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Abstract

Missing modality issues are common in real-
world applications, arising from factors such
as equipment failures and privacy concerns.
When fine-tuning pre-trained models on down-
stream datasets with missing modalities, per-
formance can degrade significantly. Current
methods often aggregate various missing cases
to train recovery modules or align multimodal
features, resulting in suboptimal performance,
high computational costs, and the risk of catas-
trophic forgetting in continual environments
where data arrives sequentially. In this paper,
we formulate the dynamic missing modality
problem as a continual learning task and intro-
duce the continual multimodal missing modal-
ity task. To address this challenge efficiently,
we introduce three types of prompts: modality-
specific, task-aware, and task-specific prompts.
These prompts enable the model to learn intra-
modality, inter-modality, intra-task, and inter-
task features. Furthermore, we propose a con-
trastive task interaction strategy to explicitly
learn prompts correlating different modalities.
We conduct extensive experiments on three pub-
lic datasets, where our method consistently out-
performs state-of-the-art approaches.

1 Introduction

Pre-trained multimodal models have shown great
potential in many applications (Radford et al.,
2021; Liet al., 2023; Lin et al., 2024). When fine-
tuning these pre-trained models on downstream
tasks, missing modality issues often occur due to
equipment failure, data corruption, privacy con-
cerns, etc. Existing methods (Ma et al., 2021; Zhao
et al., 2021; Lee et al., 2023; Guo et al., 2024¢c)
address missing modality issues by reconstruct-
ing missing information or aligning multimodal
features. However, both recovering missing fea-
tures and aligning multimodal features are based on
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Figure 1: The difference between existing methods and
ours. Existing methods train all cases of data together,
which is infeasible in many real-world scenarios. In
contrast, we formulate it as a continual learning problem,
which is much closer to real situations.

datasets containing various types of missing modal-
ity cases (Figure 1 (left)) to achieve robust perfor-
mance. For example, recovering feature methods
learn how to reconstruct a missing modality using
the available modalities. Hence, it is expected that
the dataset contains various types of missing cases
to optimize the reconstruction modules.

However, in real-world dynamic environments,
data often comes in a sequence where each dataset
has the same modality missing (Figure 1 (right)).
For example, a robot needs to utilize multiple sen-
sors to capture human faces, gestures and speech to
analyze sentiment and emotion. When the camera
is broken, the system needs to make predictions
without video modality during the period until the
camera is repaired. During this period, all the data
has the same missing modality (i.e. video). When
the recording device is broken, the system needs
to learn how to make accurate predictions with-
out audio modality until the recording device is re-
paired. In such dynamic environments, the system
is expected to adapt to the different missing modal-
ity cases continually. Therefore, existing methods
relying on recovering missing features and align-
ing multimodal features will fail. Additionally, as
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shown in Figure 2, the sequential data in real-world
applications will make these methods suffer catas-
trophic forgetting (McCloskey and Cohen, 1989),
leading to performance degradation. To handle for-
getting, an intuitive idea is to store and retrain all
old data but it creates large storage overheads and
potential privacy issues.

Based on the above observations, we propose
the continual multimodal missing modality task to
address the missing modality issues in real-world
continual environments. In recent years, continual
learning has made great progress, such as replay-
based methods (Rolnick et al., 2019; Buzzega et al.,
2020; Cha et al., 2021), regularization-based meth-
ods (Kirkpatrick et al., 2017; Zenke et al., 2017;
Aljundi et al., 2018), and architecture-based meth-
ods (Serra et al., 2018; Li et al., 2019; Ebrahimi
et al., 2020). However, these methods often have
many limitations. For example, replay-based meth-
ods need to store previous data, which could pose
potential privacy issues. More recently, prompt-
based continual methods (Wang et al., 2022a,c,b)
have attracted much attention due to their simplicity
and effectiveness. Most of these methods (Wang
et al., 2022¢,b) are unimodal and are difficult to
transfer to the multimodal field. Multimodal meth-
ods (Wang et al., 2022a; Qian et al., 2023) al-
ways depend on language-image models such as
CLIP (Radford et al., 2021), which makes it diffi-
cult to apply these methods to other fields where
there are more modalities. Moreover, these multi-
modal methods focus more on exploring task inter-
action while ignoring modality interaction.

In this paper, we propose three types of prompts
and a task interaction strategy for efficient contin-
ual multimodal missing modality task. Specifically,
we propose modality-specific prompts, task-aware
prompts, and task-specific prompts. Modality-
specific prompts aim to instruct the model to learn
intra-modality features. Task-aware prompts focus
on learning inter-modality and inter-task features.
Task-specific prompts help the model learn intra-
task features. Moreover, we propose a contrastive
task interaction strategy to grasp the relationships
between tasks.

We conduct extensive experiments on three mul-
timodal datasets: CMU-MOSI (Zadeh et al., 2016),
IEMOCAP (Busso et al., 2008) and CH-SIMS (Yu
etal., 2020). Our proposed method can consistently
outperform baselines and state-of-the-art methods
significantly in all three datasets. Besides, the num-
ber of trainable parameters only accounts for 2-3%
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Figure 2: The performance of existing methods will
degrade when applied to continual multimodal missing
modality task.

of the parameters of the backbone network, indicat-
ing our method is parameter-efficient. We further
conduct ablation experiments to validate the effec-
tiveness of three types of prompts and contrastive
task interaction strategy. The results fully demon-
strate the superiority of our method. Our main
contributions can be summarized as follows:

* We introduce a comprehensive formulation of
continual multimodal missing modality task.

* We propose modality-specific prompts, task-
aware prompts, task-specific prompts and a
contrastive task interaction strategy. They can
be transferred easily to any multimodal back-
bones efficiently.

* We build up three benchmarks for contin-
ual multimodal missing modalities. Our pro-
posed method outperforms all the baselines
and state-of-the-art approaches significantly.

2 Related Work

Multimodal Learning with Missing Modalities.
Missing modality issues pose challenges for multi-
modal learning (Guo et al., 2024b) and can lead to
severe performance degradation. Recently, many
works explore to address the missing modality is-
sues (Ma et al., 2021; Cai et al., 2018; Du et al.,
2018; Zhao et al., 2021; Lee et al., 2023; Jin et al.,
2023). Some methods (Cai et al., 2018; Du et al.,
2018) directly generate missing modalities using
the available modalities. Pham et al. (2019) pro-
pose to align multimodal features by translating
between modalities to address missing modality
issues. Zhao et al. (2021) propose learning robust
joint multimodal representations that can predict
the representation of any missing modality given
the available modalities. IPD (Jin et al., 2023)
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Figure 3: The overall architecture of our proposed method. After the projection layer, modality-specific prompts,
task-aware prompts and task-specific prompts are attached to multi-head self-attention (MSA) layers sequentially.
Task-aware prompts are generated from modality-specific prompts and missing keys using Eq.(2).

jointly learns modality-specific task prototypes.
Guo et al. (2024c) propose three types of prompts
to address missing modality issues in a parameter-
efficient way. Guo and Jin (2025) propose to ad-
dress missing modalities at test time by smoothing
the distribution shifts between the complete data
samples and incomplete data samples.

Continual Learning. A major challenge of con-
tinual learning is known as catastrophic forget-
ting (McCloskey and Cohen, 1989). Numerous
methods have been exploited to address this issue
which could be categorized into three main cate-
gories: (1) Regularization-based approaches (Kirk-
patrick et al., 2017; Zenke et al., 2017; Aljundi
et al., 2018) address catastrophic forgetting by im-
posing a regularization constraint to important pa-
rameters. (2) Replay-based approaches (Rebuffi
et al., 2017; Shin et al., 2017; Rolnick et al., 2019;
Buzzega et al., 2020; Cha et al., 2021) store some
representative samples of previous tasks in a re-
hearsal buffer and retrain these data to avoid forget-
ting. (3) Architecture-based approaches (Mallya
and Lazebnik, 2018; Serra et al., 2018; Li et al.,
2019; Ebrahimi et al., 2020) dynamically expand
or divide the network for different tasks to mitigate
forgetting. These methods often suffer from scala-
bility issues as the number of tasks or the complex-
ity of the model increases. Our proposed method
is based on prompt learning and is a replay-free
method. Moreover, our novel design of prompts
can instruct the model to address complex situa-

tions compared to regularization-based methods
and architecture-based methods.

Prompt Learning. Prompt learning, as one of
the efficient transfer learning techniques (Hu et al.,
2021; Guo et al., 2024a; Yan et al., 2025), refers
to the process of designing or generating effective
prompts to use a pre-trained model for different
types of downstream tasks. Recent works (Wang
et al., 2022a,c,b; Yan et al., 2024) apply prompt
learning to the field of continual learning and have
achieved good results. DualPrompt (Wang et al.,
2022b) proposes G-Prompt and E-Prompt to learn
task-invariant and task-specific information, but it
is unimodal and can not be directly transferred to
multimodal applications. Particularly, Wang et al.
(2022a) propose S-Prompts which is multimodal,
but this prompting method ignores the modality-
level information. Moreover, S-Prompts is a CLIP-
based (Radford et al., 2021) approach which is a
language-image scheme and thus can not address
problems which has more modalities. In contrast,
our proposed method has both modality interaction
and task interaction strategies and can be easily
transferred to any backbones.

3 Proposed Method

3.1 Problem Formulation

In real-world dynamic environments, the new
data come continually which could have differ-
ent modality cases. Therefore, we can consider
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Table 1: The seven different missing modality cases and
their denotations.

No. {available, missing} denotation

1 {(a,v,t),()} x = (2% 29, 2)

2 {(a,v), (t)} x = (2% 2%, ™)
3 {(a,t), (v)} x = (2% 2™, 2t)
4 {(v,1), (a)} x = (29 2V, at)
5 {(a), (v,t)} x = (2% 27", 2t™)
6 {(v), (a,t)} x = (29, ¥, 2'™)
7 {(t), (a,v)} x = (22", xt)

it as a domain-incremental learning task. In a com-
mon domain-incremental learning setting, train-
ing samples of different domains arrive in se-
quence (i.e. data with different missing modal-
ity cases in our task). We denote the sequen-
tial datasets as D = {D;,Dy, -+ ,Dr}, where
Dy = {(xt,y!)}*, represents the dataset for the
t-th task with V; training samples. For example,
as shown in Table 1, D, represents the dataset with
audio modality missing. In this paper, we consider
a case of M = 3 modalities (audio, video and
text) for simplicity. Therefore, :z:?L5 consists of three
modalities and there are a total of 2/ — 1 = 7 dif-
ferent missing modality cases (shown in Table 1).

3.2 Prompt Design

Existing methods address missing modalities
mainly by utilizing complicated modules to gen-
erate missing information (Zhao et al., 2021; Du
et al., 2018) or aligning multimodal representa-
tions (Pham et al., 2019). Besides, existing con-
tinual methods often cause privacy issues or scala-
bility issues. Motivated by prompt learning meth-
ods (Wang et al., 2022b; Lee et al., 2023; Guo
et al., 2024c), we propose three types of prompts
to address missing modality cases in a continual
setting, which is simple and computationally effi-
cient. Specifically, our proposed method contains
three types of prompts: modality-specific prompts,
task-aware prompts, and task-specific prompts (as
shown in Figure 3).

Modality-specific Prompts. Existing prompt-
based methods (Wang et al., 2022a,c,b) mainly fo-
cus on task interaction while ignoring interactions
between modalities. Therefore, to model inter-
modality features, we propose modality-specific
prompts. We denote modality-specific prompts
as Pyg € RM*EXd where ¢ and d represent
the length and dimension of the prompt respec-
tively. Pysg consists of P{, s, Pl and Pl g,

which represent audio, video and text modality,
respectively. The modality-specific prompts are
modality-specific but task-shared. We attach this
kind of prompt to the following n; multi-head self-
attention (MSA) layers after the feature projection
layer, where n; is a hyperparameter. The process
of attaching prompts to the i-th MSA layer is:

W = A-MsA([Piyss b))
) = V-MsAV([Prgi RV (1)
h? = T-MsAV([Phrsi b))

where [- - -] is the concatenation operation along
the sequence, hi, is the feature representation
of modality m after the i-th MSA layer, and
A-MSAD | v-MSA® and T-MSA® represent the i-th
audio, video and text MSA layer, respectively.
Task-aware Prompts. Given the input z, the
model should be informed of the missing condi-
tion of = to address missing information. There-
fore, we propose task-aware prompts to learn the
inter-modality features between the missing modal-
ities and available modalities. To generate task-
aware prompts, we introduce missing keys which
are a sign of whether a modality is missing or
not. Specifically, we denote missing keys as
K = {K,,, K,} where K,, represents a modal-
ity is missing while K, represents a modality is
available. K,,, K, € R?, which are also train-
able parameters. Concretely, we use the following
equations to generate task-aware prompts for each
modality:

Py = B Km ©Prg+(1—Bg) - Ku©Prrg (2)

where © is the element-wise multiplication of
the broadcasted vector and the matrix and P]’\} g
are the modality-specific prompts. k € {a,v,t},
Br € {0,1} is a sign function to denote whether
the modality £ is missing. [ = 0 represents the
modality k is missing and §;, = 1 represents the
modality k is available. It is worth noting that
modality-specific prompts and missing keys are
both task-agnostic, but their combinations are task-
dependent. This design can not only reduce the
number of trainable parameters but also connect
the intra- and inter-modality features. Then, we
can obtain the task-aware prompts Pr4 as follows:

Pra=PF,+ P, + P, 3)

After we obtain the task-aware prompts Pr 4, we
attach them to the next no MSA layers following
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the first n layers which are attached with modality-
specific prompts. The prompts are attached to the
1-th MSA layer as follows:

A = A-MSAD ([ Pp 45 )

a

A = v-MSAD ([Pp 4; h—17) 4)
i = T-MsAD ([Pra; b))

Comparing Eq.(1) and Eq.(4), it is easy to dis-
cover that the main difference is that different
modality has different prompts in Eq.(1) but all
modalities have the same prompts in Eq.(4). That is
also the main difference between these two types of
prompts. Modality-specific prompts are modality-
specific but task-agnostic and task-aware prompts
are task-dependent but modality-shared. This indi-
cates that modality-specific prompts focus more on
learning intra-modality information and task-aware
prompts more on inter-modality information.
Task-specific Prompts. Although task-aware
prompts are different in different tasks, they are
generated from modality-specific prompts and
missing keys which are shared by all tasks. The
main role of task-aware prompts is to help the
model learn inter-modality information and in-
form the model of the missing modality condi-
tion. Therefore, modality-specific prompts and
task-aware prompts are not able to learn task-
specific information to address catastrophic forget-
ting. Based on this observation, we propose task-
specific prompts Ppg = {P}B,P}?, e ,PT(,?}
to instruct the model for a specific task and address
catastrophic forgetting. Specifically, for every task
t, we have task-specific prompts ng € RMxtxd,
Moreover, Pj(% = {nga, P:(thv, ngt}. We attach
the prompts the same as before:

h() = A-MSAD (PS5 G 1))

R = T-usa® ([P s ni 1))

As before, we attach the prompts to n3 MSA
layers after the n; + no MSA layers which are
attached with modality-specific prompts and task-
aware prompts.

3.3 Task Interaction Strategy

Unlike many common domain-incremental learn-
ing tasks where there are no evident relationships
between the domains, continual multimodal miss-
ing modality task has some implicit relationships

between different domains. For example, text and
audio are always highly relevant because they are
both high-semantic information. Different from
text and audio, videos contain facial expressions
or gestures which are low-semantic information.
Therefore, in the representation space, text often
has features very similar to that of audio, but much
different from that of video.

Based on this observation, we propose to con-
sider audio prompts and text prompts as very simi-
lar instances and make them close together in the
representation space while making audio and text
prompts far from video prompts. Specifically, we
adopt a contrastive scheme for task-aware prompts.
We consider task-aware prompts of task * =
(2%, 2%, 2'™) and task © = (x9™, 2%, 2%), task = =
(2%, 2™, 2™ and task * = (%", 2™, zt) as
positive pairs and others (except = (2%, 2%, z'))
as negative pairs. By doing this, task-aware
prompts can learn the correlation between different
missing modality cases (i.e. different tasks), thus
strengthening the inter-task relationship.

We consider a modified N7-Xent loss (Chen
et al., 2020) as our loss function. Let sim(u, v) =
u'v/||u||||v|| denote the dot product between /5
normalized v and v (i.e. cosine similarity). The
loss function for a positive example (i, j) is:

exp(sim(z;, z;)/T)
S Ly jy exp(sim(zi, z¢) /7)
(6)
where 7 is a temperature parameter and 1;; ; €
{0, 1} is a sign function evaluating to 1 if ¢ # 4, j.
We take the average value of task-aware prompts
along the sequence length dimension as z. As
shown in Table 1, we denote the index of task-
aware prompts of task x = (2% 2", z!™), task
x = (2% 2%, '), task & = (2%, 2™, 2'™), and
task & = (2™, %™ zt) as 2,4, 5, 7, respectively.
Therefore, we can define our contrastive loss as:

fij:—log

)

Leon = la4 + Aols 7 @)
where )\, is a trade-off between the two losses.
3.4 Overall Objective
We combine the task loss with contrastive loss as:

L = Liask(9(x),y) + A Leon ®)

where g(x) is the network prediction, y is the la-
bel, A; is a hyperparameter to balance the two
losses, and Ly is the task-specific loss, e.g. cross-
entropy loss, L2 loss.
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Table 2: Quantitative results on CMU-MOSI, IEMOCAP and CH-SIMS datasets. Bold: best exemplar-free results.
Underline: second best exemplar-free results. * denotes best replay-based results. Lowerbound: training the
backbone without any prompts on the continual datasets. Upperbound: supervised finetuning on the i.i.d data of all
tasks. Upperbound (ours): supervised finetuning with modality-specific prompts and task-aware prompts on the i.i.d
data of all tasks. AA: average accuracy, FM: forgetting measure.

Method ‘ Buffer size ‘ M Buffer size ‘ M Buffer size ‘ ﬂ
| AA(M) FM () | | AA() EM () | | AA(M) FM ()
iCaRL (Rebuffi et al., 2017) 64.12  3.49 5463  6.11 6379  3.17
A-GEM (Chaudhry et al., 2019a) 250 63.18  4.10 500 5297  7.89 250 6201 427
ER (Chaudhry et al., 2019b) 6578  3.44 57.14  5.09 65.85 276
DER++ (Buzzega et al., 2020) 64.62 274 5487  4.50 63.51 296
iCaRL (Rebuffi et al., 2017) 66.81  2.01 5646  2.39 6597 1.84
A-GEM (Chaudhry et al., 2019a) 500 65.12  2.88 1000 5407 578 500 65.18  3.01
ER (Chaudhry et al., 2019b) 68.91*  1.12 58.89* 298 68.46%  0.97*
DER++ (Buzzega et al., 2020) 67.02  0.69* 57.56  2.40% 66.18  1.02
EWC (Kirkpatrick et al., 2017) 6644  1.75 5896  2.12 65.11  2.04
LwF (Li and Hoiem, 2017) 64.56  2.97 5495  4.87 6370  3.09
L2P (Wang et al., 2022c) 0 6379  2.67 0 5568  4.73 0 63.61 251
DualPrompt (Wang et al., 2022b) 6723 073 58.15  1.29 68.73  0.89
S-Prompts (Wang et al., 2022a) 64.83 3.57 54.30 5.09 64.96 2.94
MMIM (Han et al., 2021) 6425 531 5238  9.15 6137  6.96
MISA (Hazarika et al., 2020) 6163  6.75 4933 10.51 59.12 701
UniMSE (Hu et al., 2022) ) 64.97  5.26 ) 52.89 923 ) 5346 621
MCTN (Pham et al., 2019) 6335  4.17 56.13 535 63.11 394
MMIN (Zhao et al., 2021) 6531  3.92 5641  4.36 64.85  3.11
IPD (Jin et al., 2023) ) 67.13  1.84 ) 57.63 291 ) 67.16 141
MPLMM (Guo et al., 2024c) 7035  2.18 6032 290 6824 277
Ours 71.87  -0.15 6224  0.08 7111 0.04
Lowerbound 6234  6.18 51.15  10.31 61.18  6.87
Upperbound ) 71.19 - ) 61.74 - ) 70.08 -
Upperbound (Ours) 73.20 - 64.22 - 71.98 -

4 Experiments

4.1 Datasets and Evaluation Metrics

We validate our methods on CMU-MOSI, IEMO-
CAP and CH-SIMS.

CMU-MOSI (Zadeh et al., 2016) is a popular
dataset for multimodal (audio, text and video) sen-
timent analysis, comprising 93 English YouTube
videos which are carefully selected and divided into
2,199 segments. Each segment is manually anno-
tated with a sentiment score ranging from strongly
negative to strongly positive (-3 to +3).
IEMOCAP (Busso et al., 2008) contains recorded
videos from ten actors in five dyadic conversation
sessions. There are different types of emotions
(happiness, anger, sadness, frustration and neutral
state). In our task, four emotions (happiness, anger,
sadness and neutral state) are selected for classfica-
tion.

CH-SIMS (Yu et al., 2020) is a Chinese multi-
modal sentiment analysis dataset. It contains 2,281
refined video segments in the wild annotated with
a sentiment score ranging from strongly negative

to strongly positive (-1 to 1). The dataset covers a
total number of 474 distinct speakers.

For evaluation, we use Average accuracy (AA)
and Forgetting measure (FM). AA is the average
accuracy of all tasks and calculated as AA =
% Z?:l a;n where a; , is the accuracy on task ¢
after training the model on task n. FM measures
the performance degradation and is calculated as
FM = ;13 3770 maxefi n1)(aij — ain)-

4.2 Baselines

Continual methods. They include non-prompting
methods: iCaRL (Rebuffi et al., 2017), EWC (Kirk-
patrick et al., 2017), LwF (Li and Hoiem, 2017),
A-GEM (Chaudhry et al., 2019a), ER (Chaudhry
et al., 2019b), DER++ (Buzzega et al., 2020), and
prompting methods: L2P (Wang et al., 2022c), Du-
alPrompt (Wang et al., 2022b), S-Prompts (Wang
et al., 2022a). For replay-based methods iCaRL,
A-GEM, ER, DER++, we use two different replay
buffer sizes (250, 500 for CMU-MOSI and CH-
SIMS and 500, 1000 for IEMOCAP).

Robust Multimodal Methods. Besides, we com-
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pare our method with some state-of-the-art multi-
modal backbones: MISA (Hazarika et al., 2020),
MMIM (Han et al., 2021), UniMSE (Hu et al.,
2022). We replace the missing modalities with
zero vectors.

Missing modality methods. Moreover, we com-
pare our method with a series of missing modal-
ity approaches: MCTN (Pham et al., 2019),
MMIN (Zhao et al., 2021), IPD (Jin et al., 2023),
MPLMM (Guo et al., 2024c¢).

4.3 Implementation Details

For fair comparison, we use the multimodal trans-
former as backbone for continual learning methods.
For our proposed method, the dimension d of all
the prompts is set to 30 and the length 7 is set to
16 by default. We set ny = 2, ng = 3 and nz = 3.
We use L1 loss for CMU-MOSI and CH-SIMS and
cross-entropy loss for IEMOCAP. After hyperpa-
rameter searching, we set A\; = 0.1 and Ay = 1.
In all experiments, we use Adam optimizer with a
batch size of 64. For other hyperparameters, we fol-
low the original paper of comparing methods. We
train all the models for 30 epochs with a learning
rate of 1 x 1073,

For non-prompting methods iCaRL, EWC, LwE,
A-GEM, ER, DER++, we do not freeze the back-
bone. For prompt-based methods L2P, DualPrompt,
S-Prompts and MPLMM, we freeze the pre-trained
backbone and only finetune the learnable prompts.

4.4 Main Results

Table 2 presents the performance of all methods on
CMU-MOSI, IEMOCAP and CH-SIMS datasets.

Comparison with continual learning methods.
Compared with replay-based methods which could
lead to privacy issues, our method does not use any
buffered data and still can achieve better perfor-
mance than those with a memory buffer. Compared
with exemplar-free continual methods, our method
achieves better average results and forgetting mea-
sure, indicating the effectiveness of our proposed
prompts which promote the model to learn intra-
modality, inter-modality and inter-task information.
Comparison with multimodal and missing
modality methods. Besides, we compare our
methods with multimodal and missing modality
approaches. The results reveal that multimodal
methods all have low average accuracy and high
forgetting measure, which indicates that they are
not able to deal with missing modality issues and
catastrophic forgetting. In comparison, missing

Table 3: An ablation study of three different types of
prompts on CMU-MOSI.

Pys Pra Prs AA(M) FM()
62.34 6.18
v 64.07 4.01
v 66.21 3.24
v 68.01 1.27
v v 69.16 2.08
v v 70.34 0.74
v v 70.51 0.31
v v v 70.91 0.13

modality approaches can achieve comparable or
even higher average accuracy than those contin-
ual methods due to modules or strategies that are
designed to address missing modalities. However,
compared to continual methods, these methods of-
ten have higher forgetting measure, indicating that
they fail to address the catastrophic forgetting. In
contrast, our method can not only address the miss-
ing modality issue but also deal with catastrophic
forgetting in the dynamic environment.
Performance of our method. We get a negative
forgetting measure on CMU-MOSI, which indi-
cates that in the process of learning new tasks, the
model performs even better on previous tasks. This
demonstrates the effectiveness of our novel design
of prompts and task interaction strategy, which en-
ables the model to learn better intra-modality and
intra-task relationships, thus making it perform bet-
ter on previous tasks without forgetting.

Moreover, our proposed method outperforms
upperbound slightly which is trained on the i.i.d
data of all tasks. This fully demonstrates that our
method improves inter-modality communication.
Comparing the upperbound and the upperbound us-
ing our designed prompts, we could also discover
our method makes it easier for the model to learn
intra-modality and inter-modality information.
Efficiency of our method. It is worth noting that
the number of trainable parameters of our method
only accounts for about 2-3% of the parameters of
the backbone network. With such few parameters,
our method can achieve better results than other
baseline methods, which indicates that our method
is parameter-efficient and effective.

4.5 Ablation Study

Effectiveness of three types of prompts. In Ta-
ble 3, we show quantitative results of the bene-
fits of three types of prompts. It is easy to find
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Table 4: An ablation study on the benefit of task interac-
tion strategy on CMU-MOSI.

Method AA () FM ()
w/o. task interaction  70.91 0.13
wlo. €4, A1 = 0.1 71.14 0.09
wlo. b5 7, A1 = 0.1 71.42 0.06
AM=02X=1 71.52 0.04
A =01, =2 71.69 0.01
A1 =0.1,2=05 71.58 -0.04
A =01,X=1 71.87 -0.15

LY o Task 1
o

Task 2
Task 3
Task 4
® Task 5
Task 6

o Task 7

Figure 4: t-SNE visualization of task-aware prompts
on the CMU-MOSI dataset. Each point represents a
prompt vector. Tasks 1-7 are shown in Table 1.

that task-specific prompts contribute most to ad-
dressing catastrophic forgetting. As shown in the
table, the forgetting measure of the model with
only task-specific prompts Prg is lower than that
of the model with modality-specific prompts Pyss
and task-aware prompts Pr 4. This indicates that
task-specific prompts help the model learn intra-
task information, which plays a very important
role in dealing with forgetting. Besides, modality-
specific prompts and task-aware prompts help a
lIot in improving the model’s average accuracy.
Modality-specific prompts help the model learn
intra-modality information and task-aware prompts
help the model learn inter-modality and inter-task
information. The combination of three types of
prompts further enhances the performance of the
model, which fully convinces us of the effective-
ness of our proposed prompts.

Moreover, we visualize task-aware prompts us-
ing t-SNE in Figure 4. We can observe that points
of Task 2 and Task 3, Task 5 and Task 7 are very
close to each other. This indicates the effectiveness
of our task interaction strategy, which helps the
model learn inter-task relationships. Besides, task-
aware prompts of different tasks are well-separated,
which demonstrates that these prompts help the

Table 5: An ablation study of the sequence of attaching
these three types of prompts on CMU-MOSI. A —
B — C represents that we attach A prompts at the first
n1; MSA layers, B prompts at the following no MSA
layers, and C prompts at the next ng MSA layers. Here,
we set n; = 2, no = 3, n3 = 3. Bold: best results.

Prompt Sequence AA (1) FM ()

Pys — Pra — Prs 7187 -0.15
Pys — Prs — Pra 70.96 -0.03
Pra — Pys — Prg 7123 0.06
PTA — PTS — PMS 70.57 0.04
Prs — Pys — Pra 70.00  0.10
Prs — Pra — Pys 69.98 0.28

Table 6: An ablation study of the specific positions of
prompts on the CMU-MOSI dataset. Our backbone has
ten MSA layers in total. Bold: best results.

Pys Pry Prs AA (M FM )
[1,2]  [3,4,5] [6,7,8,9] 70.06 023
[1,2]  [3,4,5] [6,7,8] 7187  -0.15
1,2 [3,4,5 [6,7] 7110 0.07
[1,2,3] [4,5] [6,7,8] 7142  -0.09

model learn task-dependent knowledge.
Effectiveness of task interaction strategy. In Sec-
tion 3.3, we introduce a task interaction strategy.
To demonstrate the effectiveness of our proposed
task interaction strategy, we present our ablation
results in Table 4. We find that the model with
two loss terms performs much better on average
accuracy and forgetting measure than that without
the loss terms. Besides, the model without task
interaction strategy performs worse than the upper-
bound method shown in Table 2. This indicates
that our proposed task interaction strategy acts as a
bridge between tasks and helps the model learn the
inter-task information, thus outperforming the up-
perbound method. In the fourth to sixth rows of the
table, we explore the impact of the trade-off terms
A1 and Ao on the performance of the model. The
results reveal that the performance of the model is
not sensitive to the value of A\; and \s.
Exploration of where to attach prompts. We
first conduct a series of experiments to explore the
sequence of three types of prompts and present
our results in Table 5. We can find that the
model with task-aware prompts Pr4 in front of
task-specific prompts Prg always outperforms
the model with Pr4 behind Prg. This indicates
that compared to task-specific prompts, task-aware
prompts learn low-level features, serving as a guide-

4324



73 — 14
7 - 1.2
g 71 Log
g I i o 08 &
g 70 0.6 E
on
& 69 ¥ 04 £
< p=1
5 02 8
368 o e 0 3
67 D D | 02
66 L -0.4

16 20 24 32 40 48
Prompt Length

Figure 5: Quantitative results on the CMU-MOSI
dataset with different prompt lengths ¢.

line to task-specific prompts and helping task-
specific prompts learn better intra-task information.
Besides, modality-specific prompts instruct the
model to learn intra-modality information which
are low-level features at early stages. Therefore,
modality-specific prompts should be placed in front
of the other two types of prompts.

Furthermore, we explore the specific positions

of these prompts and present our results in Table 6.
Comparing the results in the first row and the sec-
ond row in the table, we find that it is not opportune
to attach prompts at the back layers of the network.
The highest performance demonstrates the effec-
tiveness of our design of prompts.
Impact of the length of prompts. To study the
impact of prompt length on our model, we train our
model on CMU-MOSI with eight different prompt
lengths and present results in Figure 5. Intuitively,
the longer the prompt length, the better the per-
formance of the model. However, as the results
are shown in the figure, we find that with the in-
creasing length ¢, the performance first improves
and then declines with the peak performance at
¢ = 16. This suggests that our proposed method
can achieve great results with a relatively small
number of parameters.

5 Conclusion

In this paper, we introduce the task of continual
multimodal missing modality to tackle the chal-
lenges posed by missing modalities in dynamic
environments. We propose a novel and efficient
prompt design consisting of three distinct types of
prompts, complemented by a contrastive task in-
teraction strategy aimed at mitigating catastrophic
forgetting in the multimodal domain. Our approach

facilitates effective learning of intra-modality, inter-
modality, intra-task, and inter-task features, en-
hancing the model’s adaptability. Extensive experi-
ments and ablation studies validate the robustness
and efficacy of our proposed method. Given that
cases of missing modalities frequently arise during
data collection in real-world scenarios, we believe
our approach represents a significant step towards
practical applications in multimodal fields facing
ongoing missing modality challenges.

Limitations

In our approach, the number of task-specific
prompts is the same as the number of tasks. How-
ever, the number of tasks increases exponentially
as the number of modalities increases. Therefore,
when there are many modalities, it would cost large
computational resources. Beyond this work, we
believe some promising future works would solve
this problem.
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