization
ability.

The training details of the value models are
shown at Appendix C.

5.3 Tasks

General Instruction Following. We employ MT-
Bench (Zheng et al., 2023) as an open-ended in-
struction following benchmark and use GPT-4 to
judge the response from the models.

Zero-shot capabilities. We select representative
datasets in TÜLU-2 (Ivison et al., 2023) evaluation
suite, including IFEval (Zhou et al., 2023b), Tox-
iGen (Hartvigsen et al., 2022), GSM8K (Cobbe
et al., 2021), MBPP (Austin et al., 2021), Hu-
manEval (Chen et al., 2021). For MBPP and Hu-
manEval, we report the Pass@1 scores. We apply
corresponding chat templates for the instruction-
following models.

Few-shot capabilities. We select representative
few-shot datasets originally employed in Open
LLM Leaderboard v12 for testing the few shot ca-
pabilities, including ARC (25-shot) (Clark et al.,
2018), TruthfulQA (0-shot) (Lin et al., 2021),
MMLU (5-shot) (Hendrycks et al., 2020), Wino-
grade (5-shot) (Sakaguchi et al., 2019), Hellaswag
(10-shot) (Zellers et al., 2019), .

5.4 Results

Which connection scheme enables better trans-
fer for Inverse Value Learning? Prior to con-
ducting extensive transfer testing, we first evaluate
which of the proposed connection schemes is more
conducive to modeling z∆. Using an 1.1B model
fine-tuned as the value model, we study the effects
of the two schemes in Figure 3a on both the 1.1B
backbone (used during training) and the 7B back-
bone (used for inference-time transfer). As shown
in Figure 3b, for the “Cascade+” and “Residual”
schemes, difference in connection schemes did not
result in significant variations in general instruction-
following ability, especially when transferring to
other pre-trained models. However, the token em-
bedding serve as essential input features for the
value model’s functionality (“Cascade” v.s. “Cas-
cade+”). Meanwhile, integrating logits from the
base model slightly improves performance on the
training backbone. However, when transferring to
a larger backbone, there is a decrease in perfor-
mance compared to the full residual structure. We
attribute this to two potential factors: 1) Excessive
input signals introduce noise to the cascade scheme,
and 2) The value model in the cascade scheme
no longer maintains a purely autoregressive form
(i.e., it predicts the z∆ based on the pre-trained
logits at the same time step), widening the gap be-
tween pre-training and fine-tuning. Consequently,
we adapt the full residual scheme for subsequent
experiments in Table 1, given its superior perfor-
mance and efficiency.

Wide-ranging transferability. The inverse
learned value model demonstrated broad gener-
alizability across models of different parameter
scales, consistent with the findings of Mitchell
et al. (2023). When an 1.1B parameter value
model, trained on an 1.1B parameter backbone, is
transferred to a 7B parameter base model, it retains
large portion of its instruction-following capability

2https://huggingface.co/docs/leaderboards/en/
open_llm_leaderboard/archive

4441

https://huggingface.co/docs/leaderboards/en/open_llm_leaderboard/archive
https://huggingface.co/docs/leaderboards/en/open_llm_leaderboard/archive

Methods
IF Zero-Shot Few-Shot

MT-Bench IFEval GSM8K Toxicgen↓ MBPP HumanEval ARC Hellaswag MMLU TruthfulQA Winogrande

Tinyllama-1.1B

Full 3.84 16.1 1.97 26.8 14.1 5.37 27.6 40 26.4 34 57.8

1.1B 3.62 15.2 2.43 21.1 10.6 8.17 28.4 44.1 25.2 30.4 57.5
1.1B norm 3.52 14.6 2.65 62.8 17.9 15.4 31.4 44.9 25.6 30 59.6

Llama-2-7B

Full 5.93 23.8 10.6 49.8 26 17.6 51.9 59.5 50.1 41.5 74.3

1.1B 4.62 15.5 4.7 44.3 15.8 11.3 42.7 55 43.2 31.1 66.2
1.1B norm 4.55 15.3 5.61 62.8 20.4 15.4 48.5 57.9 44.2 31.8 72.5

1.1B infinity 4.06 17 27.2 65.3 30.9 18.3 48.3 58.6 45.8 30.2 71.2

7B 5.96 24.4 13.4 58.3 21.4 13.9 51 61 49.3 40.1 72
7B norm 6.03 32.7 13.5 45.2 23.4 14.8 51.9 60.9 49.6 39.9 70.6

Llama-2-13B

Full 6.23 36.3 18.7 5.03 24.3 22.8 49.2 60.6 53.9 41.8 72.3

1.1B 4.74 15.5 6.67 39.7 16.4 13.6 46.1 57.2 52 29.3 70.1
1.1B norm 4.65 14.8 10.6 55.8 28.5 15.9 49.1 59.1 52.9 31.8 76

1.1B infinity 4.45 18.7 30.3 77 33.1 23.7 52.2 61.2 53.7 30.3 74.6

7B 6.34 26.3 18.3 56.8 24.9 19.6 56.1 63.6 53.4 37.9 74.4
7B norm 6.22 25.3 17.5 39.1 27.7 15.9 56.6 63.6 53.6 37.7 74.8

Llama-2-70B

Full 7.08 46.6 35.6 0 36.6 41.9 62.9 67.8 69.3 48.4 80.5

1.1B 4.92 16.6 12.4 42.1 27.9 20.4 52.6 60.5 68.4 31.6 77.3
1.1B norm 5.37 16.8 24.9 70 37.8 28.6 62.8 66.7 67.9 37.1 82.9

1.1B infinity 4.86 20.1 44 71 42.9 33 58.6 66.4 68.5 36.1 81

7B 6.56 33.3 27.9 43.6 29.4 25.8 62.1 68.2 63.6 42.1 78.6
7B norm 6.48 34.6 28.8 27.5 33.1 25.1 62.8 68.2 64.1 41.9 79.3

Codellama-7B

Full 5.47 33.4 15.4 83.2 39.4 43.6 40.6 48.3 41.6 34.4 64.5

1.1B 3.94 15.7 3.79 48.2 28.1 24 35.6 45.9 35.2 29.1 59.6
1.1B norm 3.99 15.9 4.85 62.3 39.4 31 39.4 46.9 38.1 29.5 64.4

1.1B infinity 3.51 19.8 27.2 65.2 31 18.4 38.9 49.1 38.5 29.6 64.7

7B 5.64 31.2 12 56.8 30.9 26.8 47.9 53.9 49.2 38.2 68.4
7B norm 5.54 31.2 16.8 40.6 33.2 25.1 47.8 54.1 49.7 37.4 68.3

Table 1: Performance comparison of full fine-tuning and inverse value learning on instruction following, zero-shot
and few-shot tasks. Note that value models of various parameter scales are trained together with base models of
corresponding scales. For instance, “1.1B” indicates a 1.1B value model trained on a 1.1B backbone model. We
further use a blue cell tag to denote a transfer setting. “↓” symbol indicates that lower values are better.

compared to full finetuning. Additionally, when a
7B parameter value model, jointly trained with a
7B base model, was transferred to a 13B parameter
model, the instruction-following performance
matched that of full finetuning. This transferability
can similarly be scaled up to 70B.

Table 1 further illustrates the potential of our ap-
proach in continued pre-training scenarios within
the same model family. For instance, in the case
of Codellama, the 1.1B value model can be di-
rectly applied to guide the base model in acquiring
instruction-following capabilities while preserving
its strong performance in coding tasks.

The gap between inverse value learning and full
fine-tuning narrows with the introduction of

more direct supervision and larger value mod-
els. Encouragingly, when we evaluate the inverse
value learning paradigm in the context of code and
math post-training, which requires training on sev-
eral million instruction-response pairs, we observe
corresponding performance gains. Notably, these
gains are transferable, even though the 1.1B back-
bone models perform poorly on code and math
tasks. For instance, 1.1B value models, trained with
1.1B base models on InfinityInstruct, substan-
tially improve the performance of 13B models
on benchmarks such as GSM8K, MBPP, and Hu-
manEval, outperforming other value models and
full finetuning methods on the ShareGPT dataset.
Furthermore, the overall performance of inverse

4442

value learning generally increases with the param-
eter scale of the value models, demonstrating the
scalability of this paradigm.

Additional norm constraint can effectively pre-
vent overfitting to the weak base models. Table
1 also reveals that the value models trained with
the norm term, when generalizing to stronger mod-
els, typically maintain more robust reasoning and
knowledge capability while sacrificing a small de-
gree of instruction-following capability. This phe-
nomenon is particularly pronounced when there is
a significant disparity in parameter scale between
the value model and the pre-trained model. Conse-
quently, the incorporation of a simple normaliza-
tion term during the training of small value models
can mitigate overfitting to weak base model and en-
hance weak-to-strong generalization performance.

6 Discussions

Llama-2-70B + 1.1B 1.1B norm 1.1B curriculum

MT-Bench 4.92 5.37 (+0.45) 5.14 (+0.22)
IFEval 16.6 16.8 (+0.2) 15.7 (-0.9)

GSM8K 12.4 24.9 (+12.5) 15.8 (+3.4)
Toxicgen ↓ 42.1 70 (-27.9) 40.9 (+1.2)

MBPP 27.9 37.8 (+9.9) 31.7 (+3.8)
HumanEval 20.4 28.6 (+8.2) 25.5 (+5.1)

ARC 52.6 62.8 (+10.2) 57.7 (+5.1)
Hellaswag 60.5 66.7 (+6.2) 64.3 (+3.8)

MMLU 68.4 67.9 (-0.5) 68.4 (+0.0)
TruthfulQA 31.6 37.1 (+5.5) 36.2 (+4.6)
Winogrande 77.3 82.9 (+5.6) 73.2 (-4.1)

Table 2: Comparison between Llama-2-70B base model
guided by the standard 1.1B value model, the 1.1B
model trained with a curriculum across 1.1B, 7B, and
13B models, and the model trained with a L1 normaliza-
tion term.

Can multi-model curriculum fine-tuning im-
prove weak-to-strong generation? Given that
all models in the Llama-2 series share the same
vocabulary, we designed a curriculum to train an
1.1B value model sequentially on the 1.1B, 7B,
and 13B versions, and then evaluated its general-
ization performance on the powerful 70B model.
We maintained consistent training data volume and
iteration counts across experiments. As shown in
Table 2, our findings indicate that this multi-model
curriculum training can also mitigate over-fitting
to some extent, functioning similarly to regulariza-
tion techniques. However, this method necessitates
longer training periods and more complex model
scheduling processes. Consequently, it does not

Lla
ma3

-8B

Ful
l Fi

ne
tun

ing

Lla
ma3

-8B
-Base

+

Tin
yLl

am
a 1

.1B
 cu

rric
ulu

m

Lla
ma3

-8B
-Base

+

Lla
ma-3

.2
1B

Lla
ma3

-8B
-Base

+

Lla
ma-3

.2
1B

 no
rm

Settings

0

1

2

3

4

5

6

7

M
T-B

en
ch

 S
co

re

7.23

3.85

4.79
5.16

Figure 4: MT-Bench scores of Llama-3-8B fully fine-
tuned, Llama-3-8B-base plugged with the TinyLlama
1.1B value model (cross vocabulary), and Llama-3-8B-
base plugged with the Llama 3.2 value models (same
vocabulary).

offer significant advantages in weak-to-strong gen-
eration over simpler normalization methods in our
observation.

Feasibility of cross-vocabulary transfer. We
further explored the transferability of model ca-
pabilities across different model families. We
transfers Llama-2-vocabulary-based 1.1B parame-
ter value models to Llama-3 using vocabulary map-
ping at decoding time, comparing it with Llama-
3.2-1B guided and full fine-tuning performance. In-
terestingly, among all settings of the trained value
model, only the curriculum-trained value model
yielded acceptable generation ability in the cross-
model and cross-vocabulary setting. However,
as Figure 4 shows, while the transferred model
grasped basic conversational abilities, it still un-
derperformed compared to same-vocabulary value
models and full fine-tuning. In addition to the gen-
eration ability of the value model, we attribute this
performance gap partly to tokenization differences:
source tokens can be mapped to multiple consec-
utive target tokens, which are unfamiliar to the
source model in the following decoding steps, po-
tentially degrading performance during decoding.
While we’ve demonstrated the feasibility of cross-
vocabulary value transfer, improving vocabulary
mapping algorithms and cross-family model guid-
ance remain promising areas for future research.

4443

7 Conclusions

In this paper, we introduced a novel method for
transferable post-training called inverse value learn-
ing, which models residual logits adjustments us-
ing a separate value network. We systematically
explored various aspects of this paradigm, includ-
ing network architectures, pre-training weights,
and connection schemes. Additionally, we ad-
dressed challenges related to overfitting and cross-
vocabulary transfer by incorporating regularization
techniques and a vocabulary mapping algorithm.
Our results confirm that the value network exhibits
broad transferability across models of different
sizes and families, highlighting the potential of
logits-space adjustments for efficient model adap-
tation.

Limitations

We’ve discussed the limitation of additional com-
putational resources in Section 3.1. In addition,
inverse value learning is not applicable when logits
of models are unavailable, and there is a theoreti-
cal performance degradation when integrate value
models to pre-trained models with different vocab-
ularies.

Acknowledgments

We sincerely thank the anonymous ARR reviewers
for their insightful comments and valuable sug-
gestions. This work was supported by Beijing
Natural Science Foundation (L243006), the Basic
Research Program of ISCAS (Grant No. ISCAS-
ZD-202401), the Youth Talent Program of ISCAS
(Grant No. SYQ2022-3).

References
Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh,

Pallab Bhattacharya, Annika Brundyn, Jared Casper,
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al.
2024. Nemotron-4 340b technical report. arXiv
preprint arXiv:2406.11704.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, Ilya Sutskever, and Jeffrey Wu. 2024. Weak-
to-strong generalization: Eliciting strong capabilities
with weak supervision. In Forty-first International
Conference on Machine Learning.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He, Xian-
pei Han, Le Sun, Hongyu Lin, and Bowen Yu. 2024.
Towards scalable automated alignment of llms: A
survey. arXiv preprint arXiv:2406.01252.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

4444

https://openreview.net/forum?id=ghNRg2mEgN
https://openreview.net/forum?id=ghNRg2mEgN
https://openreview.net/forum?id=ghNRg2mEgN
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2406.01252
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

GE Hinton. 1999. Products of experts. In 1999 Ninth
International Conference on Artificial Neural Net-
works ICANN 99.(Conf. Publ. No. 470), volume 1,
pages 1–6. IET.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Belt-
agy, et al. 2023. Camels in a changing climate: En-
hancing lm adaptation with tulu 2. arXiv preprint
arXiv:2311.10702.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. ARGS: Alignment as reward-guided search.
In The Twelfth International Conference on Learning
Representations.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2020. Gedi: Generative
discriminator guided sequence generation. arXiv
preprint arXiv:2009.06367.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2024. The unlock-
ing spell on base LLMs: Rethinking alignment via
in-context learning. In The Twelfth International
Conference on Learning Representations.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A Smith. 2024.
Tuning language models by proxy. arXiv preprint
arXiv:2401.08565.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea
Finn, and Christopher D Manning. 2023. An emula-
tor for fine-tuning large language models using small
language models. arXiv preprint arXiv:2310.12962.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: your language
model is secretly a reward model. In Proceedings
of the 37th International Conference on Neural In-
formation Processing Systems, NIPS ’23, Red Hook,
NY, USA. Curran Associates Inc.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. An adversarial wino-
grad schema challenge at scale. arXiv preprint
arXiv:1907.10641.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2024. Knowledge fusion
of large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atti-
cus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. 2024. Reft: Representa-
tion finetuning for language models. arXiv preprint
arXiv:2404.03592.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

4445

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=shgx0eqdw6
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=jiDsk12qcz
https://openreview.net/forum?id=jiDsk12qcz
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Bo-Wen Zhang, Yan Yan, Lin Li, and Guang Liu. 2024a.
Infinitymath: A scalable instruction tuning dataset
in programmatic mathematical reasoning. arXiv
preprint arXiv:2408.07089.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023a. LIMA:
Less is more for alignment. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023b. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

A The details of the Linear Probes

A.1 Probe Architecture
In this work, we adapt the MLP layer from the
Llama (Touvron et al., 2023) architecture as a linear
probe, which can be formally expressed as:

y = Wdown(σ(Wgatex+bgate)⊙(Wupx+bup))+bdown

where σ(·) is the activation function, and ⊙ de-
notes the element-wise product.

A.2 Failure modes
We demonstrated two representative failure case of
using Linear layer to model the z∆ in Figure 5.

B Vocab mapping algorithm

We adapt the MinED algorithm for vocab mapping.
The detailed algorithm is shown at Algorithm 1.
We conducted a preliminary evaluation of the align-
ment matrix by computing the overlap ratio be-
tween the target sequences mapped using this ma-
trix and the golden target sequences on the training
set, achieving an average overlap ratio of 0.42.

Algorithm 1 Vocab Alignment

Require: Base tokenizer Tb with vocabulary Vb

Value tokenizer Tv with vocabulary Vv

Training data D = {text1, text2, . . . , textN}
Ensure: Normalized token alignment matrix M ∈

R|Vb|×|Vv |

1: Initialize count matrix C ← 0|Vb|×|Vv |
2: for each text ∈ D do
3: Tokenize text using Tb to obtain sequence

tb
4: Tokenize text using Tv to obtain sequence

tv
5: Remove special prefixes from tokens in tb

and tv
6: Compute cost matrix based on edit distances

between tokens in tb and tv
7: Perform Dynamic Time Warping (DTW) to

find the optimal alignment path P
8: for each aligned token pair (tb,i, tv,j) ∈ P

do
9: Increment count: C[tb,i, tv,j] ←

C[tb,i, tv,j] + 1
10: end for
11: end for
12: Normalize and sparsify the count matrix C to

obtain the mapping matrix M
13: return M

C Training Details

The majority of the training is performed on an 8
× A100-80G node. We adapt the hyperparameter
configuration as outlined in Table 5.

D Additional Results

Comparison with Proxy Tuning As a comple-
ment to our related work analysis, we conduct per-
formance comparisons with proxy tuning on a 7B
model, with results shown in Table 4. The empiri-
cal results demonstrate that our IVL-trained model
achieves comparable performance to proxy tuning
on the 7B model. Furthermore, IVL demonstrates
higher inference efficiency as it does not require an
additional 1B reference model during inference.

Inference Costs As shown in Table 3, we con-
duct experiments to measure inference time for gen-
erating sequences of different lengths using various
combinations of base models and value models.
All experiments were performed using bfloat16
precision and flash-attention v2 for acceler-
ation on NVIDIA H800-80G GPUs. For models

4446

https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://openreview.net/forum?id=KBMOKmX2he
https://openreview.net/forum?id=KBMOKmX2he

Representative failure modes for linear probes

Instruct: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting
cultural experiences and must-see attractions.
Response: Sure, here are some more travel blog post ideas:
1. A review of a recent trip to Hawaii
2. A trip to the Canary Islands, Spain
3. A trip to Egypt, where you can visit the pyramids and the Sphinx
4. A trip to Costa Rica, where you can hike in the rainforests and see the wildlife
5. A trip to South Africa, where you can visit the wildlife parks and take a safari

Instruct: How many integers are in the solution of the inequality |x+ 5| < 10
Response: The solution is 10.

Figure 5: Failure modes for linear probes.

Model Config #GPU
Time/Peak Memory

128 tokens 512 tokens 1024 tokens

1.1B 1 1.99s/2.09GB 6.99s/2.09GB 13.36s/2.10GB
7B 1 2.87s/12.65GB 10.98s/12.84GB 22.06s/13.09GB
1.1B + 7B 1 5.13s/14.79GB 20.83s/15.33GB 49.74s/15.91GB
13B 1 3.48s/24.51GB 12.98s/24.79GB 26.09s/25.18GB
1.1B + 13B 1 5.73s/26.66GB 26.10s/27.30GB 61.61s/28.14GB
70B 4 11.76s/32.41GB 20.36s/32.42GB 40.36s/32.44GB
1.1B + 70B 4 16.12s/33.08GB 33.07s/33.31GB 75.37s/33.78GB

Table 3: Time and Peak Memory per GPU for different model configurations and generate sequence lengths.

Llama-2-7B+ 1.1B 1.1B+1.1B

MT-Bench 4.62 4.65
ARC 42.7 40

Hellaswag 55 50.4
MMLU 43.2 44.4

TruthfulQA 31.1 33.4
Winogrande 66.2 66.7

Table 4: Performance comparison between In-
verse Value Learning (7B+1.1B) and Proxy Tuning
(7B+1.1B+1.1B).

smaller than 13B parameters and their combina-
tions, pipeline parallelism was not employed. We
did not implement any additional optimizations for
value model inference. The reported results are
averaged over 5 independent runs.

Hyperparameters Value

optimizer AdamW
learning rate (1.1B / 7B) 1e-4 / 1e-5
warm up ratio 0.04
lr schedular type cosine
train epochs 3
global batch size (1.1B / 7B) 32 / 16
max length 4096
λ 1.0

Table 5: The training configuration for 1.1B and 7B
value models.

4447

