TOOLFLOW: Boosting LLM Tool-Calling
Through Natural and Coherent Dialogue Synthesis

Zezhong Wang'*, Xingshan Zeng>', Weiwen Liu?, Liangyou Li?,
Yasheng Wang?, Lifeng Shang?, Xin Jiang?, Qun Liu?, Kam-Fai Wong'
'The Chinese University of Hong Kong, 2Huawei Noah’s Ark Lab
{zzwang,kfwong}@se.cuhk.edu.hk
{zeng.xingshan, liuweiwen8,liliangyou}@huawei.com
{wangyasheng, Shang.Lifeng,Jiang.Xin,qun.liu}@huawei.com

Abstract

Supervised fine-tuning (SFT) is a common
method to enhance the tool calling capabilities
of Large Language Models (LLMs), with the
training data often being synthesized. The cur-
rent data synthesis process generally involves
sampling a set of tools, formulating a require-
ment based on these tools, and generating the
call statements. However, tools sampled ran-
domly lack relevance, making them difficult to
combine and thus reducing the diversity of the
data. Additionally, current work overlooks the
coherence between turns of dialogues, leading
to a gap between the synthesized data and real-
world scenarios. To address these issues, we
propose a Graph-based Sampling strategy to
sample more relevant tool combinations, and
a Planned-generation strategy to create plans
that guide the synthesis of coherent dialogues.
We integrate these two strategies and enable
multiple agents to synthesize the dialogue data
interactively, resulting in our tool-calling data
synthesis pipeline TOOLFLOW. Data quality
assessments demonstrate improvements in the
naturalness and coherence of our synthesized
dialogues. Finally, we apply SFT on LLaMA-
3.1-8B using 8,000 synthetic dialogues gen-
erated with TOOLFLOW. Results show that
the model achieves tool-calling performance
comparable to or even surpassing GPT-4, while
maintaining strong general capabilities.

1 Introduction

Enabling Large Language Models (LLMs) to per-
form tool calling significantly enhances their capa-
bilities and practical applications. This requires the
models to possess strong understanding, reasoning,
and instruction-following abilities. Customized
fine-tuning is a widely used method to improve the
tool-calling capabilities of LLMs (Abdelaziz et al.,
2024; Patil et al., 2023; Schick et al., 2023; Qin

“Work done during internship at Huawei Noah’s Ark Lab.
Corresponding author

et al., 2023). However, access to fine-tuning data
can be limited. One viable solution is to utilize
LLMs for data synthesis (Basu et al., 2024; Wang
et al., 2023; Xu et al., 2023; Yu et al., 2024).

A typical tool-calling data synthesis process in-
volves three steps: (1) selecting candidate tool(s),
(2) generating requirements based on those tools,
and (3) creating the call statements (Tang et al.,
2023; Liu et al., 2024b). However, the data synthe-
sized through this method often lacks realism and
naturalness. Randomly sampled tools frequently
fail to interconnect, making it difficult to combine
them for complex tasks. Consequently, the require-
ments for subsequent synthesis tend to be simplis-
tic, which reduces the diversity and complexity
of the data. Furthermore, much of the existing re-
search focuses solely on generating single-turn tool-
calling instructions, neglecting the coherence be-
tween dialogue turns (Qin et al., 2023; Yang et al.,
2023). In real-world interactions, LLMs typically
engage with users through dialogues rather than
single-round Q&A sessions. This creates a gap
between Q&A-type training data and its practical
application, ultimately diminishing the naturalness
of the synthesized data.

To address these two challenges, we propose
TooLFLOW, a tool-calling data synthesis pipeline
that employs a graph-based sampling algorithm to
improve the correlation among the selected tools
and a planned-generation strategy to enhance the
naturalness and coherence of the synthesized tool
call dialogues.

Specifically, we consider tools with similar pa-
rameters or return values to be related. For instance,
both "book_flight" and "get_weather" require pa-
rameters related to location. In practical scenarios,
these two tools are indeed interconnected, as they
often occur together in travel contexts. Based on
this assumption, we construct a tool graph that
represents the similarity between parameters and
return values of the tools. Each node in the graph

4246

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 4246-4263
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

represents a tool, while the edges indicate the rel-
evance between pairs of tools. When sampling
tools, we randomly select a subgraph from this tool
graph, ensuring that the sampled tools are more
likely to interact effectively, thereby facilitating the
generation of complex requirements.

On the other hand, before synthesizing dialogues,
we first have the LLM create a plan based on the
selected subset of tools. This plan outlines the re-
quests that users need to make in each turn of the
dialogue. While constructing the plan, the model
focuses on establishing the dialogue framework
without worrying about phrasing and details. This
approach allows the model to concentrate on the
logical relationships and interactions between re-
quirements, resulting in more coherent demands.
Additionally, we enable the LLM to incorporate
non-tool-call requests into the plan. This not only
enhances the diversity of the conversation content
but also facilitates seamless transitions between
topics, naturally leading to new requirments.

We generate dialogues using three agents: User,
Assistant, and Tool. Based on the selected tool sub-
set and the established plan, these agents interact
to complete the dialogue. By iterating through the
"sampling-planning-generation" process, we syn-
thesized a total of 8,000 dialogues. To evaluate the
effectiveness of our proposed method, we conduct
a comprehensive ablation study on the graph-based
sampling and planning strategy by generating di-
alogues of the same size selectively without these
modules. We perform a thorough evaluation of the
data quality, which demonstrates that TOOLFLOW
can effectively enhance the naturalness, coherence,
and diversity of the generated dialogues. Finally,
we apply supervised fine-tuning to LLaMA-3.1-8B-
Instruct (Dubey et al., 2024) using the synthesized
data and validate improvements in the model’s tool-
calling capabilities while preserving its general
abilities, with TOOLFLOW.

We summarize our contributions into the follow-
ing three key points:

* We propose a Graph-based Sampling strategy
to select related tools, aiming to enhance the
diversity and complexity of synthetic tool call-
ing requirements.

* We introduce a Planned-Generation strategy
to improve the naturalness and coherence of
synthetic dialogues.

* We integrate these two strategies and propose
ToOLFLOW, a tool calling dialogue data syn-

thesis pipeline, with extensive experiments
and analyses showing its effectiveness.

2 Related Works

Integrating external tools with large language mod-
els (LLMs) significantly broadens their functional
scope, allowing for more specialized, precise, and
reliable solutions to complex problems (Qin et al.,
2023). There are generally two main strategies
for embedding tool-use capabilities into LLMs:
prompt-based methods and tool-augmented SFT.
Prompt-based methods enable LLMs to utilize
tools by providing descriptions and examples of
the tools in the prompt, without any incremental
training (Ruan et al., 2023; Hsieh et al., 2023; Mi-
alon et al., 2023). ReAct (Yao et al., 2023) is one of
the notable methods within this category. It allows
LLMs to switch between reasoning and executing
actions to tackle challenging tasks. However, the
effectiveness of these approaches can be limited by
the inherent capabilities of the model. On the other
hand, tool-augmented tuning is attracting increas-
ing interest due to its direct enhancement of LLM’s
tool usage capabilities (Abdelaziz et al., 2024; Patil
et al., 2023; Schick et al., 2023; Qin et al., 2023).
As the limited availability of tool calling datasets,
Basu et al. (2024) adapted data from various other
domains for application in tool calling studies. Oth-
ers (Liu et al., 2024b; Tang et al., 2023; Qin et al.,
2023) mainly synthesized single-turn instructions
that involve basic tool calling requirements. How-
ever, LLMs typically interact with users through di-
alogue rather than single-turn Q&A. This mismatch
means the data is unnatural, creating a gap with
real-world scenarios. Our TOOLFLOW focuses on
enhancing the coherence and naturalness of dia-
logues in data synthesis, making it more aligned
with actual applications.

3 Methodology

To generate realistic and coherent dialogues, we
propose a three-step data synthesis process: (1)
Selecting a tool subset using graph-based sam-
pling; (2) Generating a dialogue plan based on
the selected tool subset; (3) Synthesizing dialogues
guided by the tool subset and dialogue plan.

3.1 Graph-based Sampling for Tool Selection

Tool calling data synthesis generally starts by se-
lecting one or more tools from the available toolset.
While much of the previous work overlooks the

4247

Step 1. Graph-based Sampling Step 2. Planned-Generation

track_package(...) Dialogue Plan

/. ettt \ 1. (tool call request) Book a
ticket.
book_ticket(...) get_weather(...) 2 i:;";;l;gt ircccflsucs‘) Ask for
v vices.
k akiie _/ 3. (tool call request) Check
‘/_/ Paris weather and the USD-

EUR exchange rate.
get_currency_rate(...) .

Step 3. Synthesize Dialogues Using Agents

s §=3 &

User Assistant Tool

{name: get_currency_rate,
parameters: {base: USD, target: EUR, ...} }

“Check the current exchange rate
and local weather conditions.”

{currency_rate: 0.91, ...}

{name: get_weather,
“The current exchange rate is 0.91 parameters: {location: Paris, date: ...}
The weather in Paris for the next

week is ...”

{temperature: 20°C, ...}

Figure 1: The pipeline of dialogue synthesis. The left side shows the Tool Graph with blue boxes representing tools
and purple boxes representing parameters or return values. In the middle is the dialogue synthesis plan generated
according to sampled tools. On the right is an example of data synthesis by the User, Assistant, and Tool agents.

significance of tool selection (Qin et al., 2023; Patil
et al., 2023), relying solely on random sampling,
the chosen tools play a crucial role in shaping the
quality of the synthesized dialogues. In real-world
scenarios, user requirements often necessitate the
combined use of multiple tools to achieve a solu-
tion. To synthesize more complex user needs, it
is vital to ensure that the selected tools can work
together. To address this, we propose a Graph Sam-
pling strategy to identify relevant and compatible
tool combinations.

3.1.1 Tool Graph Construction

We first construct a graph, G = (V, E'), where node
v; € V represents the tool 4, and the edge ¢; ; €
represents whether tool 7 and tool j are related. The
left side of Figure 1 shows an example of the tool
graph. We consider tools with similar parameters
or return values to be related to each other:

P-P Similarity: When two tools share similar
parameters, there is a high probability that the tools
are related. For instance, based on "location" and
"destination", two semantically similar parame-
ters, we can identify tools like "get_weather" and
"book_flight", which are frequently used together
in travel-related contexts.

P-R Similarity: If the return value of one tool is
similar to the input parameters of another, there is
also a high likelihood that the two tools are related.
For example, the "check_calendar” tool typically
returns the location of events, while the "navigate”
tool requires a location as input. When a user re-
quests to "navigate to the location of this after-
noon’s meeting," both tools would be called.

To derive similarity between parameters or re-
turn values, we first concatenate the name and de-
scription of a parameter or a return value using
the template "{Name): {Description}". For exam-
ple, the parameter “Date” of one specific tool is

represented as "Date: Departure date, format as
dd/mm/yyyy." Then, we encode these strings using
Sentence-BERT (Reimers and Gurevych, 2019) to
obtain the corresponding embeddings. We use pfC
and rli to denote the k-th parameters and [-th return
values of the tool v;, respectively. And we use p;,
and 1}, to represent the embeddings of p} and r},
respectively. The similarity between v;’s parameter
p}, and v;’s parameter p; is defined as:

p. - p]

e ()
(A=A

cos(p}, py) =
Similarly, the similarity between v;’s return value
7t and v;’s parameter p{ is defined as cos(rt, p{).
If the similarity is greater than a predefined thresh-
old 7, we consider the two tools to be correlated.
We set 7 to be 0.82 according to our preliminary
study. This means that when the similarity between
any pair of parameters from two tools exceeds 7, or
when the similarity between a return value and an
input parameter of two tools exceeds 7, we assign
an edge between the two tools:

1, E!p}; C vi,plj Cuj: cos(p};,p{) > T

or
€e; 5 =
w Irl C i, pl Cvjcos(rl,p]) > T
0, otherwise
)
where 4,5 = 1---N and ¢ # j. We use C to

represent a parameter or a return value is included
in the tool.

3.1.2 Graph-based Sampling

With the constructed tool graph, we are able to
sample a subset consisting of n tools that might be
correlated. Generally, we randomly select a node
as the starting point on the graph, and then perform
a random walk along the edges of the graph. We

4248

Algorithm 1 Graph-based Sampling
Require: G = (V, E) with |V| = N, integer n < N (de-
sired sample size)

Ensure: Subset V C V with [V| =n
1: // Randomly choose a node from V' and add it to 1%
2: V « {Uniform(V)}

3: while |V| < n do

v; < last element of V/

// Find all neighbors of v;

N(v;) < {v; €V | e;; =1,Ve;; € E}

// Randomly choose a neighbor of v;

v; < Uniform(N (v;))

9: ifv; ¢ V then

10: // Add v; to 1% if not already included

11: V « Vu{v}

12: end if

13: end while

14: return V

PR

stop when the path length reaches n, and the nodes
included in the path constitute the sampled subset
of tools. Details are shown in Algorithm 1.

3.2 Dialogue Plan Generation

Coherent dialogues usually involve complex tool-
calling scenarios, such as cases where the current
tool calling relies on the return value of a previ-
ous one or where parameters for the current tool
calling are already present in the dialogue history.
Moreover, realistic dialogues between humans and
Al assistants often don’t always require tool use;
they frequently involve non-tool-related exchanges,
such as chitchat, interspersed with tool-based tasks.
To enhance an LL.M’s performance in such real-
istic scenarios, training examples that reflect this
balance are essential.

To address the need and enhance the coherence
of synthesized dialogues, we propose a Planned-
Generation strategy, which indicates planning be-
fore generating. We have the LLM first formulates
a set of user requirements based on the tool subset
to create a dialogue plan. These requirements can
involve tool call requests — tasks that necessitate the
use of these tools — or non-tool interactions, such
as chitchat. The middle part of Figure 1 shows an
example of a plan. At this stage, the LLM focuses
solely on the logic, coherence, and natural flow of
the requirements, without delving into the phras-
ing of interactions or other nuances. Compared
to directly synthesized dialogues, those generated
based on a dialogue plan show markedly improved
coherence. We provide a detailed assessment of
this coherence in the subsequent sections. Please
refer to Table 14 for the plan synthetic prompt.

3.3 Multi-Agent Dialogue Synthesis

We set up three agents, user, assistant, and tool,
with LLMs to collaboratively synthesize dialogues.
The right side of Figure 1 illustrates the synthesis
process for one dialogue turn.

The user agent is responsible for initiating re-
quests based on the dialogue plan. It first checks
whether the current request in the plan has been
completed, which determines whether to continue
with the current task or move on to the next one.
This ensures that the dialogue stays aligned with
the plan’s flow and sequence.

The assistant agent evaluates the user’s request
to determine if a tool is required. In cases where no
tool is needed, such as chitchat, the assistant agent
responds directly. If a tool call is necessary, the
assistant verifies whether all required parameters
are present based on the tool documentation. If
any parameters are missing, the assistant requests
clarification from the user; otherwise, it generates
the tool call statement.

The ool agent simulates the return values of the
requested tool based on the tool documentation and
the assistant’s call statement.

The interaction among the three agents continues
for each dialogue turn until all the requests in plan
are addressed or the preset turn limit is reached.
Afterward, all dialogue turns are collected and a
rule-based data filtering module is applied to re-
move low-quality data (Liu et al., 2024b,a). The
filtering rules primarily check the format of tool
call statements, as well as other issues such as in-
complete dialogues or missing tool call turns.

3.4 Implementation Details

In this work, for tool selection, we directly uti-
lize the tools from ToolBench (Qin et al., 2023)
(including over 16,000 RESTful APIs) as our avail-
able tools. To standardize tool descriptions, we
follow the setting of OpenAlI Function Calling'
and prompt an LLM (Llama-3.1-8B) to convert all
these tools into JSON format. For cases where in-
formation is incomplete, such as missing parameter
descriptions, we rely on the LLM to infer and fill in
the missing details during the conversion process.
A demonstration tool is presented in Figure 2.

We use GPT-4 (OpenAl et al., 2024) for all gen-
erative tasks, including dialogue plan generation
and agent simulation, unless otherwise specified.

Uhttps://platform.openai.com/docs/guides/function-
calling

4249

Setting Statistics
Graph Plan # tokens #call #call turn
v v 8,054,298 21,069 17,112
v X 8,145,545 25,158 21,504
X v 7,956,087 18,117 15,931
X X 8,069,304 23,301 20,804

Table 1: Basic information about the dialogue datasets
synthesized by TOOLFLOW and its ablation settings. #
token, # call, and # call turn represent the number of
tokens, tool calls, and turns containing tool calls in the
dataset, respectively.

Multiple versions of GPT-4 are randomly selected
for each dialogue, potentially enhancing diversity.

4 Data Quality Assessment

4.1 Basic Data Information

In this section, we evaluate the quality of the syn-
thetic data. To assess the effectiveness of the Graph-
based Sampling (referred to as Graph) and the
Planned-Generation strategy (referred to as Plan),
we synthesized three additional sets of comparative
data under different conditions: removing Graph,
removing Plan, and removing both Graph and Plan.
Each dataset contains 8,000 dialogues. Table 1
presents the total number of tokens, the number of
tool calls, and the number of dialogue turns con-
taining tool calls for these datasets.

As shown in Table 1, the total number of tokens
generated by the different strategies is similar, at
approximately 8 million. Dialogues synthesized us-
ing the Planned-Generation strategy include more
non-tool interactions, resulting in a lower propor-
tion of tool call requests. In contrast, the Graph-
based Sampling strategy increases the number of
tool calls. This can be attributed to the connec-
tions among tools, where relevant information for
subsequent tool calls is generally contained in the
dialogue history, thereby reducing the need for ad-
ditional turns to ask for missing information.

4.2 Quality Evaluation

To further assess the quality of the synthetic dia-
logues, we implemented both an automatic evalua-
tion and a model-based evaluation.

The automatic evaluation primarily assesses the
coherence and diversity of the dialogues. Follow-
ing Dziri et al. (2019), we assess the coherence of
the dialogue as a Natural Language Inference (NLI)
task. We treat two consecutive turns in the dialogue
as the premise and hypothesis, respectively, and cal-
culate the ratio of entailment relation (EnR) as well

Automatic Evaluation

Setting Coherence Diversity
Graph Plan SS EnR H D-3
v v 6336 473 10.36 0.4865
v X 62.03 32.1 10.14 0.4364
X v 61.72 48.1 9.82 0.3393
X X 58.65 354 9.75 0.3078

GPT-4 Evaluation
Graph Plan NAT COH HELP ACC
v v 3.72 3.91 4.71 4.92
v X 3.00 372 451 4.84
X v 3.51 3.88 4.39 4.87
X X 2.93 3.66 4.18 4.90

Table 2: Results of automatic evaluation and GPT-4
evaluation on the data synthesized by TOOLFLOW and
its ablation settings.

as the semantic similarity (SS) between them. A
higher EnR or SS between turns indicates that the
dialogue is more coherent.

Regarding diversity, we calculate the text’s
Shannon entropy (H) based on the word fre-
quency (Shannon, 1948). We also compute the
Distinct-N Score (Li et al., 2016) for the dataset,
with N = 3 (D-3). Higher entropy or Distinct-
N Score indicates that the dataset contains more
information and has greater diversity.

In addition, we randomly sampled 200 dialogues
in each dataset for the model-based evaluation.
We used GPT-4 (OpenAl et al., 2024) to carefully
evaluate each dialogue based on four dimensions:
naturalness (NAT), coherence (COH), helpfulness
(HELP), and accuracy (ACC). The prompt for GPT-
4 evaluation is shown in Table 15.

The evaluation results are shown in Table 2.
There are two key observations:

* H and D-3 Score demonstrate that Graph Sam-
pling enhances the diversity of the data.

e Both evaluations (SS, EnR, and COH) show
that Planned-generation improves the coher-
ence of the dialogue.

For more detailed settings, analysis and explana-
tions, please refer to Appendix A.1.

4.3 Comparison with Natural Dialogue
Dataset

To better understand how our synthetic dialogues
compare with human-created ones, we conducted a
comparative study with an established dataset. We
chose the MultiWOZ dataset (Budzianowski et al.,
2018) as a natural dialogue dataset for compari-
son. MultiwOZ (Multi-Domain Wizard-of-Oz) is
a well-known task-oriented dialogue dataset, and

4250

Dataset NAT COH HELP ACC

TooLFLow 3.72 3091 4.71 4.92

MultiwOZ 398 4.03 4.41 4.95
Table 3: Evaluation Scores Comparison between

TooLFLoOW and MultiWOZ.

we believe comparisons with this dataset would be
convincing. We repeated the GPT-4 evaluation ex-
periment by first randomly sampling 200 dialogues
from MultiWOZ. Then, using the same scoring
prompt, we had GPT-4 evaluate these dialogues
across the four dimensions. The results are shown
in Table 3.

MultiWOZ scores slightly higher on naturalness,
coherence, and accuracy compared to the ToolFlow
dataset, though the differences are minimal (aver-
age score differences between 0.1-0.2). Regarding
helpfulness scores, ToolFlow outperformed Multi-
WOZ by 0.3 points. These results suggest that our
synthetic dialogues in TOOLFLOW achieve compa-
rable quality to human-created dialogues in Mul-
tiwOZ, with particularly strong performance in
task-oriented aspects such as helpfulness.

5 Experiments

5.1 Settings
5.1.1 Datasets

We conducted experiments on the following three
tool-calling datasets to validate the tool call capa-
bility of the model trained with TOOLFLOW.

* BFCL-v2 (Patil et al., 2023) primarily con-
sists of Python-style tool call data, divided
into four categories Simple, Multiple, Parallel,
and Parallel Multiple. Version 2 adds more
data from dynamic, real world scenarios. We
selected the categories that can be evaluated
with the Abstract Syntax Tree (AST), which
are statistically stable and easy to evaluate.
The accuracy is reported.

* API-Bank (Li et al., 2023) is a dialogue-style
tool call dataset, including two settings: Call
and Retrieve + Call. The model is required
to call predefined local Python tools based on
user requirements in the dialogue. Accuracy
is measured by evaluating whether the tool
return values match the ground truth.

* ToolAlpaca (Tang et al., 2023) establishes a
multi-agent simulator. It utilizes GPT-4 (Ope-
nAl et al., 2024) to simulate the return values

of tools. The model can make modifications
and re-call the tool based on the return values
(e.g., error messages). Finally, GPT-4 evalu-
ates the accuracy of Process and Response.

Additionally, to examine changes in general per-
formance, we evaluated the model’s reasoning and
conversational abilities using MMLU (Hendrycks
et al., 2021), BBH (Suzgun et al., 2022), and MT-
Bench (Zheng et al., 2024).

5.1.2 Models

In our main experiments, we use LLaMA-3.1-8B-
Instruct (Dubey et al., 2024) as base model to ex-
amine the effectiveness of the synthetic dialogues
generated with TOOLFLOW. For simplicity, we
use TOOLFLOW to refer to the fine-tuned model
throughout the remainder of this paper. The mod-
els we compared include GPT-3.5, GPT-4, GPT-
40 (OpenAl et al., 2024), Claude (Bai et al., 2022),
LLaMA-3.1 (Dubey et al., 2024), etc, as well as
baselines from the paper of the evaluated datasets,
such as Lynx-7B (Li et al., 2023) and ToolAlpaca-
7B (Tang et al., 2023), etc. For specific checkpoint
information, please refer to the experimental result
tables.

5.2 Results

5.2.1 ToOOLFLOW achieves tool-calling
capability comparable to GPT-4o.

We evaluated TOOLFLOW’s tool-calling ability on
the BFCL. This dataset contains questions from
four categories. In the Simple category, each ques-
tion contains one tool, which the LLM must cor-
rectly call based on requirements. The Multiple
question includes 2-4 tools, requiring the model to
choose and call the most suitable one. In the Par-
allel category, several tools should be called in one
turn. Multiple Parallel adds distracting candidate
tools to the Parallel setup.

The results are shown in Tabel 4. Overall,
ToOOLFLOW achieves performance comparable to
GPT-40. On the Non-Live subset, TOOLFLOW out-
performed GPT-4 and GPT-40, but was slightly
weaker than Claude-3.5-Sonnet. On the Live sub-
set, TOOLFLOW still lags behind these leading
closed-source LLMs. This is because the Live sub-
set added more user-contributed test cases from
the real world, thus making it more challenging
for the model. We attribute this gap primarily to
differences in model size, given that TOOLFLOW
only has 8B parameters. The ablation experiment
shows that the model trained on data synthesized

4251

Non-Live Live Overall
Baselines Simple Multiple Parallel Para.llel Simple Multiple Parallel Para.llel Non-Live Live Overall
Multiple Multiple

‘Claude-3.5-Sonnet 88.55 9500 91.50 9250 86.82 80.06 8125 4583 9122 80.75 8598
GPT-4-turbo-0409 87.45 96.50 91.00 89.00 87.98 84.14 100.00 79.17 90.28 85.02 87.65
GPT-40-0513 80.55 91.00 90.00 83.00 81.78 77.24 87.50 75.00 85.02 78.20 81.61
LLaMA-3.1 8B 9036 89.50 7350 7350 7403 7331 5625 @ 54.17 83.40 72.88 78.14

Graph Plan

v v 9218 9250 90.00 85.00 73.64 7522 75.00 70.83 90.30 74.83 82.57
Ours X 9073 93.00 89.50 8450 71.71 7435 75.00 @ 66.67 89.60 73.71 81.66
X v 9145 93.00 88.00 84.00 7093 7473 68.75 66.67 89.50 73.78 81.64
X X 9236 9150 86.50 8250 72.48 73.58 75.00 @ 62.50 89.00 73.18 81.09

Table 4: Results on BFCL-v2 leaderboard (updated on 08/16/2024). "Non-Live" and "Live" indicate the results
on vl and v2 subsets respectively. Table values are shown as a percentage. The best results in each category are
marked in bold. The best results from our model are underlined.

by strategies including both Graph-based Sampling
and Generated Plan performs the best. This is espe-
cially evident in Parallel Multiple type questions.
While different models or training strategies ex-
hibit some variance in certain categories, the dif-
ferences in average performance are not significant.
Therefore, we conducted further comparative ex-
periments on additional tool call datasets.

5.2.2 ToOLFLOW achieves SOTA on dialogue
data.

BFCL tests the model’s tool calling capability in
the form of Q&A. However, we believe that a
conversational format is closer to real-world ap-
plication scenarios. On the other hand, our syn-
thesized training data is also in the form of dia-
logue. Therefore, in the BFCL test, the advantage
of TOOLFLOW cannot be fully demonstrated.
API-Bank is a dialogue dataset. During evalua-
tion, the model needs to make tool call requests af-
ter receiving user demands and provides a response
based on the tool’s return value. This process may
occur multiple times within a single dialogue. It
includes two test settings: Call and Retrieve + Call.
In the Call setting, the assistant selects tools from
a candidate tool set to fulfill user requests. In the
Retrieve + Call setting, the assistant only has ac-
cess to a search tool. The assistant needs to search
for the relevant tools first, and then call them.
From the results in Table 5, TOOLFLOW
achieves state-of-the-art average accuracy. Under
the Call setting, TOOLFLOW outperforms all base-
lines. In the retrieve + call setting, TOOLFLOW
is inferior to GPT-3.5-turbo but superior to other
baselines, including GPT-4. The ablation experi-

Baselines L1 L2 Avg.
GPT-4-turbo-0409 72.43 39.26 55.85
GPT-40-0513 76.19 42.96 59.58
GPT-3.5-turbo-0125 70.43 52.59 61.51
Lynx-7B' 49.87 30.37 40.12
Llama-3.1-8B-Instruct 71.18 37.04 54.11
Graph Plan

T/ T/ T 52 4668 6210
Ours v X 76.26 42.23 59.25

X v 79.30 38.53 58.92

X X 76.76 39.27 58.02

Table 5: Results on API-Bank Dataset. L1 and L2 refer
to the setting of Call and Retrieve + Call, respectively.
Table values are shown as a percentage. | indicates
results derived from the original paper.

ments show that Graph-based Sampling strategy
can improve the model’s accuracy in tool call under
this setting. This is because tools obtained through
Graph sampling often have sequential correlations.
As a result, the training data includes more exam-
ples of sequentially calling tools, aligning better
with the requirements of the retrieve + call setting.

5.2.3 TOOLFLOW can correct mistakes based
on error messages.

Correcting errors is a key capability of LLM tool
calls (Wang et al., 2024). We conducted the tests in
the Simulated setting of ToolAlpaca dataset. This
dataset established a simulation environment that
utilizes GPT-4 to mimic the return values of tools,
including the error messages when calls fail. The
model is allowed to self-correct based on these er-
ror messages and then retry the call. We assess the
tool call and correction capabilities of TOOLFLOW

4252

Baselines Proc. Resp. Overall

GPT-3.5 77 85 75

ToolAlpaca-13B' 63 69 60

ToolAlpaca-7Bf 70 73 70

LLaMA-3.1 8B 74 80 74
Graph Plan

Table 6: Results on ToolAlpaca Dataset. Proc. and
Resp. stand for Procedure and Response, respectively.
Table values are shown as a percentage. ' indicates
results derived from the original paper.

on this dataset.

The dataset evaluates the accuracy of the tool
call Procedure and the model’s final Response. The
procedure is considered accurate when the model’s
call matches the ground truth. The response is con-
sidered accurate when the model’s response can
satisfy the user’s instruction. If they are both accu-
rate, the model’s Overall performance is considered
accurate. This evaluation was conducted by GPT-4.
We presented the results in Table 6.

TOOLFLOW’s Procedure accuracy reached 85%,
surpassing GPT-3.5’s 77%. In Procedure evalua-
tion, correcting errors is considered as redundant
actions and therefore judged as incorrect. Hence,
this accuracy implies that in most cases, the first
tool call of TOOLFLOW is accurate. On the other
hand, TOOLFLOW’s Response accuracy of 88% is
higher than the Procedure accuracy of 85%, indi-
cating that TOOLFLOW corrected errors in some
test cases. This suggests that TOOLFLOW has the
ability to self-correct based on error messages, even
though error correction samples are not included in
the training data.

5.24 ToOLFLOW’s General Ability Is NOT
Compromised by Fine-tuning.

The fine-tuned model risks catastrophic forgetting,
where the capability for tool call is enhanced, but
other abilities decline. As an Al assistant, LLM’s
reasoning and conversational abilities are equally
important. Therefore, we tested the tuned model
on the MMLU, BBH, and MTBench datasets to ex-
amine whether catastrophic forgetting issues have
occurred. The results are shown in Table 7.

The test results on MMLU and BBH show that
there is no significant difference in performance
between the models before and after training. How-

Setting MTBench MMLU BBH
Graph Plan Turn I Turn 2 Avg.

- - 784 6.85 7.34 69.3% 63.2%

v v 8.08 7.16 7.62 69.8% 63.3%

v X 739 643 691 69.3% 63.5%

X v 759 7.04 731 69.1% 63.2%

X X 7.6 6.85 7.01 68.9% 63.5%

Table 7: Results of general abilities test on MTBench,
MMLU, and BBH. The results in the first row are from
the model before tuning. The best results are marked in
bold. Red indicates a decrease in performance.

ever, on the MTBench dataset, models trained
on data without Graph-based Sampling or Plan-
Generation exhibited a decline in performance. No-
tably, in the evaluation of Turn 2, models trained
on synthetic data using the Plan-Generation strat-
egy exhibited a slight performance improvement.
This improvement is due to Plan-Generation en-
hancing the naturalness and coherence of synthetic
dialogues, thereby boosting the model’s conversa-
tional abilities.

6 Correlation Analysis

To further investigate the impact of the diversity
and coherence of the dialogue data on model perfor-
mance, we conducted additional correlation anal-
ysis. In the previous experiments, we synthesized
a total of 8,000 x 4 = 32,000 dialogues by using
TOOLFLOW and its ablation settings. We randomly
sampled from these data 10 times, each time select-
ing 4,000 dialogues to form 10 new training sets.
We calculated the diversity metrics D-3 and H, and
the coherence metrics SS and EnR for each dataset.
Then, we used this data to fine-tune the Llama3.1-
8B-Instruct. We tested these ten fine-tuned models
on the BFCL and MTBench. Finally, we calcu-
lated the Pearson correlation coefficient between
the evaluation metrics of the training data and the
model performance and reported it in Table 8.

The average results on the BFCL show that both
diversity and coherence of the training data con-
tribute a lot to enhancing the model’s tool-calling
capabilities. MTBench results show a strong posi-
tive correlation between data coherence and the
model’s conversational performance, consistent
with our assumption. Notably, while we use en-
tropy and Distinct-N scores to assess diversity, the
inconsistent correlation between these metrics and
model performance suggests they may reflect dif-
ferent dimensions of diversity. On the other hand,

4253

Maetrics D-3 H SS EnR
BFCL
Simple 0.174 -0.272 0.347 0.118
Parallel 0.250 0.315 -0.168 0.072
Multiple 0.336 -0.042 0.644 0.612
Parallel Multiple -0.274 0.479 -0.310 -0.102
Avg. 0.250 0.273 0.255 0.378
MTBench
Turn 1 -0.087 0.221 0.262 0.298
Turn 2 -0.185 0.045 0.708 0.415
Avg. -0.179 0.146 0.650 0.454

Table 8: The Pearson correlation between evaluation
metrics of data and model’s performance. P-values >
0.2 and < 0.2 are marked in green and red, respectively.

coherence does not appear to positively impact the
parallel test sets in the BFCL, likely due to the na-
ture of these tests involving multiple calls within a
single turn. Nevertheless, while our TOOLFLOW
has demonstrated the benefits of increasing diver-
sity and coherence in Section 4.2, the correlation
results in this section further validate their positive
effects on overall performance.

7 Dataset Overlap Analysis

To ensure the reliability of the evaluation, we con-
ducted an overlap analysis between training and
test datasets. This examination helps verify the in-
dependence of these test data and prevents potential
data leakage issues. We employed both N-gram-
based and similarity-based methods to demonstrate
that there is no significant data leakage in the
ToOoLFLOW dataset. We also included the well-
known xLam agent training set (Zhang et al., 2024)
as a control group for comparison.

N-gram-based method Following the approach
used in LLaMA-2 (Touvron et al., 2023), we con-
sidered a token contaminated if it appeared in any
token n-gram longer than 10 tokens in both the
evaluation sample and the training set. A tool was
classified as leaked if more than 10% of the tokens
in its JSON string were contaminated.

Similarity-based method We defined a tool as
leaked if the cosine similarity between the given
tool and any tool in the evaluation dataset exceeded
0.9. We used the all-MinilLM-L12-v2 encoder
from HuggingFace? to obtain representations for
all tools.

We present the proportions of data leakage
across different evaluation metrics in Table 9.

https://huggingface.co/

These results suggest that there is no severe data
leakage between TOOLFLOW as a training set and
the test sets.

Training ToolFlow xLam

Test

N-gram Similarity N-gram Similarity

BFCL 0.239% 2.922% 0.656% 5.247%
APIBank 0.000% 1.887% 0.000% 3.774%
ToolAlpaca 0.000% 0.000% 0.000% 0.000%

Table 9: Overlap between Training and Test Sets

8 Conclusion

In this work, we propose Graph-based Sampling
and Planned Generation strategies to enhance the
diversity and coherence of synthetic data. Based on
these two strategies, we introduce a pipeline called
TooLFLOW for synthesizing tool calling data and
generate 8,000 training samples. Using this dataset,
we conduct SFT on Llama3.1-8B-Instruct, result-
ing in improved tool calling capability of the model.
Subsequently, we conduct correlation analysis to
demonstrate the influence of data diversity and co-
herence on model performance. This provides a
reference for the composition of training data for
the tool-enhanced agent.

Limitations

We summarize the limitations in two points.

As described in Section 3.4, the seed data is a pre-
collected tool set including 16,000 APIs. Although
our TOOLFLOW can synthesize more diverse data,
it is undeniable that the size and diversity of the tool
set also affect the diversity of the data. However,
how to enrich the seed data has not yet been studied
in this work.

On the other hand, TOOLFLOW utilizes GPT-
4 for data synthesis, and then uses this data to
train a 8B-model. Therefore, it still falls under the
paradigm of using strong models to train weak mod-
els. Whether the model can be improved by train-
ing on its own synthesized data is still unknown.
We believe that this weak-to-strong setting is more
challenging but also more meaningful.

Ethic Statement

In this research, GPT-4 was employed as an eval-
uator and generator in a manner consistent with
ethical guidelines. Transparency about its usage,
accountability for its outputs, and mitigation of

4254

https://huggingface.co/

potential biases were prioritized. Data privacy
and security were strictly maintained, and the AI’s
limitations were acknowledged, ensuring it sup-
plemented rather than replaced human judgment.
This approach aimed to enhance the research qual-
ity while upholding academic integrity and ethical
standards.

Acknowledgements

This work was partially supported by Hong Kong
RGC GRF No. 14206324, CUHK direct grant No.
4055209, and CUHK Knowledge Transfer Project
Fund No. KPF23GWP20.

References

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,
Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse,
Chulaka Gunasekara, Shajith Ikbal, Sachin Joshi,
Hima Karanam, Vineet Kumar, Asim Munawar,
Sumit Neelam, Dinesh Raghu, Udit Sharma,
Adriana Meza Soria, Dheeraj Sreedhar, Praveen
Venkateswaran, Merve Unuvar, David Cox, Salim
Roukos, Luis Lastras, and Pavan Kapanipathi. 2024.
Granite-function calling model: Introducing function
calling abilities via multi-task learning of granular
tasks. Preprint, arXiv:2407.00121.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, and
Anna Chen. 2022. Constitutional ai: Harmlessness
from ai feedback. Preprint, arXiv:2212.08073.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,
Soham Dan, Maxwell Crouse, Asim Munawar, Ver-
non Austel, Sadhana Kumaravel, Vinod Muthusamy,
Pavan Kapanipathi, and Luis Lastras. 2024. API-
BLEND: A comprehensive corpora for training and
benchmarking API LLMs. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12859-12870, Bangkok, Thailand. Association for
Computational Linguistics.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, and Alan Schelten. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Nouha Dziri, Ehsan Kamalloo, Kory Mathewson, and
Osmar Zaiane. 2019. Evaluating coherence in dia-
logue systems using entailment. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3806-3812, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. Preprint, arXiv:2308.00675.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119, San Diego, California. Association
for Computational Linguistics.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102-3116,
Singapore. Association for Computational Linguis-
tics.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqging Yu, Zezhong Wang, et al.
2024a. Toolace: Winning the points of 1lm function
calling. Preprint, arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024b.
Apigen: Automated pipeline for generating verifi-
able and diverse function-calling datasets. Preprint,
arXiv:2406.18518.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey. Preprint, arXiv:2302.07842.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

4255

https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/N19-1381
https://doi.org/10.18653/v1/N19-1381
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://arxiv.org/abs/2409.00920
https://arxiv.org/abs/2409.00920
https://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2303.08774

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. Preprint,
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
Preprint, arXiv:1908.10084.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Ziyue Li, Xingyu Zeng, and Rui Zhao.
2023. Tptu: Large language model-based ai
agents for task planning and tool usage. Preprint,
arXiv:2308.03427.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

C. E. Shannon. 1948. A mathematical theory of com-
munication. The Bell System Technical Journal,
27(3):379-423.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca:
Generalized tool learning for language models with
3000 simulated cases. Preprint, arXiv:2306.05301.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, and Soumya Batra. 2023. Llama 2: Open
foundation and fine-tuned chat models. Preprint,
arXiv:2307.09288.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin Van
Durme, and Yu Su. 2024. Llms in the imaginar-
ium: Tool learning through simulated trial and error.
Preprint, arXiv:2403.04746.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. Preprint,
arXiv:2212.10560.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language

models to follow complex instructions. Preprint,
arXiv:2304.12244.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Preprint, arXiv:2305.18752.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical
questions for large language models. Preprint,
arXiv:2309.12284.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yi-
hao Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric
Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles,
Shelby Heinecke, Huan Wang, Silvio Savarese, and
Caiming Xiong. 2024. xlam: A family of large ac-
tion models to empower ai agent systems. Preprint,
arXiv:2409.03215.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2024. Judging
Ilm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS °23,
Red Hook, NY, USA. Curran Associates Inc.

4256

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2308.03427
https://arxiv.org/abs/2308.03427
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2305.18752
https://arxiv.org/abs/2305.18752
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2409.03215

A Appendix

A.1 Details of Data Quality Assessment

Following Dziri et al. (2019), we converted the
dialogue data into a Natural Language Inference
(NLI) format. In this format, the request and re-
sponse from the previous dialogue round serve
as the premise, and the current round’s request
serves as the hypothesis. We then use a trained
BERT (Reimers and Gurevych, 2019) to predict
the relationship between the two, and we calcu-
late the ratio of entailment predictions (EnR). A
higher proportion indicates greater coherence be-
tween consecutive dialogue rounds. Additionally,
we measure the semantic similarity (SS) between
the premise and hypothesis. We extract sentence
representations using BERT and compute their co-
sine similarity. A higher similarity score indicates
a more coherent dialogue.

Regarding diversity, we calculate the text’s Shan-
non entropy (H) based on the word frequency. We
also compute the Distinct-N Score (Li et al., 2016)
for the dataset, with N = 3 (D-3). Higher entropy
or Distinct-N Score indicates that the dataset con-
tains more information and has greater diversity.
In addition, we sampled 200 dialogues in each set.
We used GPT-4 to carefully evaluate each dialogue
based on four dimensions: naturalness (NAT), co-
herence (COH), helpfulness (HELP), and accuracy
(ACC). The prompt for GPT-4 evaluation is shown
in Table 15.

Automatic evaluation indicates that the Planned-
Generation strategy enhances conversation coher-
ence. Both coherence metrics, SS and EnR, reflect
this improvement. Intuitively, the plan is carefully
designed by the model in advance, leading to more
coherent dialogue. On the other hand, the Graph
Sampling strategy can increase data diversity. This
is because the strategy samples tools with strong
associations, and the combination of these tools
enhances data diversity.

GPT-4’s evaluation indicates that the Planned-
Generation strategy enhances the naturalness of
dialogue. This metric assesses whether a dialogue
could realistically occur in the real world. In data
synthesized without a plan, most user requests
are tool calls with little chitchat, which is uncom-
mon in real-world scenarios, resulting in lower nat-
uralness. GPT-4’s coherence evaluation closely
aligns with automatic assessments. In terms of
helpfulness, both Graph Sampling and Planned-
Generation strategies show improvement. The low

scores in Helpfulness are mainly due to the assis-
tant frequently asking follow-up questions about
parameters, which consumes dialogue turns. These
strategies help reduce such behavior. The accuracy
of synthesized data is high across all four settings,
likely due to pre-filtering with quality control tools.

A.2 Reliability Analysis of GPT-4 as an
Evaluator

To validate the reliability of GPT-4’s evalua-
tions, we conducted additional human evaluations.
Specifically, we sampled 50 examples from the data
previously evaluated by GPT-4 for human assess-
ment. We recruited four Computer Science PhD
students to rate these 50 samples using the same cri-
teria as GPT-4: naturalness, coherence, helpfulness,
and accuracy. We collected the human evaluation
results and calculated both the Cohen’s Kappa inter-
rater agreement scores among evaluators and the
Pearson correlation coefficients between human
and GPT-4 evaluations.

Metric NAT COH HELP ACC
Cohen’s Kappa 0.63 071 092 0.95
Pearson Correlation 0.61 0.76 0.84 0.86

Table 10: Correlation between Human and GPT-4 Rat-
ings

The results in Table 10 demonstrate high inter-
rater agreement and strong correlations with GPT-
4’s evaluations, particularly for helpfulness and
accuracy metrics. While the agreement and correla-
tions for naturalness and coherence were relatively
lower compared to the other two metrics, they still
maintained a minimum correlation of 0.61, indicat-
ing a strong positive correlation between human
and GPT-4 evaluations. We believe these results
substantiate the reliability of GPT-4’s evaluations.

A.3 GPT-4 v.s. Open Source LLM for Data
Synthesis

To evaluate the reliance of synthesis on closed-
source, high-performance LLMs (e.g., GPT-4), we
conducted comparative experiments using open-
source alternatives. Following the same pipeline
but replacing GPT-4 with LLaMA-3.1-8B-instruct,
we conducted preliminary synthesis experiments.
While still in the initial validation phase, we have
synthesized 4,235 dialogue instances. We repli-
cated experiments using this data to fine-tune
LLaMA-3.1-8B-instruct, with BFCL test results
shown in Table 11. Here, "N/A" represents the

4257

Data Source Simple Multiple Parallel Parallel multiple Avg.
N/A 90.36 89.50 73.50 73.50 83.40
LLaMA-3.1-8B-instruct 89.88 90.10 85.55 80.15 86.42
GPT-4 91.23 91.85 87.10 84.45 88.66

Table 11: Performance comparison of models trained on data synthesized by GPT-4 and LLaMA.

Models Simple Multiple Parallel Parallel Multiple Avg.
Mistral-7B-Instruct-v0.1 61.27% 54.00% 50.50% 47.50% 53.32%
+ ToOLFLOW 8691% 81.00% 89.00% 80.50% 84.35%
Qwen2-7B 76.73% 63.50% 82.00% 55.50% 69.43%
+ TooLFLOW 90.18% 81.50% 89.00% 78.50% 84.80%

Table 12: The results of Mistral 7B and Qwen2 7B on BFCL. ’+TOOLFLOW’ represents the results of the model

after training with our data.

Models L1 L2 Avg
Mistral-7B-Instruct-v0.1 59.14 32.48 45.81
+ TOOLFLOW 68.42 45.19 56.81
Qwen2-7B 58.63 25.19 4191
+ ToOOLFLOW 64.97 36.93 50.95

Table 13: The results of Mistral 7B and Qwen2 7B on
the API-Bank dataset. +TOOLFLOW’ represents the
results of the model after training with our data.

baseline performance of LLaMA-3.1-8B-instruct
(consistent with results reported in the main text).
Notably, we leveraged existing results from Section
6’s Correlation analysis, where we had downsam-
pled to ten subsets of 4,000 dialogues each, com-
parable to our LLaMA-3.1-8B-instruct synthesized
dataset size. The table reports the average results
across these ten subsets. While data synthesized
by LLaMA-3.1-8B-instruct indeed shows lower
performance compared to GPT-4-synthesized data,
the gap is not substantial. Moreover, compared
to LLaMA-3.1-8B-instruct’s initial performance,
training on its self-synthesized data demonstrates
improvements in tool-calling capabilities.

A.4 Train with other base model with
TooLFLOW

Table 12 and 13 display the results of two other
base models fine-tuned with data generated with
TooLFLOW. Results demonstrate that TOOLFLOW
enhances tool-calling performance across multiple
LLMs, validating the generalizability of our syn-
thetic data approach.

A.5 Prompts and Demonstrations
See Table 14 to 18 for details.

4258

Prompt for Plan Generation

You are a conversation planning assistant. Given an available tools list and the target turn, you need to devise a dialogue flow
between the user and the assistant centered around the use of these tools.

Here are definitions of the tools:
[tool defs]

The number of target turns: [tgt turn num]
The planned conversation flow should adhere to the following requirements:

1. Only output the user's general requests for each interaction, without specifying the names of tools to be called, allowing
users the freedom to expand upon their requests.

2. Each request must be categorized as one of the following types: a tool call request or chitchat.

3. Not every user request can be a tool call request; Chitchat can be appropriately included as a transition between
conversations. But be careful not to include too much chitchat.

4. There must be a connection between consecutive requests, ensuring a smooth progression of the conversation. For instance,
initiating with a request to book a meeting room, followed by request to send meeting invitation emails.

5. Please try to design more complex requests, which either calls multiple tools or requires multiple calls to resolve.

6. The outputted conversation flow must align with the anticipated number of turns for the interaction.

Here is an example:

The number of target turns: 5

The planned conversation flow:

1. Tool Call Request: The user expresses the need to reserve a meeting room.

2. Tool Call Request: The user requests to modify the reserved meeting room.

3. Chitchat: The user engages in casual conversation with the assistant about the topic of having too many meetings.

4. Tool Call Request: The user wishes to book multiple meetings, add corresponding schedules, and then send email reminders
to the meeting participants.

Please directly output your planned dialogue flow without any additional analysis or explanation:
1. ..
2. ..

Table 14: Prompt for plan generation

4259

Prompt for Data Evaluation

You are asked to evaluate some synthetic dialogue data. These synthetic dialogue occur between the user, the Al assistant, and
the tool. Please evaluate the data based on the following criteria, assigning a score from 1 to 5 for each category. Use the
detailed descriptions below to guide your assessment:

- Naturalness (1-5 points): Only evaluate whether the user's request and response is natural and realistic. Focus more on the
natural flow of the conversation and less on the choice of words. For example, pay attention to whether users will ask similar
questions in real scenarios. And assess whether user behavior is natural. For example, real users rarely ask similar questions
consecutively or ask longer questions.

- Coherence (1-5 points): Evaluate the overall flow and logical connection between the turns in the conversation. Focus on
checking whether the user's previous and subsequent rounds of requests are relevant.

- Helpfulness (1-5 points): Determine the effectiveness and value of the Al assistant's responses in addressing the user's needs.
- Accuracy (1-5 points): Check for the accuracy and consistency of the information provided. Everything returned by the tool
is assumed to be accurate.

Please use a more **CRITICAL** and **STRICT** evaluation method. After scoring, please provide brief comments or
feedback for each category to explain your ratings.

Please provide your evaluation in the following format:
Evaluation of Synthetic Dialogue Data

1. Naturalness: [Score] / 5
- Comments: [Brief comments or feedback]

2. Coherence: [Score] / 5
- Comments: [Brief comments or feedback]

3. Helpfulness: [Score] / 5
- Comments: [Brief comments or feedback]

4. Accuracy: [Score] / 5
- Comments: [Brief comments or feedback]

The dialogue you need to evaluate are as follows:

Table 15: Prompt for GPT-4 Data Evaluation

4260

Prompt for User Agent

Please continue the next turn of dialogue based on the given tool definitions, the history of the dialogue, and the dialogue flow
plan.

The requirements are as follows:

1. Only continue one turn, and the turn to be continued must be a user turn.

2. If the last turn of the history is the assistant asking for clarification, the user turn to be continued must provide the necessary
parameters for the tool call as much as possible.

3. If the last turn of the history is the assistant fulfilling the requirement and returning the result, the user should make a new
requirement. The new requirement should strictly adhere to the planned dialogue flow.

4. Please use [style] language style for the user turn to be continued. You can use references, transitions, and other methods to
make the conversation more natural.

5. The requirement for the user turn to be continued must be clear and a problem that the assistant can immediately solve using
the tool. The necessary parameters for the assistant to ask for clarification should also be provided immediately and not later.
6. Before continuing the writing, please clarify which step of the planned dialogue flow the current conversation is in, and
output it.

Here is an example for reference:

<Start of Tool Definition>

{{"name": "book_flight", "description": "Flight boo king tools", "arguments": {{"type": "object", "properties":

{{"from_city name": {{"description": "departure city", "type": "string"}}, "to_city name": {{"description": "arrival city",
"type": "string"}}, "depart_date": {{"description": "Departure date, in the format of YYYY-MM-dd, for example: 2024-02-24",
"type": "string"}}, "flightNo": {{"description": "flight number", "type": "string"} }, "carbinClass": {{"description": "Class of
service, such as Economy Class Y", "type": "string"}}}}, "required": ["from_city name", "to_city name", "depart date"]}}}}
<End of Tool Definition>

<Start of Dialogue Flow Plan>

1. Tool call requirement: The user proposes a request to book a flight ticket.

2. Tool call requirement: The user adds a request to book a flight ticket.

3. Chitchat: The user chats with the assistant about business trip issues.

<End of Dialogue Flow Plan>

<Start of Dialogue History>

<system>The current time is 2023-5-24 08:00:00.</system>

<system>The user is currently in Shenzhen.</system>

<user>I need help booking a flight to Beijing on June 1st. Can you assist me?</user>

<assistant>Sure, I will help you book a flight. Please wait a moment. book_flight|{{"from_city_name": "Shenzhen",

"to_city name": "Beijing", "depart_date": "2023-06-01"} } </assistant>

<tool>{{"flight message": "Flight booking successful. The details are as follows: Flight number YX002, flight time 2023-06-
01 11:00:00 -- 15:00:00, from Shenzhen Bao'an Airport to Beijing Capital International Airport."} }</tool>

<assistant>] have booked a flight for you on June 1st, 2023, from 11:00 AM to 3:00 PM, from Shenzhen Bao'an Airport to
Beijing Capital International Airport. The flight number is YX002.</assistant>

<End of Dialogue History>

The expected output in this example is as follows:

<Start of Completed Process>

1. Tool call requirement: User requests to book a flight ticket.

<End of Completed Process>

<Start of Current Process>

2. Tool call requirement: User needs to add a flight ticket booking requirement.
<End of Current Process>

<Start of Continuation>

<user>Please book another return ticket, coming back on June 5th.</user>
<End of Continuation>

Here is the dialogue you need to continue:
<Start of Tool Definition>

[tool definition]

<End of Tool Definition>

<Start of Dialogue Flow Plan>
[conversation_plan]

<End of Dialogue Flow Plan>

<Start of Dialogue History>
[conversation_begin]

<End of Dialogue History>

Table 16: Prompt for User agent

4261

Prompt for Assistant Agent

You are an experienced assistant who resolves user issues by calling tools when necessary, and responds appropriately when
tool call is not required. When you receive the return value from the tool, reply to the user based on the return value.

There are three examples,

Example 1.

<user>I need help booking a flight to Beijing on June 1st. Can you assist me?</user>

<assistant>Sure, I will help you book a flight. Please wait a moment. book_flight|{{"from city_name": "Shenzhen",
"to_city name": "Beijing", "depart_date": "2023-06-01"} } </assistant>

Example 2.

<tool>{{"flight message": "Flight booking successful. The details are as follows: Flight number YX002, flight time 2023-06-
01 11:00:00 -- 15:00:00, from Shenzhen Bao'an Airport to Beijing Capital International Airport."} }</tool>

<assistant>I have booked a flight for you on June 1st, 2023, from 11:00 AM to 3:00 PM, from Shenzhen Bao'an Airport to
Beijing Capital International Airport. The flight number is YX002.</assistant>

Example 3.

<user> All this traveling recently is really taking a toll on my sleep. </user>

<assistant>This might be due to jet lag. It could be helpful if you rest a bit earlier tonight. Before going to bed, you might want
to try some relaxing activities, like reading a physical book, listening to gentle music, or practicing meditation, to help ease the
stress that has built up during the day. </assistant>

Here are the guidelines for tool calls:

1. Inquiry for missing required parameters from the user only when necessary. If the required parameters are either empty or
fully provided, proceed with the tool call directly.',

2. Do not fabricate information for historical data or parameters not specified by the system or the user. Avoid using any vague
pronouns such as "my XX," "the user," etc.',

3. Any information already provided by the user should be included as parameter values where applicable, even if they are
optional parameters.

Table 17: Prompt for Assistant agent

Prompt for Tool Agent

Now, you are to act as a tool. Given the definition of the tool and the corresponding tool call statement, you need to simulate
the tool's response based on your own knowledge, and then return the result to the user in a specific format.

Here is the definition of the tool:
[tool defs]

The tool call statement you receive is as follows:
[tool calls]

Please return the simulated tool-generated response in the following JSON format, where each list element represents the
return of a single call. Ensure the entire result can be read by json.loads. Please don't output any additional analysis or
explanation.

[
{
"name": ...,
"results": ...
}s
{
"name": ...,
"results": ...
}
]

Table 18: Prompt for Tool agent

4262

T

v

(ST R

=

RO N

[

27
28
29
30
31
32
33
34

"type"”: "function”,
"function": {
"name": "getcurrency”,
"description”: "Get the current exchange rate for a specific
currency pair",
"parameters”: {
"type": "object”,
"properties”: {
"basecurrency”: {

"type": "string",
"description”: "The base currency code, e.g., USD"
}’
"targetcurrency”: {
"type": "string",
"description”: "The target currency code, e.g., EUR"
}
}I
"required”: ["basecurrency"”, "targetcurrency"]
}!
"results”: {
"type"”: "object”,
"properties”: {
"exchangerate”: {
"type"”: "number”,
"description”: "The current exchange rate from base
currency to target currency”
}!
"last_updated”: {
"type": "string",
"description”: "The date and time when the exchange
rate was last updated”
}
}
3

Figure 2: Example tool in JSON format.

4263

