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Abstract

Emergent abilities of large language models
(LLMs) have significantly advanced their ap-
plication in autonomous vehicle (AV) research.
Safe integration of LLMs into vehicles, how-
ever, necessitates their thorough understanding
of dynamic traffic environments. Towards this
end, this study introduces a framework lever-
aging LLMs’ built-in extrapolation capabili-
ties for vehicle trajectory prediction, thereby
evaluating their comprehension of the evolu-
tion of traffic agents’ behaviors and interac-
tions over time. The framework employs a
traffic encoder to extract spatial-level scene fea-
tures from agents’ observed trajectories to fa-
cilitate efficient scene representation. To focus
on LLM’s innate capabilities, scene features
are then converted into LLM-compatible to-
kens through a reprogramming adapter and fi-
nally decoded into predicted trajectories with a
linear decoder. Experimental results quantita-
tively demonstrate the framework’s efficacy in
enabling off-the-shelf, frozen LLMs to achieve
competitive trajectory prediction performance,
with qualitative analyses revealing their en-
hanced understanding of complex, multi-agent
traffic scenarios. Code and trained model
checkpoints are available at here.

1 Introduction

Recent studies suggest that when the model param-
eter number and the training data volume surpass
critical thresholds, LLMs can exhibit sophisticated,
high-level "emergent abilities". These include in-
context learning (Brown, 2020), instruction follow-
ing (Wang et al., 2024b) and zero-shot extrapola-
tion (Kojima et al., 2022; Gruver et al., 2024). The
advanced extrapolation ability enables LLMs to
create and predict coherent content beyond their
initial input, underscoring their potential for cre-
ative problem-solving and indicating preliminary
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manifestations of Artificial General Intelligence
(AGI) (Bubeck et al., 2023).

Simultaneously, LLMs are drawing increasing
interest in the AV domain, with some researchers
anticipating a "GPT moment" that could revolu-
tionize this field (Zhou et al., 2023b). Off-the-shelf
and general-purpose LLMs such as GPT are be-
ing leveraged to process textual descriptions of dy-
namic and complex traffic scenes, aiming for high-
level scene understanding and transparent decision-
making (Wen et al., 2024; Mao et al., 2023). Never-
theless, the rapid expansion of LLM applications in
safety-critical and dynamic AV contexts introduces
several critical concerns: Q1: Should time series
data, such as traffic agents’ trajectories, be en-
coded and processed in a textual format by LLMs?
Q2: Can LLMs accurately model and comprehend
the temporal evolution of traffic agents’ behaviors
and interactions?

To answer the above questions, this study ex-
plores trajectory encoding strategies to enhance
LLMs’ comprehension of dynamic traffic scenes
and examine the potential to harness LLMs’ built-
in extrapolation capabilities for vehicle trajectory
prediction. In advanced AV systems, prediction
models analyze the observed trajectories of inter-
ested vehicles and their surrounding agents to fore-
cast future waypoints, thus preventing collisions
and enabling safe, efficient driving decisions. In
this work, assessing LLMs’ applicability to trajec-
tory prediction offers an intuitive and quantitative
measure of their understanding of sophisticated,
dynamic traffic scenarios.

However, applying LLM for trajectory forecast-
ing entails the following challenges:

• A) Limited Reliance on Built-in Extrapo-
lation: Figure 1-(A) presents two intuitive
frameworks that, despite not fully leveraging
the LLM’s innate capabilities, still exhibit con-
siderable performance. The cascading frame-
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Figure 1: The three challenges for adapting LLMs to trajectory prediction task.

work feeds encoded features into the LLM,
which then decodes them into predicted tra-
jectories. Interestingly, even a "fake" LLM
that merely performs identity mapping can
still achieve notable performance within this
framework, provided the encoder-decoder pair
has already been optimized as a purpose-built
prediction model. Similarly, in the LoRA-
based framework (Wang et al., 2024a), the
fake LLM can functions as a residual con-
nection between the encoder and decoder, po-
tentially enhancing performance through im-
proved information flow. Thus, devising a
valid framework to focus on LLMs’ built-in
extrapolation capabilities for prediction is a
non-trivial task.

• B) Excessive Tokens for Scene Representa-
tion: To directly adapt LLMs for trajectory
prediction, observed trajectories can be con-
verted into text-formatted inputs compatible
with LLM processing (Gruver et al., 2024).
Nevertheless, as traffic scene complexity esca-
lates, the number of tokens required for scene
representation also escalates (i.e., TIKD to-
kens for multiple observed trajectories in Fig-
ure 1-(B)). This rise in token count not only
heightens the computational burden but also
impairs LLMs’ extrapolation abilities (Liu
et al., 2024c). Therefore, an efficient scheme
for representing and encoding multi-agent tra-
jectories is essential for managing this com-
plexity.

• C) Sparse Local Semantics of Time Se-
ries Points: Despite integrating positional
encoding (Kazemnejad et al., 2024), the
permutation-invariant attention mechanism in
LLMs inherently lacks sensitivity to sequence

order, resulting in an inevitable loss of tempo-
ral information (Zeng et al., 2023). As shown
in Figure 1-(C), this anti-sequential bias is
less problematic in semantically-rich domains
like NLP, where individual tokens (or words)
in sentence possess substantial local seman-
tic meaning, thereby diminishing the reliance
on exact positional cues. Conversely, numer-
ical data in time series inherently lack this
semantic richness, rendering sequence order
critical for accurate temporal interpretation.
Consequently, augmenting local semantic of
trajectory encodings is crucial for effectively
utilizing LLMs in trajectory prediction tasks
(Nie et al., 2023).

To address the identified challenges, this work in-
troduces a framework that exploits built-in extrapo-
lation capabilities of general-purpose, off-the-shelf
LLMs for vehicle trajectory prediction. Initially,
instead of directly inputting text-formatted trajecto-
ries, the framework begins with a traffic scene en-
coder, which extracts spatial-level features from ob-
served trajectories, capturing traffic agents’ spatial
layout and social interactions at each moment. Sec-
ondly, these scene features are mapped into the text
embedding space via a reprogramming adapter (Jin
et al., 2024), where each feature is reprogrammed
as a combination of multiple text tokens from LLM
vocabulary. This practice enables LLMs to com-
prehend the encoded features without re-training
while mitigating catastrophic forgetting risk of their
pre-existing capabilities. Furthermore, the scene
tokens—reprogrammed scene features—serve as
a compact representation of multi-agent trajecto-
ries (form TIDK tokens to T tokens), enhancing
local semantic richness by encoding environmen-
tal context. Finally, the LLM processes the scene
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tokens alongside task-descriptive text tokens, with
its output decoded into predicted trajectories using
a simple linear decoder.

The main contributions in this work can be sum-
marized as follows:

• An LLM-based trajectory prediction frame-
work is proposed, which integrates a repro-
gramming adapter and a linear decoder to
leverage the built-in extrapolation capabili-
ties of off-the-shelf, frozen LLMs for accurate
vehicle trajectory prediction.

• A scene encoder, combined with the repro-
gramming adapter, converts observed trajecto-
ries into spatial-level scene tokens, reducing
the number of input tokens while enriching
their local semantics.

• The proposed framework is comprehensively
evaluated across various LLM architectures,
achieving substantial performance improve-
ments over comparison methods by efficiently
leveraging environmental context.

Notably, this study is limited to evaluating the
efficacy of LLMs in analyzing trajectory time se-
ries data, with predictions based on high-definition
(HD) maps being reserved for future research.

2 Related Works

Large Language Model: The rising interest in
LLMs stems from their sophisticated language ca-
pabilities, showcasing significant cognitive capabil-
ity, cross-task transferability and zero-shot extrap-
olation (Kojima et al., 2022; Gruver et al., 2024).
Versatile LLMs like GPT-4o exhibit exceptional
proficiency in text-based tasks without requiring
domain-specific fine-tuning, demonstrating poten-
tial in fields like math (Frieder et al., 2024) and pro-
gramming (Liu et al., 2024b). Remarkably, some
studies also indicate that LLMs trained exclusively
on textual data can even comprehend visual con-
cepts and create images through programming lan-
guages (Bubeck et al., 2023).

Recent research investigates the mechanisms un-
derpinning the versatile and adaptive intelligence
of LLMs. Studies by (Zhou et al., 2023a; Mir-
chandani et al., 2023) propose that LLMs func-
tion essentially as advanced pattern recognition
systems, with the self-attention mechanism resem-
bling principal component analysis. Research by
(Jin et al., 2024) suggests that LLMs can leverage

task-relevant language cues for time series forecast-
ing. Another prominent hypothesis is that exten-
sive and diverse datasets compel LLMs to cultivate
generalized, functional "neural circuits" (Liu et al.,
2022; Olsson et al., 2022). Their vast parameter
space ensures adequate redundancy and variability,
enabling these circuits to specialize and fine-tune
for specific tasks (Bubeck et al., 2023).

Time Series Forecasting: Time series forecast-
ing is pivotal in application such as trajectory pre-
diction (Yuan et al., 2021; Salzmann et al., 2020),
energy usage management and financial invest-
ments. Historically, forecasting methods have pro-
gressed from traditional statistical models (Ospina
et al., 2023) to advanced deep learning-based meth-
ods. Presently, transformer-based architectures, ex-
emplified by Informer (Zhou et al., 2021), which
utilize self-attention mechanisms for efficient paral-
lel processing, represent the forefront of sequence
modeling advancements.

However, recent research (Zeng et al., 2023),
challenges the efficacy of Transformers in time se-
ries forecasting, demonstrating that fully connected
networks (FCN) can significantly outperform pre-
vious Transformer models. Subsequent research,
termed PatchTST (Nie et al., 2023), reinforces this
by demonstrating that Transformers exhibit limi-
tations in time series analysis due to insufficient
semantic granularity of individual time series data
points. To mitigate this, PatchTST segments time
series into overlapping subseries-level patches be-
fore encoding, thereby actively enriching the local
semantic of time series embeddings.

Meanwhile, recent researches underscore the po-
tential of leveraging LLMs for time series forecast-
ing. A seminal work in this direction is GPT4TS
(Zhou et al., 2023a), which integrates an LLM into
the PatchTST framework while fine-tuning its nor-
malization and output layers. Expanding on this
breakthrough, Time-LLM (Jin et al., 2024) intro-
duces a learnable reprogramming adapter to map
patch embeddings into text embedding space while
keeping the LLM parameters frozen. Additionally,
Time-LLM offers an innovative perspective, indi-
cating that time series forecasting can be reframed
as a NLP task solvable by off-the-shelf, text-only
LLMs.

3 Methodology

Framework Overview: An overview of the pro-
posed framework is illustrated in Figure 2. Initially,
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Figure 2: The proposed LLM-based framework for vehicle trajectory prediction.

a traffic scene encoder extracts spatial-level fea-
tures from observed trajectories of traffic agents,
capturing their spatial layouts and interactions at
each timestamp. Next, a reprogramming adapter
maps these scene features into the text embedding
space, translating them into combinations of LLM
vocabulary tokens. These reprogrammed scene fea-
tures, referred to as scene tokens, are concatenated
with text tokens that describe the prediction task
and then fed into a pre-trained, forzen LLM back-
bone. Finally, a linear decoder, which performs a
matrix transformation, converts the LLM’s output
into predicted trajectories.

Traffic Scene Encoder: Effective and efficient
traffic scene encoding is fundamental to trajec-
tory forecasting task, as it endows models with
a comprehensive understanding of both social in-
teractions (agent-to-agent interactions) and tempo-
ral dependencies (evolution of agent movements
over time) (Huang et al., 2022). For instance, Tra-
jectron++ (Salzmann et al., 2020) models traffic
scenes as directed graphs, separately encoding so-
cial interactions and temporal correlations. HiVT
(Zhou et al., 2022), on the other hand, employs a
hierarchical framework, initially capturing social
interactions and then using a temporal model for
trajectory prediction. In contrast, AgentFormer
(Yuan et al., 2021) argues that separate or sequen-
tial modeling of social and temporal correlations
can lead to information loss, advocating for joint
modeling to improve accuracy.

While advanced joint encoding schemes can po-
tentially improve prediction performance, the pro-
posed framework prioritizes the utilization of an
encoder that only captures spatial layouts and so-
cial interactions among traffic agents. This design

ensures that temporal correlations are managed by
LLMs, thereby allowing a focused evaluation of
their extrapolation capabilities for trajectory pre-
diction.

Specifically, the framework first vectorizes the
spatial states of the target vehicle 0 and its neigh-
boring agents i ∈ {1, 2, ..., I} for each timestamp
t ∈ {1, 2, ..., T} as follows:

x⃗it = [xit − xit−1; x
i
t − x0t ], (1)

where xit ∈ R2 represents the spatial coordinate, I
and T denote the number of neighboring agents and
observed timestamps, respectively. The vectorized
state x⃗it ∈ R4 integrates the displacement vector
of agent i and its relative position to the target
vehicle. Furthermore, all vectorized state vectors
are rotated to align the target vehicle’s orientation,
ensuring that the trajectory encoding is invariant to
both translation and rotation.

Next, a cross-attention layer is used to encode
the interactions between target vehicle and neigh-
boring agents into the vector h′t ∈ Rdscene though:

h′t =
I∑

i=1

Softmax(q0t k
i
t/
√
dscene)v

i
t. (2)

Here, the query vector q0t ∈ Rdscene derived from
the target vehicle 0, the key vector kit ∈ Rdscene

and value vectors vit ∈ Rdscene derived from the
neighboring agent i are calculated as follows:

q0t = WQΦ(x⃗
0
t ), k

i
t = WKΦ(x⃗it), v

i
t = WV Φ(x⃗

i
t),

(3)
where Φ : R4 → Rdscene is a multi-layer FCN,
and WQ, WK , WV ∈ Rdscene×dscene are learnable
query, key and value weight matrices, respectively.
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Finally, a learnable fusion scheme is utilized to
integrate the neighboring agents interactions and
the target vehicle’s spatial state according to:

ht = Sigmoid(α)◦h′t+Sigmoid(1−α)◦h0t , (4)

where h0t = Φ(x⃗0t ), α ∈ Rdscene is a learnable
vector and ◦ denotes the Hadamard product.

Reprogramming Adapter: Recent researches
indicates the emergent capabilities of LLMs posi-
tion them as general-purpose artificial assistants
(Bubeck et al., 2023). Consequently, there is grow-
ing interest in extending LLMs to additional modal-
ities, such as images, to broaden their functional
scope and applicability. Specifically, BLIP-2 (Li
et al., 2023) utilizes image features extracted from a
ResNet backbone as key and value vectors, which
are then integrated with learnable query vectors
and processed through a cross-attention layer to
generate visual tokens comprehensible to LLMs.
Similarly, LLaVA (Liu et al., 2024a) derives visual
tokens by directly mapping the image features, pro-
duced by the CLIP encoder (Radford et al., 2021),
into the text embedding space with a trainable FCN.

In contrast, research on adapting LLMs for tra-
jectory data is limited due to several factors: 1)
Data Interpretability: Unlike image pixel values,
structured trajectory data is inherently more inter-
pretable due to its organized and sequential nature.
2) Input Compatibility: The sequential structure of
trajectory data aligns well with LLMs’ input format.
3) Data Prevalence: Time series data, prevalent in
domains such as finance, meteorology and trans-
portation, is extensively included in LLMs’ training
data. Consequently, many researchers have opted
to convert vehicle dynamics into textual format for
direct input into LLMs (Wen et al., 2024; Gruver
et al., 2024). Nevertheless, the resultant increase
in token count can constrain the LLM’s ability to
effectively interpret intricate traffic scenarios (Liu
et al., 2024c).

Towards this end, the proposed framework
adopts the trainable reprogramming adapter (Jin
et al., 2024), Reprogram : Rdscene → Rdllm , to
projects the extracted scene feature ht from Equa-
tion (4) into the LLMs’ text embedding space, for-
mulated as:

bscenet = Reprogram(ht). (5)

In essence, the scene feature ht is transformed
into a combination of multiple LLM vocabulary
tokens, bscenet ∈ Rdllm , via the learned mapping

function Reprogram. This transformation yields
a compact textual representation of ht, enhancing
input tokens’ local semantic richness and facilitat-
ing LLMs’ efficient comprehending of scene in-
formation. Compared with BLIP-2 and LLaVA,
this adaption scheme allows for a more targeted
assessment of LLMs’ extrapolation ability using
the representations they have learned from natural
language data. Refer to Appendix A for further
details of this section.

Linear Trajectory Decoder: Architectures such
as RNN and LSTM are frequently employed as tra-
jectory decoders due to their proficiency in captur-
ing temporal dependencies. These autoregressive
models function similarly to vehicle motion mod-
els (Salzmann et al., 2020), generating future way-
points iteratively based on preceding predictions
to maintain both temporal and spatial coherence in
the decoding process.

Nonetheless, utilizing autoregressive architec-
tures to decode LLM outputs can inadvertently
transfer the prediction challenge to the sophisti-
cated decoder, potentially obscuring the evaluation
of LLMs’ innate capabilities. For example, if the
decoder mirrors a constant velocity motion model,
an LLM with limited extrapolation ability might
still appear to perform well by simply outputting
constant speeds for constant-velocity trajectories.
This decoupling can mask the LLM’s true predic-
tive capabilities, as it relies on the decoder model
to handle extrapolation tasks.

To avoid distributing the prediction task to
sophisticated decoders, the proposed framework
adopts a simple linear model to decode the LLM’s
output through:

τ̂01:N = LinearDecoder({escenet }Tt=1). (6)

where escenet ∈ Rdllm is the processed scene to-
ken bscenet by the frozen LLM backbone. The de-
coder LinearDecoder first flattens the {escenet }Tt=1

into a vector and then project it into the predicted
trajectory τ̂01:N ∈ RN×2 with a learnable matrix
Wdecode ∈ RTdllm×N2, where N denotes the num-
ber of timestamps in the prediction time horizon.

Overall, despite employing the cascading archi-
tecture depicted in Figure 1, the proposed frame-
work ensures that temporal dependencies are man-
aged solely by LLMs through a meticulously de-
signed sequence of encoder, adapter and decoder
modules, thereby facilitating a targeted assessment
of LLMs’ extrapolation capabilities in trajectory
prediction.
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Table 1: Quantitative comparison of trajectory prediction results.

Evaluation Metric
Method Env. Info. †

ADE±STD (2s) ↓ * ADE±STD (4s) ↓ ADE±STD (6s) ↓ FDE±STD (6s) ↓ MR ↓
ZS-LLM × 2.900 ± 3.704 3.951 ± 5.225 5.401 ± 6.697 9.767 ± 9.963 0.236%

Time-LLM ‡ × 0.861 ± 1.145 1.951 ± 2.768 3.404 ± 4.946 7.750 ± 8.014 0.000%
CoT-LLM × 2.357 ± 2.519 3.437 ± 3.994 4.936 ± 6.154 9.450 ± 9.608 0.005%
IC-LLM × 1.370 ± 1.902 2.607 ± 3.623 4.210 ± 5.937 8.975 ± 9.381 0.000%
IC-LLM ✓ 8.030 ± 9.282 11.075 ± 12.976 14.265 ± 16.918 23.187 ± 23.669% 16.461%

Ours × 0.897 ± 1.123 1.924 ± 2.533 3.725 ± 4.983 7.945 ± 8.531 0.000%
Ours ✓ 0.714 ± 0.812 1.539 ± 2.031 2.656 ± 3.750 6.062 ± 6.187 0.000%

† Env. Info. refers to the environmental information, specifically the trajectories of neighboring agents.
* ADE±STD (2s) denotes the average distance error (ADE) and its standard deviation (STD) in 2 seconds (2s).
‡ Time-LLM can not leverage Env. Info. due to its channel-independent nature.

4 Experiment

4.1 Experimental Setting

This section details our experimental setting. All
the experiments were conducted on a computer
with an Intel Xeon Gold 5220 CPU clocked at
2.20GHz and 4 NVIDIA A40 GPU with 48GB
memory.

Dataset: The proposed method is evaluated us-
ing the nuScenes dataset (Caesar et al., 2020), a
comprehensive dataset for autonomous driving fea-
turing 1000 scenes from Boston and Singapore.
Each scene, lasting 20 seconds (s) and annotated
at a frequency of 2 Hz, includes up to 23 semantic
object classes.

Comparison Methods: A total of four compar-
ison methods is considered in this work: 1) ZS-
LLM (Gruver et al., 2024), which utilizes LLM in
a zero-shot paradigm by embedding text-formatted
trajectories into the template fine-tuned for chat in-
teractions. 2) IC-LLM (Brown, 2020) incorporates
task-specific exemplars into input text and extends
ZC-LLM by utilizing LLMs’ in-context learning
capabilities. 3) CoT-LLM (Wei et al., 2022), ex-
tending ZC-LLM, utilizes LLMs’ chain-of-thought
capabilities to infer future trajectories. 4) Time-
LLM (Jin et al., 2024) represents a seminal ap-
proach that leverages off-the-shelf LLMs for time
series forecasting, thus is determined as the base-
line method in this work.

Evaluation Metric: Trajectory prediction per-
formance is mainly evaluated through the metrics
of Average Displacement Error (ADE) and Final
Displacement Error (FDE) (Salzmann et al., 2020).
ADE measures the average Euclidean distance be-
tween the predicted waypoints and the ground-truth
waypoints in a specified prediction horizon. FDE
quantifies the Euclidean distance between the fi-

nal predicted waypoint and the final ground-truth
waypoint. Additionally, the Missing Rate (MR)
metric is introduced to quantify the proportion of
prediction failures, where a prediction failure oc-
curs when the number of waypoints generated by
LLMs deviates from the expected count of pre-
dicted timestamps.

Implementation Detail: The observation win-
dow in this work comprises 4 timestamps in 2 sec-
onds (2s), while the prediction window encom-
passes 12 timestamps in 6s. The framework’s train-
ing objective is to minimize the L2 loss between
the predicted and ground-truth trajectories, using
the Adam optimizer with a cosine annealing learn-
ing rate scheduler initialized at 1 × 10−4. To en-
sure reproducibility, implementation details and the
trained model checkpoints are available at here.

See Appendix B for more details on the compar-
ison methods, evaluation metrics and considered
LLMs.

4.2 Quantitative Evaluation

Table 1 provides a quantitative assessment of the
proposed framework, benchmarked against compar-
ison methods across 18,680 test trajectories, utiliz-
ing the LlaMa3-8B model fine-tuned for chat as the
pre-trained foundation LLM. Initially, analyzing
the experimental results of ZS-LLM, CoT-LLM,
and IC-LLM reveals that, in cases focused solely on
the target vehicle’s trajectory, in-context learning
capabilities of LLMs can markedly enhance pre-
diction accuracy by incorporating task-specific ex-
emplars into the input text, while chain-of-thought
prompting only offers comparatively marginal im-
provements. However, as traffic complexity esca-
lates with increased surrounding agent density, IC-
LLM experiences significant performance degrada-
tion and a pronounced decline in task completion
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rate. This observation exposes a critical limitation
in LLMs’ ability to process excessive text tokens
for multiple-agent trajectory representation. Con-
versely, the proposed framework demonstrates a
significant performance enhancement by integrat-
ing observed trajectories from neighboring agents.
This highlights the necessity for advanced trajec-
tory data encoding schemes to equip LLMs with
the capability to effectively comprehend intricate
and dynamic traffic environments.

4.3 Qualitative Evaluation

Figure 3 visualizes the trajectory prediction results
of the proposed framework alongside IC-LLM, of-
fering qualitative evidence that underscores the
framework’s superior efficiency in exploiting con-
textual environmental cues. Initially, compared
to simpler linear trajectories, the performance dis-
parity is especially pronounced in complex sce-
narios involving target vehicle turning maneuvers
and interactions with multiple neighboring agents.
Specifically, as shown in Figure 3-3, the proposed
framework, despite lacking local HD maps, accu-
rately forecasts the target vehicle’s turning behav-
ior by utilizing contextual cues from trajectories in
both the target and adjacent lanes. Likewise, Fig-
ure 3-5 showcases the framework’s effectiveness in
predicting the target vehicle’s evasive maneuvers
for pedestrians.

In contrast, IC-LLM’s prediction accuracy is hin-
dered by limited environmental data, rendering it
incapable of reliably forecasting vehicle turning
behavior in most scenarios. Notably, even with am-
ple environmental data (w. Env.), IC-LLM can still
struggle with scene understanding due to the high
volume of text tokens required to encapsulate mul-
tiple agent trajectories. As shown in Figure 3-(a),
this constraint can even hinder accurate predictions
of straightforward linear movements, highlighting
the necessity for advanced numerical trajectory en-
coding schemes.

4.4 Generalizability Assessment

This section assesses the adaptability of the pro-
posed framework across various 7B-LLMs. As de-
tailed in Table 2, although trajectory prediction per-
formance varies among the LLMs, they all outper-
form both the IC-LLM and the baseline Time-LLM
in Table 1. Notably, the Qwen LLM, which features
a 120,000-token vocabulary, achieves the highest
prediction accuracy, underscoring the framework’s

Table 2: Trajectory prediction accuracies of various
LLMs.

Evaluation Metric
LLM

ADE (2s) ↓ ADE (4s) ↓ ADE(6s) FDE(6s) ↓
LlaMa2 0.793 1.680 2.938 6.668

WizardLM 0.801 1.750 3.017 6.687
QWen 0.754 1.508 2.640 6.125
Vicuna 0.832 1.763 3.014 6.781
Mistral 0.860 1.695 2.806 6.656

versatility and effective adaptation to diverse off-
the-shelf LLMs.

4.5 Semantic Richness Assessment

As highlighted in this work’s introduction, individ-
ual words within a sentence encapsulate substan-
tial local semantics, thereby reducing dependence
on exact positional information 1. Consequently,
this section investigates the effects of disordering
spatial-level scene tokens prior to their input into
LLMs, with the goal of assessing the semantic rich-
ness of these tokens. Ideally, if the scene tokens
possess semantic richness comparable to text to-
kens, shuffling should only result in slight perfor-
mance degradation.

Table 3 demonstrates that, compared to the base-
line Time-LLM, the proposed framework exhibits
a less significant performance drop when shuffling
input token order. This observation suggests that
the framework’s scene tokens encapsulate richer se-
mantic information. The enhancement arises from
the fact that the proposed framework incorporates
environmental context, including spatial layouts
and inter-agent dynamics, during token generation.
In contrast, Time-LLM is limited to token encod-
ing based solely on subseries-level patches. See
Appendix C for more detailed results.

Besides, Appendix D examines the composition
of encoded scene tokens, highlighting a subtle re-
lationship between NLP tasks and trajectory fore-
casting within the proposed framework.

4.6 Comparison with Specialized Models

To better understand the limits of LLMs’ capabil-
ities, this section compares the proposed LLM-
based framework with specialized trajectory pre-
diction models. As shown in Table 4, the frame-
work delivers prediction performance comparable
to specialized models, though certain gaps persist.

1To illustrate, interested readers can input the disordered
text about "NAACL planning" depicted in Figure 1 into GPT
to evaluate its comprehension capabilities.
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(a) Vehicle Moving Straight (b) Vehicle Making a Turn

420

Road Segment WalkwayLane Obs-TraV Obs-NbrA Fut-GroT Ours IC-LLM w. Env. IC-LLM 

1
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4
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6

7

8

Opposing Vehicle in 
the Adjacent Lane  

Vehicle in the 
Target Lane  

Crowd

Vehicle in the 
Target Lane
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Figure 3: Visualization of trajectory prediction results. Obs-TraV: Observed trajectory of target vehicle. Obs-NbrA:
Observed trajectory of nearby agents. Fut-GroT: Ground-truth trajectory within prediction horizon. Ours: Predicted
trajectory using the proposed framwork. IC-LLM w. Env: Predicted trajectory of IC-LLM with environmental
information.

Table 3: Performance Drop Rate.

Degradation Rate for Evaluation Metrics
Token Order Model

ADE ± STD (2s) ↓ ADE ± STD (4s) ↓ ADE ± STD (6s) ↓ FDE ± STD (6s) ↓
Time-LLM 39.024% ± 25.764% 19.067% ± 8.706% 11.398% ± 4.266% 5.690% ± 3.312%

[2,1,3]
Ours 5.456% ± 2.832 3.508% ± 2.062% 2.937% ± 3.828% 2.573% ± 1.519%

Time-LLM 120.441% ± 102.445% 91.850% ± 72.326% 71.151% ± 54.407% 52.232% ± 43.274%
[3,2,1]

Ours 36.694% ± 36.576% 33.983% ± 30.773% 28.802% ± 16.150% 22.171% ± 14.611%

Time-LLM 21.719% ± 27.424% 27.166% ± 31.900% 28.172% ± 30.186% 28.077% ± 28.812%
[1,3,2]

Ours 12.605% ± 13.916% 13.190% ± 12.309% 11.746% ± 10.000% 9.798% ± 8.582%

† The degradation rate for all the evaluation metrics is 0.000% ± 0.000% when the token order is [1,2,3].

Table 4: Performance Comparison with Specialized
Models.

Model ADE (6s) ↓ FDE (6s) ↓
Trajectron++ (Salzmann et al., 2020) 2.10 5.00

AgentFormer (Yuan et al., 2021) 2.20 4.82
Ours 2.65 6.06

Thus, enhancing LLMs’ trajectory prediction for
dynamic traffic scenarios continues to be a promis-
ing research direction.

It is crucial to note that the primary goal of this
work is evaluation, not achieving SOTA perfor-
mance. Trajectory prediction is used here to as-
sess the LLM’s understanding of traffic dynamics,
rather than as the ultimate objective. To this end,
the framework is deliberately designed with con-
straints to isolate and evaluate the LLM’s inherent
capabilities.

Table 5: Real-Time Performance Assessment.

Model Total Param. Trainable Param. Freq.↓
ZS-LLM 6.608B 0B 0.299Hz

Time-LLM 6.641B 0.033B 24.402Hz
Ours 6.652B 0.044B 21.681Hz

4.7 Real-Time Performance Assessment

This section evaluates the real-time performance of
the proposed framework. As shown in Table 5, the
framework achieves a high processing frequency of
21Hz, which explains the growing interest in end-
to-end LLM-based methods (Shao et al., 2024).

4.8 Ablation Study

This section presents an ablation study on the pro-
posed framework. The first row of Table 6 shows
the results obtained by directly replacing the LLM
with an identity mapping. This practice causes a
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Table 6: Ablation Study.

Model LLM Restraining ADE ± STD(6s)↓ FDE ± STD(6s)↓
× × 12.570 ± 15.375 23.375 ± 22.500
× ✓ 3.177 ± 4.061 7.158 ± 7.686Ours

✓ ✓ 2.656 ± 3.750 6.602 ± 6.187

significant decline in prediction performance, ad-
dressing the concern raised in Challenge A (Figure
1) and demonstrating LLMs’ contribution to the
prediction task.

The second row shows the results when the LLM
is replaced with an identity mapping and the frame-
work is re-trained. This modification not only leads
to inferior performance, but also disrupts the con-
nection between the NLP and trajectory prediction
tasks in the original framework. Specifically, it
can cause the vocabulary token weights to become
overly concentrated, skewing the probabilities to-
wards a smaller set of meaningless tokens.

5 Conclusion

To assess the proficiency of off-the-shelf, text-only
LLMs in understanding temporal dynamics of traf-
fic agents, this study presents a framework leverag-
ing the built-in extrapolation capabilities of LLMs
for vehicle trajectory forecasting. Key findings
from our comprehensive evaluation include: 1)
Given text-formatted observed trajectories, LLMs
can, to some extent, predict simple linear trajec-
tory of target vehicle by leveraging in-context, task-
specific exemplars. 2) However, as the density of
neighboring traffic agents increases, the predictive
performance of LLMs deteriorates significantly,
underscoring their limitation in handling the ex-
cessive tokens required for multi-agent trajectory
representation. 3) To mitigate this limitation, this
work propose to treat trajectory data as a distinct
modality from text. Specifically, the framework
represents multiple trajectories as semantically en-
riched, spatial-level scene tokens. This practice
significantly enhances the prediction performance
and enables vehicle turning maneuver predictions
without HD maps.
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7 Limitations

While the trajectory encoding scheme can augment
LLMs’ comprehension of dynamic traffic scenar-
ios, their trajectory prediction performance remains
inferior to that of SOTA specialized models. This
disparity underscores the limitations of LLMs in
acquiring a nuanced comprehension of traffic agent
dynamics, prompting us to reflect on the security
and reliability of recent LLM-based AV applica-
tions. Consequently, reconciling "coarse-grained"
high-level language capabilities of LLMs with the
"fine-grained" demands of safety-critical AV appli-
cations will still be a pivotal research focus in the
future.
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A Reprogramming Adapter

Vocabulary 
Tokens 𝓑𝒕𝒆𝒙𝒕

“3”

“]”

“loc”

“[”

“8”

… …

Text 
Prototypes 𝓑𝒑𝒓𝒐𝒕

Scene 
Tokens

𝒃𝟏𝒔𝒄𝒆𝒏𝒆

…𝒃𝟐𝒔𝒄𝒆𝒏𝒆

𝒃𝑻𝒔𝒄𝒆𝒏𝒆

Figure 4: Scene reprogramming progress.

The proposed framework employs a trainable re-
programming adapter (Jin et al., 2024), denoted as
Reprogram : Rdscene → Rdllm , to transform the
extracted spatial-level scene feature ht ∈ Rdscene

into combinations of multiple vocabulary text to-
kens through:

bscenet = Reprogram(ht). (7)

Specifically, this process can be further decom-
posed as two steps as shown in Figure 4.

First, to mitigate the complexity of a large and
potentially dense reprogramming space, the repro-
gramming adapter compresses and transforms the
vocabulary tokens into a set of text prototypes
through

Bprot = W protBtext. (8)

Here, Btext ∈ RJ×dllm denotes J text tokens{
btextj

}J

j=1
(btextj ∈ Rdllm) in the LLM vocabu-

lary, W prot ∈ RM×J is a trainable matrix, and
Bprot ∈ RM×dllm represents a collection of M text
prototypes bprotm ∈ Rdllm . Each text prototypes can
be seen as linear combination of the vocabulary
tokens.

Second, a cross-attention layer is applied to re-
program the scene feature ht ∈ Rdscene into the
scene token bscenet ∈ Rdllm , formulated as:

bscenet =
M∑

m=1

Sotmax(qrept krepm /
√
dllm)vrepm .

(9)
Here, qrept , krepm , vrepm ∈ Rdllm are query, key and
value vectors obtained with:

qrept = W rep
Q Φrep(ht), k

rep
m = W rep

K bprotm ,

vrepm = W rep
V bprotm ,

(10)

where W rep
Q , W rep

K , W rep
V ∈ Rdllm×dllm are learn-

able weight matrices for query, key and value
transformations, respectively. The function Φrep :
Rdscene → Rdlmm denotes a fully connected net-
work (FCN). In practical applications, the repro-
gramming process is implemented using a multi-
head cross-attention layer. For the sake of nota-
tional simplicity, Equation (9) illustrates a single-
head version.

B Experimental Setting

Comparison Methods: A total of four comparison
methods are considered in this work:

1) ZS-LLM (Gruver et al., 2024), which utilizes
LLM in a zero-shot paradigm by embedding
text-formatted trajectories into the template
fine-tuned for chat interactions.

2) IC-LLM (Brown, 2020) integrates task-
specific exemplars within the LLM input text
and extends ZC-LLM by utilizing LLMs’ in-
context learning capabilities.
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<System>:
You are a AI assistant who helps for trajectory prediction Task 
on NuScenes…

Scene & Task Description

Instruction & Input

(a) ZS-LLM

<User>:
Given the observed 4-step x-y coordinates of a vehicle [(-0.13, -
9.54), …, (0.00, 0.00)], predict its next 12-step x-y coordinates 
according to the format [(x1,y1),…, (x12, y12)].

<System>:
You are a AI assistant who helps for trajectory prediction Task 
on NuScenes…

Scene & Task Description

Instruction & Input

(b) IC-LLM

<User>:
Given the observed 4-step x-y coordinates of a vehicle [(-0.13, -
9.54), …, (0.00, 0.00)], predict its next 12-step x-y coordinates 
according to the format [(x1,y1),…, (x12, y12)].

Here is an example of how to complete this task:" 
<User>: 
Given the observed 4-step x-y…
<System>:
The next 12-step x-y coordinates is …”

Task-Specific Exemplars

<System>:
You are a AI assistant who helps for trajectory prediction Task on
NuScenes…

Scene & Task Description

Instruction & Input

(c) CoT-LLM

<User>:
Given the observed 4-step x-y coordinates of a vehicle [(-0.13, -
9.54), …, (0.00, 0.00)], predict its next 12-step x-y 
coordinates according to the format [(x1,y1),…, (x12, y12)]. Lets 
think step by step! 

Here is an example of how to complete this task:" 
<User>: 
Given the observed 4-step …
<System>:
Lets think step by step! The time interval is 0.5, the velocity 
is …, the heading is … Therefore, the next 12-step x-y 
coordinates is …”

Chain of Thought

<System>:
You are a AI assistant who helps for trajectory prediction Task 
on NuScenes…

Scene & Task Description

Instruction & Input

(d) Time-LLM

<User>:
Predict the next 12-step x-y coordinates of a vehicle according to 
its observed scene information: <Scene Token 1> <Scene Token 2> 
<Scene Token 3> <Scene Token 4>

Figure 5: Input templates of the comparison methods.

Table 7: LLM Specifications

LLM Parameter Num. Vocab. Size Training Tokens Features Max Token
LLaMa2 (Touvron et al., 2023) 7B 26519 2T RLHF 4K

WizardLM (Xu et al., 2024) 7B 26497 2T Evol-Instruct 4K
QWen (Bai and et al., 2023) 7B 150311 3T RLHF 32K
Vicuna (Chiang et al., 2023) 7B 26519 2T Gradient Checkpoint, Flash Attention 2K

Mistral (Jiang et al., 2023) 7B 26497 2T Group-Query Attention, Sliding Window Attention 32K

3) CoT-LLM (Wei et al., 2022), extending ZC-
LLM, utilizes LLMs’ chain-of-thought capa-
bilities to infer future trajectories.

4) Time-LLM (Jin et al., 2024) represents a
seminal approach that leverages off-the-shelf
LLMs for time series forecasting, thus is de-
termined as the baseline method in this work.

The simplified input templates for the comparison
methods are depicted in Figure 5.

Evaluation Metric: Average Displacement Er-
ror (ADE) measures the average Euclidean distance
between the predicted trajectory τ̂01:N ∈ RN×2 and
the ground truth trajectory points τ01:N ∈ RN×2,
calculated as:

1

N
×

N∑

n=1

||τ̂0n − τ0n||2, (11)

where τ̂0n ∈ R2 denote the x-y coordinates of the
n-th predicted waypoint. Similarly, Final Displace-
ment Error (FDE) quantifies the Euclidean distance
between the final predicted and the ground-truth
waypoints through:

||τ̂0N − τ0N ||2, (12)

Utilizing both ADE and FDE provides comprehen-
sive insight into the model’s performance. ADE

captures the overall trajectory accuracy, while FDE
focuses on the critical endpoint accuracy. This dual
metric approach highlights models that may per-
form well on average but underperform at the end-
point, or vice versa, thus offering a nuanced evalu-
ation of the model’s strengths and weaknesses.

LLMs Used for Evaluation: A total of five
LLMs are considered in this work. Their specifica-
tions and characteristics are summarized in Table
7.

C Semantic Richness Assessment

Individual words within a sentence encode signifi-
cant local semantics, diminishing reliance on pre-
cise positional information. This section examines
the impact of spatial-level scene token disorder-
ing before input into LLMs, aiming to evaluate
the semantic richness of scene tokens. If scene to-
kens exhibit semantic richness akin to text tokens,
shuffling should cause minimal performance degra-
dation. Table 8 presents the prediction performance
when the input token order is shuffled.

D Token Weight Analysis

The previous research (Jin et al., 2024) indicates
that the reprogramming adapter converts time se-
ries embeddings into a combination of textual to-
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Table 8: Impact of Input Token Order Shuffling on Trajectory Prediction Performance.

Evaluation Metrics
Token Order Model

ADE ± STD (2s) ADE ± STD (4s) ADE ± STD (6s) FDE ± STD (6s)

Time-LLM 0.861 ± 1.145 1.951 ± 2.768 3.404 ± 4.946 7.750 ± 8.014
[1,2,3]

Ours 0.714 ± 0.812 1.539 ± 2.031 2.656 ± 3.750 6.062 ± 6.187

Time-LLM 1.048 ± 1.459 2.481 ± 3.651 4.363 ± 6.439 9.926 ± 10.323
[1,3,2]

Ours 0.797 ± 0.910 1.710 ± 2.234 2.921 ± 4.062 6.531 ± 6.625

Time-LLM 1.197 ± 1.440 2.323 ± 3.009 3.792 ± 5.157 8.191 ± 8.625
[2,1,3]

Ours 0.769 ± 0.882 1.648 ± 2.171 2.828 ± 3.968 6.406 ± 6.500

Time-LLM 2.052 ± 2.470 3.935 ± 4.971 6.007 ± 7.836 12.239 ± 11.972
[2,3,1]

Ours 0.960 ± 1.140 2.071 ± 2.734 3.484 ± 4.781 7.625 ± 7.593

Time-LLM 1.166 ± 1.525 2.540 ± 3.683 4.393 ± 6.491 9.901 ± 10.463
[3,1,2]

Ours 0.941 ± 1.140 2.015 ± 2.703 3.406 ± 4.750 7.500 ± 7.625

Time-LLM 1.898 ± 2.318 3.743 ± 4.770 5.826 ± 7.537 11.798 ± 11.482
[3,2,1]

Ours 1.054 ± 1.296 2.250 ± 3.046 3.765 ± 5.250 8.187 ± 8.312
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Figure 6: Normalized weights of vocabulary tokens in the reprogramming adapter.

kens such as "down", "up" and "seasonal" which
describe the time series’ characteristics. To verify
this hypothesis, this work normalizes the weights of
different text tokens from LLM vocabulary within
the trained reprogramming adapter. Specifically,
given the learnable matrix W prot that maps the vo-
cabulary tokens Btext to the text prototypes Bprot,
this work initially computes the sum of the absolute
values of the weights associated with each vocabu-
lary token in W prot. Subsequently, these summed
weights are divided by their total sum and normal-
ized to form a probability distribution. Notably, a
vocabulary token with a higher normalized weight
indicates greater significance of its semantic infor-
mation in representing traffic scenes.

Figure 6 illustrates the top-ranked vocabulary
tokens by the normalized weights for the best-
performing QWEN among the evaluated 7B-
parameter LLMs. Notably, tokens associated with
numerical concepts, decimal points and delim-
iters—essential for structured trajectory represen-
tation—exhibit significant weights, reflecting a nu-
anced relationship between NLP tasks and time
series forecasting.
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