
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4207–4224

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CVE-Bench: Benchmarking LLM-based Software Engineering
Agent’s Ability to Repair Real-World CVE Vulnerabilities

Peiran Wang1, Xiaogeng Liu2, Chaowei Xiao2,
1Tsinghua University, 2University of Wisconsin–Madison,

Abstract

Automated vulnerability repair is a crucial field
within software engineering and security re-
search. Large Language Models (LLMs) and
LLM agents have demonstrated significant po-
tential in this domain by understanding descrip-
tions in natural language and generating cor-
responding formal code. Although the coding
capabilities of LLMs have advanced rapidly,
evaluation benchmarks for real-world program-
ming setups are still lagging, preventing the
development of LLM and LLM agents in real-
world vulnerability repair. To this end, we in-
troduce CVE-Bench, an evaluation framework
consisting of 509 Common Vulnerabilities and
Exposures (CVEs) from four programming lan-
guages and 120 popular open-source reposi-
tories. Unlike previous vulnerability repair
benchmarks, which only involve the code in-
put and output, we provide LLM agents with a
test environment that simulates the real-world
vulnerability repair process. This environment
provides multiple levels of CVE information
modeling, such as black-box testing and white-
box testing. It enables the agents to use static
analysis tools to assist their repair process. Our
evaluation reveals that the SWE-agent can only
repair 21% of vulnerabilities at its best. Further-
more, they lack expert knowledge about how
to use the analysis tool to assist in vulnerability
repair.

1 Introduction

Repairing vulnerability is an essential task due to
the possible significant loss brought by the vulner-
ability. For instance, the outbreaks of WannaCry
(CERT, 2017) and NotPetya (Aidan et al., 2017)
caused a 180 billion loss in 2017, and the Equifax
(Zou et al., 2018) data breach exposed the sensi-
tive data of more than 143 million consumers. The
computer security community follows a "report and
repair" workflow to deal with the vulnerability (Mu
et al., 2018). Experts can report the existence of

vulnerabilities by black-box or white-box penetra-
tion testing (Verma et al., 2017). The black-box
testers can only access the compiled or deployed
program, so they can only report vague information
on how to exploit the vulnerability. Meanwhile, the
white-box testers can report rich information about
where to fix the problem because they can access
the source code during the mining. After that, the
security expert or developers can manually repair
the vulnerability based on the reported informa-
tion. However, repairing software vulnerabilities
based on the above information often requires sig-
nificant input from human experts, who must navi-
gate complex code bases and understand intricate
inter-dependencies within the software. This pro-
cess is inefficient and labor-intensive, especially
when dealing with ambiguous or sparse informa-
tion from sources like black-box penetration testing.
As a result, the task consumes substantial human
resources, highlighting the motivation to design an
automated solution.

On the other hand, Large language models
(LLMs) agents have been used for software devel-
opment (Chen et al., 2021; Austin et al., 2021; Jain
et al., 2022; Nijkamp et al., 2022; Li et al., 2022a)
to reduce extensive the developer labor-intensive.
To speed up the development of LLM agents for
software development, diverse benchmarks have
been proposed on benchmarking general code gen-
eration ability for software developments (Chen
et al., 2021; Jimenez et al., 2023; Liu et al., 2024;
Ji et al., 2023), leaving the benchmarking for vul-
nerability vastly less explored. Despite there are
some benchmarks (Jimenez et al., 2023; Bhandari
et al., 2021; Wang et al., 2024; Bui et al., 2022). for
vulnerability fixing, these benchmarks mainly sup-
port the code blocks as the input (Bhandari et al.,
2021) or provide a general bug-repairing evalua-
tion (Jimenez et al., 2023), without insight into the
inherent rationale of the LLM-based agent execu-
tion process (e.g., interactive features with code

4207

A vulnerability has been found in ajenti 2.1.31 and
classified as critical. This vulnerability affects
unknown code of the component API. The manipulation leads
to privilege escalation. The attack can be initiated
remotely. The exploit has been disclosed to the public
and may be used. Upgrading to version 2.1.32 is able to
address this issue. The name of the patch is
7aa146b724e0e20cfee2c71ca78fafbf53a8767c. It is
recommended to upgrade the affected component.

LLM-based
agent

LLM-based
agent

Code Base
lib

utils

req.txt

setup.py
......

Compiled
Application

Source Code

Black-box
Hacker

White-box
Hacker

Where is the code?

Code Base

lib

utils

req.txt
......

Locate the code
and repair

Code Base

lib

utils

req.txt
......

script: ajenti-core/aj/auth.py
method: OSAuthenticationProvider.authenticat()

def authenticate(self, username, password):
 child = None
 try:
 child =
pexpect.spawn('/bin/sh', ['-c', '/bin/su -
c "/bin/echo SUCCESS" - %s' % username],
timeout=5)
......

description

Figure 1: An example of black-box repairing and white-box repairing for LLM-based agents. We use the agent’s
CVE-2019-25066 as an example: (1) Black-box hackers can only access the compiled application and realize
the exploitation chain. His reported information about the repository’s vulnerability issues may only include how
to exploit it but not where to repair it. (2) White-box hackers can access the source code. Thus, their reported
information will include the direct script path and the corresponding code method. Thus, the LLM agents may face
multiple levels of information when required to repair the vulnerability issues.

interpreter, tool-using features).
In this paper, we introduce CVE-Bench (§2), a

benchmark that evaluates LLM-based agents in a
realistic vulnerability-repairing setting. CVE-Bench
contains three unique characteristics:

(1) Instead of input-output evaluation,
CVE-Bench supports agent-based evaluation by
offering real-world interactive execution-guided
programming environments. Such an environment
can provide feedback to the agent using the
interpreter to fix vulnerabilities.

(2) CVE-Bench supports tool-using. In real-
world vulnerability repair settings, developers can
use diverse static or dynamic analysis tools to as-
sist the vulnerability repair process. For instance,
given vague information about a vulnerability’s ex-
ploit process, developers can use the analysis tool
to assist the repair process (e.g., scan and locate
the vulnerability code block position and debug the
repaired code).

(3) CVE-Bench simulates the vulnerability-
repairing process in the real world by providing
multiple-level information consideration that mod-
els white-box and black-box CVE reports. For real-
world vulnerability fixing, different levels of infor-
mation may provided by either the white-box or
black-box analyzers (as shown in Figure 1). White-
box analyzers can access the source code, locate
the problematic code blocks, and report them to the
developers. Thus, the developers can directly lo-

cate the vulnerability code and repair it. However,
black-box analyzers can only access the compiled
or applied programs and exploit the vulnerability
but do not know the actual location of the code
blocks. Thus, developers can only fix the vulnera-
bility with just simple instructions.

Specifically, CVE-Bench provides 509 CVE sam-
ples across four programming languages (Python,
Java, JavaScript, and PHP). The selected CVEs
come from 120 open-source GitHub repositories,
with at least 5000 stars for each repository. Over 16
types of CWEs are included in the collected CVEs.
You can see more details about the selected CVEs
in §A. Furthermore, we provide four static analysis
tools (Prospector, Bandit, Pylint, and Mypy) in our
interactive environment to assist the repair process.

We evaluate our benchmark with SWE-agent
(Yang et al., 2024). We find that the SWE agent can
achieve the repair with a success rate of about 21%
at its best. Furthermore, we observe that the tested
agent can only solve 14% of tasks under the black-
box-level information setting. Further observation
also uncovers that the agents lack the knowledge
to use the analysis tool. This underscores the need
to build more interactive LLM-based agents and
enhance the agents’ ability to use tools.

2 CVE-Bench

In this section, we discuss the overall design of
the CVE-Bench. We first discussed constructing the

4208

whole benchmark in §2.1. Then, we formulate the
task for the CVE-Bench in §2.2. At last, we list the
features of CVE-Bench that make it different from
previous works and contribute to future research in
§2.3.

2.1 Benchmark Construction

The construction process of CVE-Bench follows the
three steps (see Figure 2):

Step I: Environment construction. CVE-Bench
starts by selecting target CVEs for the benchmark.
We explore the CVEFixes database (Bhandari et al.,
2021) and select 509 CVEs from 4 programming
languages, with the corresponding repositories’ star
counts over 5,000 (see details in §A). Then, we
query three types of information, including the
CVE description, the CVE script, and the CVE
method/function, and use the three types of infor-
mation to construct three levels of information to
model the black-box (description), white-box (de-
scription + script + method) reports, and an interme-
diate level between the two (description + script).
After the information is constructed, CVE-Bench
builds the code base for the evaluation. CVE-Bench
first clones the CVEs’ corresponding repositories,
then queries the database for the CVEs’ repair be-
longing commits and checkouts the repository to
the parent commits.

Step II: Repair patch generation. Next,
CVE-Bench sends the generated information to the
agent. The agent builds a docker environment for
the constructed code base when receiving the input
information. Then, the agent performs an itera-
tive repair process: (1) The LLM generates the
instruction to be executed; (2) The agent inputs the
instruction on the terminal using the docker; (3)
The terminal execute and output feedback; (4) The
feedback is sent back to the LLM to repeat (1)-(4).
During the patch generation process, CVE-Bench
enhances the executable environment by providing
four static analysis tools (Prospector, Pylint, Ban-
dit, and Mypy) for the agents to call to simulate the
real-world vulnerability repair environment (see
detail in §C).

Step III: Repair validation. At last, CVE-Bench
performs execution-based repair patch validation
using the unit tests. We crafted unit tests (including
the Dockerfile to construct the environment for the
unit test and the unit test scripts) for each selected
CVE. The unit test is written following the exploit
chain of each CVE. When the repair patch is gen-

erated, CVE-Bench will apply the patch to the code
base and execute the unit test to judge whether the
CVE is repaired.

2.2 Task Formulation

Model input. First of all, CVE-Bench extracts three
types of information from the CVEFixes database
(Bhandari et al., 2021): (1) Description: This infor-
mation describes the rationale and the exploit logic
of the CVE, described by natural language; (2)
Script: This describes which script contains vulner-
ability issues, along with the script’s path from the
code base; (3) Method: This information detailedly
describes which method triggers the vulnerability
issues.

Based on these three types of information,
CVE-Bench further constructs three levels of infor-
mation to model real-world vulnerability report in-
formation: (1) Black box: This level only contains
the description information, modeling black-box
vulnerability report; (2) White box: This level con-
tains all the description, script, and method infor-
mation to model the white-box vulnerability report.
See a detailed example in Figure 2. Additionally,
we also provide the Intermediate category: This
level contains description and script information,
modeling an intermediate state between the black
box and white box;

Evaluation metrics. We apply the generated patch
to the code base using GitHub’s patch program to
validate the generation and execute the unit tests
associated with the target vulnerabilities. If the
patch applies successfully and the unit test passes,
we consider the generated patch to have success-
fully repaired the vulnerability. The metric for our
benchmark is the percentage of resolved vulnera-
bilities (repair rate).

2.3 Features of CVE-Bench

Traditional benchmarks in NLP typically involve
only short input and output sequences and consider
somewhat “contrived” problems explicitly created
for the benchmark. In contrast, CVE-Bench ’s real-
istic construction setting imbues the dataset with
unique properties, which we discuss below.

Real-world CVE vulnerability repair tasks.
Since each task instance in CVE-Bench consists
of a large and comply CVE-Bench requires demon-
strating sophisticated skills and knowledge pos-
sessed by experienced software engineers but are

4209

Step III: Repair
validation

{
"description": "pyro before 3.15 unsafely
handles pid files in temporary directory
locations and opening the pid file as root.
An attacker can...",
 "script": "pyro/lib/sym_reader.py",
 "method": "read_file()"
}

Level 1: Black-box

Now there is a CVE in this repo:{pyro
before 3.15 unsafely handles pid files in
temporary directory locations and opening
the pid file as root. An attacker can...}.
Now the code which is the cause for the CVE
locates at: the script path is
{scrapy/downloadermiddlewares/redirect.py},
and the method is {read_file()}

Now there is a CVE in this repo:{pyro
before 3.15 unsafely handles pid files in
temporary directory locations and opening
the pid file as root. An attacker can...}.

Now there is a CVE in this repo:{pyro
before 3.15 unsafely handles pid files in
temporary directory locations and opening
the pid file as root. An attacker can...}.
Now the code which is the cause for the CVE
locates at: the script path is
{scrapy/downloadermiddlewares/redirect.py}.

Level 3: White-box

Level 2: Intermediate

Code Base
lib

utils

req.txt

req.txt

setup.py

main.py

test

data

setup.cfg

CVEFixes Database

3 types of information

Tool

Pylint

Prospector

Bandit

Mypy

Agent
LLM

Feedback

Terminal

Instruction

Unit tests

test.sh

test.py

Dockerfile

Patch
fix.patch

Code Base

lib

utils

Step I: Environment construction Step II: Repair patch generation

Figure 2: There are four steps in CVE-Bench: (1) Environment construction: CVE-Bench uses the three-level
information to generate a vulnerability issue as the input to the agent. CVE-Bench clones the CVEs’ corresponding
repositories and checks out the repository to the parent commits. (2) Repair patch generation: Next, CVE-Bench
sends the queried information divided into multiple levels to the agents for patch generation. (3) Repair validation:
At last, CVE-Bench performs execution-based repair patch validation using the unit tests. CVE-Bench also considers
comparing the generated patches with the ground truth repair code crafted by the man.

not commonly evaluated in traditional code genera-
tion benchmarks.

Real-world CVE vulnerability repair process
modeling. Unlike previous benchmarks, which
only provide one level of information to evaluate
LLMs, CVE-Bench provides multiple levels of in-
formation as input. This approach analyzes what
the LLM-based agent needs to repair a vulnerability
issue. By doing so, we can dive deep into an ob-
servation about enhancing the agents’ ability. This
approach also aligns with the real-world vulnera-
bility repair settings (low information input-black
box, rich information input-white box).

Interactive repair environment simulation. An-
other feature of the LLM-based agent is its abil-
ity to use tools. Previous research only evaluates
an agent’s ability to move from input to output,
treating agents as black boxes without concern and
observing their inside functionality. Unlike them,
CVE-Bench encompasses the analysis tool using
the vulnerability issues repair approach. We eval-
uate whether the agent chooses and uses the tool
effectively.

Execution-based validation. Unlike previous
vulnerability repairing benchmarks, which only
use the sequence accuracy as the repair metrics,
CVE-Bench uses the unit test pass portion as the
repair portion of the CVEs. This is a more reli-
able and robust evaluation metric since the LLMs
may generate diverse but equally effective repair

patches.

3 Evaluation

We calculated the unit test pass rate as the patch
repair rate for the evaluation metrics. Furthermore,
we also categorized the failed reasons as follows:
• Locate fail: LLM can not locate the vulnerability

codes.
• Loop out: The repairing process reaches the max-

imum step limit.
• Unit test fail: The generated repair patch does

not pass the unit test.
• Others: Other reasons for the agents’ genera-

tion failure (e.g., failure to generate formal com-
mand).

3.1 Different Level Information

Method. We compare the SWE-agent’s ability to
repair the vulnerability across three information lev-
els (Black-box, intermediate, and white-box). We
evaluate the agents on the selected Python CVEs,
with the GPT-4 as the foundation model backend.
We summarized the patch repair rate using the vali-
dation and counted the reasons for failure. We also
counted the fixed rate’s CDF as the interaction step
increased.

Results. As shown in Figure 3 (a), we can ob-
serve that the repair rate under the white-box set-
ting is better than the black-box setting. When
under the black-box setting, the repair rate is only

4210

Black-box Intermediate White-box
0

20

40

60

80

100
Re

pa
ir

Ra
te

(%
)

Repair
Locate fail
Loop out
Unit test fail
Others

(a) Repair rate & Failure reason

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

CD
F

of
 R

ep
ai

r R
at

e
(%

) Black-box
Intermediate
White-box

(b) CDF of repair rate with the interaction step increase

Figure 3: We evaluated the tested agents using three different levels of information: CVE description, CVE script,
and CVE method to model the real-world vulnerability fixing (black box and white box). (a) We summarized the
repair rate and the three reasons for failure at each level. (b) We counted the CDF of the fixed rate among the three
levels of information with the interaction step increase.

about 14.1%. While under the intermediate setting,
the repair rate reaches about 17.8%. The white-box
setting gives the agent the best ability to repair the
vulnerability issues, with a repair rate of over 21%.

Then, we studied the failure reasons across the
three levels of information in Figure 3 (a). Under
the black-box setting, the most common reason for
failure commands is that the agent can not locate
the vulnerability. This aligns with our intuition:
the agent cannot independently locate the detailed
location (script and method). The same observation
also occurs in the intermediate setting, indicating
that the agent can not locate where the vulnerability
is even when the script path is given. We checked
the data for the white-box setting and found that the
main reason for failure was failing to pass the unit
test. This indicates that the white box can always
craft the repair patch but not a stable one.

For the success repair, we can observe more de-
tails in Figure 3 (b). For the white-box setting, the
agent can quickly fix the vulnerability within low
steps because it knows the actual position of the
code blocks. The other two levels (black box and
intermediate) require more steps to accomplish the
tasks because the agent needs to find the location of
the vulnerability code blocks in the first few steps.

3.2 Programming Languages

Method. We compare the performance of the SWE-
agent when solving vulnerability repair tasks for
different programming languages (Python, Java,
JavaScript, and PHP). For this test, we only con-
sider the GPT-4 foundation model backend and the

Python Java JavaScript PHP
0

25

50

75

100
Re

pa
ir

Ra
te

(%
)

Figure 4: We evaluate the tested agents across four pro-
gramming languages: 1)Python, 2)Java, 3)JavaScript,
and 4)PHP.

Info.
Level

Python Java JavaScript PHP

Repair # 15 53 127 38
Repair % 21.17 12.33 17.81 16.33
Edit line 74.00 34.90 43.23 34.34
Edit word 3206.00 1735.98 1606.73 2010.42

Table 1: We evaluate the tested agents across four pro-
gramming languages: 1)Python, 2)Java, 3)JavaScript,
and 4)PHP.

information at the white-box level as input.

Results. The results are shown in Figure 4.
The SWE-agent performs best when repairing
the Python CVEs with the highest repair rate of
21.17%. The repair rates on JavaScript (17.81%)
and PHP (16.33%) are nearly the same and fall
about 5% behind the repair rate on Python. How-
ever, the SWE-agent performs worst when solving
Java CVEs with a repair rate of around 12%. This
may be due to the GPT-4’s training dataset, which
may contain more knowledge of Python than Java.

4211

GPT-4 GPT-3.5 Llama-3
0

20

40

60

80

100
Re

pa
ir

Ra
te

(%
)

Repair
Locate fail
Loop out
Unit test fail
Others

(a) Repair rate & Failure reason
0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

CD
F

of
 R

ep
ai

r R
at

e
(%

) GPT-4
GPT-3.5
Llama-3

(b) CDF of repair rate with the interaction step increase
Figure 5: We evaluate the tested agents across three different foundation models: 1)GPT-4, 2)GPT-3.5 and 3)Llama-
3.

Furthermore, the syntax complexity of Java is also
higher than the complexity of the other three lan-
guages.

3.3 Different Foundation Models: GPT-4 vs.
GPT-3.5 vs. Llama-3

Method. We compare the agent’s ability to repair
the vulnerability under the GPT-4, GPT-3.5, and
the Llama models. Due to the high cost, we set the
information level to the white-box level, with 50
Python CVE samples as the test set.

Results. Figure 5(a) lists the patch repair portion.
We can observe that the repair portion of GPT-4 is
the highest. While using GPT-3.5 and Llama, the
repaired portion drops quickly.

Then, we analyzed the failure reasons for the
three different foundation models. As shown in
Figure 5(a), for GPT-4, the most common failure
reason for failed commands is unit test failure. The
most common reason for failure in GPT-3.5 is the
failure to generate formal commands (including in
others). This is because GPT-3.5 can not generate
formal commands to execute on the terminal. It
always falls short of generating unuseful or syntax
error commands.

3.4 Tool Using

Method. We compare the performance of the SWE-
agent when using different static analysis tools and
when not using tools. We only considered Python
CVEs and used 50 testing samples to simplify the
experiment. The information level is set to the
black-box setting. We consider four distinct tools:
Pylint, Bandit, Mypy, and Prospector (see details
in §C). We compare the repair rate and the repair
CDF changes across the four tools used.

Results. As shown in Figure 6 (a), the tool used

does not enormously increase the repair portion;
some tools even make the repair rate drop com-
pared with non-tool use (Default). This may be
attributed to the fact that the LLM does not have
enough knowledge to use these tools. Also, using
the tool requires more loops of interactions, which
may cause the agents to reach the maximum limit
of the loops.

Furthermore, we observe in Figure 6(b) the tools
require the agents to take more steps to repair a
vulnerability. However, we believe the agent failed
to use the tool effectively because the repair rate
did not increase greatly.

3.5 Evaluation for Overfitting

Method. Considering the potential overfitting is-
sues for the GPT-4 backend for the tested agents,
we compare the repair rate between the repair cases
on CVE-Bench’s pre-collected CVEs and newly col-
lected CVEs after 2023 Nov (the end of GPT-4
training). We collected 50 Python CVEs after 2023
Nov to avoid the potential training sample involved.
Then, we used the CVE-Bench under GPT-4 back-
end, with the information level set to white-box
setting, to test the agents on the 50 Python CVEs.

Results. As shown in Figure 7 (a), the repair rate
on recent CVEs is lower than that of pre-collected
CVEs. This indicated that the pre-trained samples
strongly affected the agents’ repair ability. If the
related knowledge persists in the agents’ backend
foundation models’ training samples, it may be
easier for them to locate and repair the vulnerability
issues.

The CDF in Figure 7 (b) further reveals the over-
fitting effect. For the pre-collected CVE, the agent
mainly takes less than 12 steps to accomplish the
repair tasks. Meanwhile, for the recent CVE, the
agent must take more steps to accomplish the tasks.

4212

Default Pylint Bandit mypy prospector
0

20

40

60

80

100
Pa

tc
h

Fix
 R

at
e(

%
)

(a) Patch rate
0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

CD
F

of
 R

ep
ai

r R
at

e
(%

) Default
Pylint
Bandit
Mypy
Prospector

(b) CDF of repair rate with the interaction step increase
Figure 6: We evaluate the tested agents across four different static analysis tool support: Pylint, Bandit, mypy, and
Prospector. We compare the repair rate and the CDF of repair between steps.

Pre-collected CVE Recent CVE
0

20

40

60

80

100

Re
pa

ir
Ra

te
(%

)

Repair
Locate fail
Loop out
Unit test fail
Others

(a) Fix rate & Failure reason
0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

CD
F

of
 R

ep
ai

r R
at

e
(%

) Pre-collected CVE
Recent CVE

(b) CDF of repair rate with the interaction step increase
Figure 7: We compare the repair rate between the repair cases on CVE-Bench’s pre-collected CVEs and newly
collected CVEs after 2023 Nov (the end of GPT-4 training) to avoid the effect of overfitting.

3.6 A quantitative analysis

We provide an example from CVE-2022-0577, a
Python CVE from the Scrapy repository (see Fig-
ure 8). The CVE’s description is "Exposure of
Sensitive Information to an Unauthorized Actor in
GitHub repository scrapy/scrapy."

In this example, the agents are given the 3-level
information contained in the generated issue. The
agent adds four lines of code in the agent-generated
code blocks to check whether the header is from
the two sensitive headers: "Cookie" and "Autho-
rization," to repair the potential vulnerability. How-
ever, as we observe in Figure 8’s ground truth re-
pair code, the developers added another function to
check the header detailedly. Furthermore, the de-
velopers call another function from the other script
to solve it within the created function.

This highlights current LLM-based agents’ draw-
backs: First, it tends to repair the code directly in
its original location. Compared to code written
by human developers, it is not concise enough. It
lacks maintainability (adding a lot of code in place
is more likely to make code development more con-

fusing than creating a specific function). Second,
the LLM agents still lack enough domain to call the
existing function to solve the problem. Still, they
aim to fix the problem using their own generated
code, which is inconsistent with the modular devel-
opment characteristics of software engineering.

4 Related Work

Code generation benchmark. HumanEval (Chen
et al., 2021) has become the benchmark for the
enduring challenge of generating code from natu-
ral language specifications (Yu et al., 2018; Austin
et al., 2021; Hendrycks et al., 2021a,b; Zan et al.,
2023). Over the past year, various benchmarks
have aimed to enhance HumanEval by incorporat-
ing support for multiple programming languages
(Cassano et al., 2022; Athiwaratkun et al., 2023; Or-
lanski et al., 2023), diverse editing scopes (Yu et al.,
2023; Du et al., 2023). Innovative code comple-
tion challenges (Muennighoff et al., 2023), along
with an increased emphasis on testing (Liu et al.,
2023b,a). In parallel, other studies have endeavored
to introduce innovative coding methodologies (Yin

4213

class RedirectMiddleware(BaseRedirectMiddleware):

 def process_response(self, request, response, spider):
 ...
 redirected_url = urljoin(request.url, location)

 if response.status in (301, 307, 308) or request.method == 'HEAD':
 redirected = request.replace(url=redirected_url)
 return self._redirect(redirected, request, spider, response.status)

 redirected = self._redirect_request_using_get(request, redirected_url)
 return self._redirect(redirected, request, spider, response.status)

class RedirectMiddleware(BaseRedirectMiddleware):

 def process_response(self, request, response, spider):
 ...
 redirected_url = urljoin(request.url, location)

 original_domain = urlparse(request.url).netloc
 if redirected_domain != original_domain:
 sensitive_headers = ['Cookie', 'Authorization']
 for header in sensitive_headers:
 request.headers.pop(header, None)

 if response.status in (301, 307, 308) or request.method == 'HEAD':
 redirected = request.replace(url=redirected_url)
 return self._redirect(redirected, request, spider, response.status)

 redirected = self._redirect_request_using_get(request, redirected_url)
 return self._redirect(redirected, request, spider, response.status)

def _build_redirect_request(source_request, *, url, method=None, body=None):
 redirect_request = source_request.replace(
 url=url,
 method=method,
 body=body,
 cookies=None,
)
 if 'Cookie' in redirect_request.headers:
 source_request_netloc = urlparse_cached(source_request).netloc
 redirect_request_netloc = urlparse_cached(redirect_request).netloc
 if source_request_netloc != redirect_request_netloc:
 del redirect_request.headers['Cookie']
 return redirect_request

class RedirectMiddleware(BaseRedirectMiddleware):

 def process_response(self, request, response, spider):
 ...
 redirected_url = urljoin(request.url, location)

 if response.status in (301, 307, 308) or request.method == 'HEAD':
 redirected = _build_redirect_request(request, url=redirected_url)
 return self._redirect(redirected, request, spider, response.status)

 redirected = self._redirect_request_using_get(request, redirected_url)
 return self._redirect(redirected, request, spider, response.status)

{
"description": "Exposure of Sensitive Information to an Unauthorized Actor in GitHub
repository scrapy/scrapy prior to 2.6.1.",
 "script": "scrapy/downloadermiddlewares/redirect.py",
 "method": "RedirectMiddleware.process_response()"
}

Original code

Ground truth repair

3 types information

Agent repair code

Now there is a CVE in this repo:{Exposure of Sensitive Information to an
Unauthorized Actor in GitHub repository scrapy/scrapy prior to 2.6.1.}. Now the
following functions is the cause for the CVE: the path is
{scrapy/downloadermiddlewares/redirect.py}, and the function is
{RedirectMiddleware.process_response()}

White-box level information

Figure 8: We show an example of a formatted task instance, the original code, ground-truth repair code (extracted
from the database, made by the developers), the 3-level information, generated issue, and the agent-generated code.
In the code blocks, grey highlights are additions.

et al., 2022; Yang et al., 2023) or to develop prob-
lems tailored to specific libraries (Lai et al., 2022;
Zan et al., 2022). Instead of general code genera-
tion problems, CVE-Bench focuses on vulnerabil-
ity repair problems. Vulnerability repair requires
the agents to understand the vulnerability exploit
rationale from the attackers’ view. Based on such
understanding, the agents can generate high-quality
repair patches. Furthermore, real-world vulnerabil-
ity repair involves black-box testing reports, which
only provide vague information for the agents.

ML for software engineering. Machine Learning
(ML) is revolutionizing Software Engineering by
automating software development processes using
neural networks and Large Models (LMs) (Zheng
et al., 2023; Hou et al., 2023). This includes au-
tomating commit messages (Jung, 2021; Liu et al.,
2023a), enhancing PR reviews (Yang et al., 2016;
Li et al., 2022b), bug localization (Kim et al., 2019;
Chakraborty et al., 2018), software testing (Kang
et al., 2023; Xia et al., 2023), and program repair
(Gupta et al., 2017; Allamanis et al., 2017). For
CVE-Bench, relevant works focus on applying LMs
to automated program repair (Xia and Zhang, 2022;
Fan et al., 2023) and guiding code editing through
commits (Chakraborty et al., 2018; Zhang et al.,
2022). However, the previous fixing mainly follows
the one-time input-to-output paradigm and ignores
the interactive nature of the LLM-based agents.
CVE-Bench simulates a real-world environment for

the program repair by providing real-world-level
information and tool use.

5 Conclusion

Automated vulnerability repair is a popular and
valuable software engineering and security research
field. Large language models (LLMs) and LLM-
based agents have shown sizeable potential appli-
cation value in this area. LLMs can understand
natural language described vulnerability rationale
and generate formal code to repair it. However,
evaluation benchmarks modeling real-world vul-
nerability repair environments are still lacking. To
this end, we introduce CVE-Bench, an evaluation
framework consisting of 509 CVEs from four pro-
gramming languages and 120 popular open-source
repositories. Unlike previous vulnerability repair
benchmarks, which only involve the code input and
output, we provide LLM agents with a real-world
vulnerability repair environment. In this environ-
ment, multiple levels of CVE information model-
ing, such as black-box and white-box testing, are
provided to rate agents’ ability to repair vulnera-
bilities. Furthermore, we enable the agents to use
static analysis tools in this environment to assist
their repair process and see how the repair rate
changes with the tool’s use. Our evaluation shows
that the agent’s ability differs greatly from white to
black-box settings. And the agent can still not use
the static analysis tool effectively.

4214

6 Limitation

Limited programming language coverage. Be-
cause there are too many programming languages,
our benchmark cannot cover too many types. At the
same time, due to the high complexity of some pro-
gramming languages, it is difficult for us to build a
more robust unit test set.

Limited tested agent types. Since there are rela-
tively few existing agent types, we only conducted
experiments on SWE-Agent (Yang et al., 2024).
Furthermore, Open-Devin (OpenDevin Contribu-
tors, 2024) does not provide a sufficient API for us
to call. It only supports using its API, which limits
CVE-Bench to establish large-scale experiments.

Limited tested foundation models. Until our pa-
per is submitted, we have only performed the ex-
periments on the GPT -4, GPT-3.5, and Llama-3
models. We plan to add more experiments before
the publication.

4215

References
Jagmeet Singh Aidan, Harsh Kumar Verma, and

Lalit Kumar Awasthi. 2017. Comprehensive survey
on petya ransomware attack. In 2017 International
conference on next generation computing and infor-
mation systems (ICNGCIS), pages 122–125. IEEE.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2017. Learning to repre-
sent programs with graphs. arXiv preprint
arXiv:1711.00740.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian
Wang, Xiaopeng Li, and Yuchen Tian et. al. 2023.
Multi-lingual evaluation of code generation models.
Preprint, arXiv:2210.14868.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Guru Bhandari, Amara Naseer, and Leon Moonen. 2021.
CVEfixes: Automated Collection of Vulnerabilities
and Their Fixes from Open-Source Software. In
Proceedings of the 17th International Conference on
Predictive Models and Data Analytics in Software
Engineering (PROMISE ’21), page 10. ACM.

Quang-Cuong Bui, Riccardo Scandariato, and Nicolás
E. Díaz Ferreyra. 2022. Vul4j: a dataset of repro-
ducible java vulnerabilities geared towards the study
of program repair techniques. In Proceedings of the
19th International Conference on Mining Software
Repositories, MSR ’22, page 464–468, New York,
NY, USA. Association for Computing Machinery.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation. Preprint, arXiv:2208.08227.

US CERT. 2017. Indicators associated with wannacry
ransomware.

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha,
and Baishakhi Ray. 2018. Entropy guided spec-
trum based bug localization using statistical language
model. arXiv preprint arXiv:1802.06947.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, and Jared Ka-
plan et. al. 2021. Evaluating large language models
trained on code. Preprint, arXiv:2107.03374.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. Preprint,
arXiv:2308.01861.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roy-
choudhury, and Shin Hwei Tan. 2023. Automated
repair of programs from large language models.
Preprint, arXiv:2205.10583.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c language
errors by deep learning. In Proceedings of the aaai
conference on artificial intelligence, volume 31.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with apps. Preprint, arXiv:2105.09938.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021b. Measuring coding challenge com-
petence with apps. NeurIPS.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2023. Large language models for
software engineering: A systematic literature review.
Preprint, arXiv:2308.10620.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan
Natarajan, Suresh Parthasarathy, Sriram Rajamani,
and Rahul Sharma. 2022. Jigsaw: Large language
models meet program synthesis. In Proceedings of
the 44th International Conference on Software Engi-
neering, pages 1219–1231.

Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang.
2023. Benchmarking and explaining large language
model-based code generation: A causality-centric
approach. arXiv preprint arXiv:2310.06680.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Tae-Hwan Jung. 2021. Commitbert: Commit message
generation using pre-trained programming language
model. Preprint, arXiv:2105.14242.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. Preprint,
arXiv:2209.11515.

Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moon-
zoo Kim. 2019. Precise learn-to-rank fault localiza-
tion using dynamic and static features of target pro-
grams. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(4):1–34.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. Preprint, arXiv:2211.11501.

4216

https://arxiv.org/abs/2210.14868
https://doi.org/10.1145/3475960.3475985
https://doi.org/10.1145/3475960.3475985
https://doi.org/10.1145/3524842.3528482
https://doi.org/10.1145/3524842.3528482
https://doi.org/10.1145/3524842.3528482
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2205.10583
https://arxiv.org/abs/2205.10583
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2105.14242
https://arxiv.org/abs/2105.14242
https://arxiv.org/abs/2105.14242
https://arxiv.org/abs/2209.11515
https://arxiv.org/abs/2209.11515
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022a. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022b. Automating code review activities by
large-scale pre-training. Preprint, arXiv:2203.09095.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Shangqing Liu, Yanzhou Li, Xiaofei Xie, and Yang Liu.
2023a. Commitbart: A large pre-trained model for
github commits. Preprint, arXiv:2208.08100.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, and Hanyu Lai et. al. 2023b. Agentbench: Eval-
uating llms as agents. Preprint, arXiv:2308.03688.

Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. 2018.
Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security
Symposium (USENIX Security 18), pages 919–936.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction
tuning code large language models. Preprint,
arXiv:2308.07124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenDevin Contributors. 2024. Opendevin: Code less,
make more. https://github.com/OpenDevin/
OpenDevin.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey
Hui, Joshua Howland, Jonathan Malmaud, Jacob
Austin, Rishabh Singh, and Michele Catasta. 2023.
Measuring the impact of programming language dis-
tribution. Preprint, arXiv:2302.01973.

Akanksha Verma, Amita Khatana, and Sarika Chaud-
hary. 2017. A comparative study of black box testing
and white box testing. International Journal of Com-
puter Sciences and Engineering, 5(12):301–304.

Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng
Wen, Yujia Chen, and Qing Liao. 2024. Reposvul:
A repository-level high-quality vulnerability dataset.
In Proceedings of the 2024 IEEE/ACM 46th Interna-
tional Conference on Software Engineering: Com-
panion Proceedings, ICSE-Companion ’24, page

472–483, New York, NY, USA. Association for Com-
puting Machinery.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,
Michael Pradel, and Lingming Zhang. 2023. Univer-
sal fuzzing via large language models. arXiv preprint
arXiv:2308.04748.

Chunqiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 959–971.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024. Swe-agent: Agent-computer interfaces
enable automated software engineering.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. Preprint, arXiv:2306.14898.

Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida,
and Hajimu Iida. 2016. Mining the modern code
review repositories: A dataset of people, process and
product. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages
460–463.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
Alex Polozov, and Charles Sutton. 2022. Natural lan-
guage to code generation in interactive data science
notebooks. Preprint, arXiv:2212.09248.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and
Qianxiang Wang. 2023. Codereval: A benchmark
of pragmatic code generation with generative pre-
trained models. Preprint, arXiv:2302.00288.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin,
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. 2022. Cert: Continual pre-
training on sketches for library-oriented code genera-
tion. Preprint, arXiv:2206.06888.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-
Guang Lou. 2023. Large language models meet
nl2code: A survey. Preprint, arXiv:2212.09420.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie,
Junyi Jessy Li, and Milos Gligoric. 2022. Coditt5:
Pretraining for source code and natural language edit-
ing. Preprint, arXiv:2208.05446.

4217

https://arxiv.org/abs/2203.09095
https://arxiv.org/abs/2203.09095
https://arxiv.org/abs/2208.08100
https://arxiv.org/abs/2208.08100
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://github.com/OpenDevin/OpenDevin
https://github.com/OpenDevin/OpenDevin
https://arxiv.org/abs/2302.01973
https://arxiv.org/abs/2302.01973
https://doi.org/10.1145/3639478.3647634
https://doi.org/10.1145/3639478.3647634
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2212.09248
https://arxiv.org/abs/2212.09248
https://arxiv.org/abs/2212.09248
https://arxiv.org/abs/2302.00288
https://arxiv.org/abs/2302.00288
https://arxiv.org/abs/2302.00288
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2208.05446
https://arxiv.org/abs/2208.05446
https://arxiv.org/abs/2208.05446

Zibin Zheng, Kaiwen Ning, Jiachi Chen, Yanlin Wang,
Wenqing Chen, Lianghong Guo, and Weicheng Wang.
2023. Towards an understanding of large language
models in software engineering tasks. arXiv preprint
arXiv:2308.11396.

Yixin Zou, Abraham H Mhaidli, Austin McCall, and
Florian Schaub. 2018. " i’ve got nothing to lose":
Consumers’ risk perceptions and protective actions
after the equifax data breach. In Fourteenth Sympo-
sium on Usable Privacy and security (soups 2018),
pages 197–216.

4218

A Dataset Details

In this section, we discussed the details of the CVE
dataset.

32.9%

24.8%

24.8%

17.4% Languages
JavaScript
PHP
Python
Java

(a) Programming Languages

LOW MEDIUM HIGH
0

20

40

60

80

100

CV
E

Se
ve

rit
y

Programming Languages
Java JavaScript Python PHP

(b) CVE Severity

Figure 9: The programming languages and the CVE
severity of the selected CVEs.

Programming languages. The CVE dataset con-
tains 509 vulnerability issues selected from four
programming languages (Java, Python, JavaScript,
and PHP). The portion of each programming lan-
guage is shown in Figure 9(a) (JavaScript: 164,
PHP: 124, Python: 124, Java: 87).

2.5 5.0 7.5
CVSS Score

0

20

40

Fr
eq

ue
nc

y

Histogram of CVSS Scores

(a) Java

2.5 5.0 7.5 10.0
CVSS Score

0

20

40

Fr
eq

ue
nc

y

Histogram of CVSS Scores

(b) Python

2 4 6 8
CVSS Score

0

20

40

Fr
eq

ue
nc

y

Histogram of CVSS Scores

(c) JavaScript

4 6 8 10
CVSS Score

0

20

40

Fr
eq

ue
nc

y

Histogram of CVSS Scores

(d) PHP

Figure 10: The distribution of the CVSS scores across
the four programming languages CVEs.

CVE severity&CVE score. The severity of CVEs
(Common Vulnerabilities and Exposures) is classi-
fied using the CVSS (Common Vulnerability Scor-
ing System). The CVSS provides a way to capture
the principal characteristics of a vulnerability and
produce a numerical score reflecting its severity.
The numerical score can then be translated into a
qualitative representation (low, medium, high, and
critical) to help organizations properly assess and
prioritize their vulnerability management processes.
Here are the general severity ratings based on the
CVSS score:

1. None: 0.0

2. Low: 0.1 - 3.9

3. Medium: 4.0 - 6.9

4. High: 7.0 - 8.9

5. Critical: 9.0 - 10.0

The CVSS score is calculated based on several
metrics, which fall into three main groups:

• Base metrics: These represent a vulnerabil-
ity’s intrinsic and fundamental characteristics
that are constant over time and across user
environments. Base metrics include the at-
tack vector, attack complexity, privileges re-
quired, user interaction, scope, confidentiality,
integrity, and availability impacts.

• Temporal metrics: These reflect the charac-
teristics of a vulnerability that may change
over time but not across user environments.
Temporal metrics include the exploit code
maturity, remediation level, and report con-
fidence.

• Environmental metrics: These represent the
characteristics of a vulnerability that are rel-
evant and specific to a particular user’s envi-
ronment. Environmental metrics include col-
lateral damage potential, target distribution,
security requirements, and modified versions
of the base metrics.

We summarized the collected CVEs severity distri-
bution in Figure 9(b) and the CVSS score distribu-
tion in Figure 10.

The overall CVSS score combines these metrics
to provide a standardized view of a vulnerability’s
severity.

CWE type of the selected CVEs. The Common
Weakness Enumeration (CWE) is a community-
developed list of common software and hardware
security weaknesses. Maintained by the MITRE
Corporation, CWE aims to serve as a standard refer-
ence point for identifying, mitigating, and prevent-
ing weaknesses in software and systems throughout
their lifecycle. By providing a unified language for
discussing software security issues, CWE helps
improve the quality of software and hardware prod-
ucts by reducing the prevalence of vulnerabilities.

CWE uses a hierarchical classification system
to categorize vulnerabilities based on their nature,
cause, and impact. This classification system is

4219

CWE name description count
Cross-site Scripting The software does not neutralize or incorrectly neutralize user-controllable input

before it is placed in output used as a web page served to other users.
103

Insufficient Information There is insufficient information about the issue to classify it; details are unknown
or unspecified.

28

Path Traversal The software uses external input to construct a pathname intended to identify
a file or directory located underneath a restricted parent directory. Still, the
software does not properly neutralize special elements within the pathname that
can cause the pathname to resolve to a location outside the restricted directory.

28

Exposure of Sensitive
Information to an Unau-
thorized Actor

The product exposes sensitive information to an actor who is not authorized to
access that information.

23

SR The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.

22

Improper Input Valida-
tion

The product receives input or data, but it does not validate or incorrectly validate
that the input has the properties that are required to process the data safely and
correctly.

21

Incorrect Authorization The software performs an authorization check when an actor attempts to access
a resource or perform an action, but it does not correctly perform the check. This
allows attackers to bypass intended access restrictions.

13

SR The web server receives a URL or similar request from an upstream component
and retrieves the contents of this URL, but it does not sufficiently ensure that the
request is being sent to the expected destination.

13

Open Redirect A web application accepts a user-controlled input that specifies a link to an
external site and uses that link in a Redirect. This simplifies phishing attacks.

12

SQL Injection The software constructs all or part of an SQL command using externally-
influenced input from an upstream component. Still, it does not neutralize
or incorrectly neutralize special elements that could modify the intended SQL
command when it is sent to a downstream component.

12

Uncontrolled Resource
Consumption

The software does not properly control the allocation and maintenance of a
limited resource, thereby enabling an actor to influence the amount of resources
consumed, eventually leading to the exhaustion of available resources.

12

Injection The software constructs all or part of a command, data structure, or record
using externally influenced input from an upstream component. Still, it does not
neutralize or incorrectly neutralize special elements that could modify how it is
parsed or interpreted when sent to a downstream component.

12

Deserialization of Un-
trusted Data

The application deserializes untrusted data without sufficiently verifying that the
resulting data will be valid.

11

Other NVD is only using a subset of CWE for mapping instead of the entire CWE, and
the weakness type is not covered by that subset.

10

Improper Authentica-
tion

When an actor claims to have a given identity, the software does not prove or
insufficiently proves that the claim is correct.

10

Command Injection The software constructs all or part of a command using externally influenced
input from an upstream component. Still, it does not neutralize or incorrectly
neutralize special elements that could modify the intended command when sent
to a downstream component.

10

Table 2: The selected CWE name, description, and the count of the selected CVEs.

4220

CWE Type
Others
Cross-site Scripting
Path Traversal
Insufficient Information
Exposure of Sensitive Information to an Unauthorized Actor
SR
Improper Input Validation
Incorrect Authorization
SQL Injection
Uncontrolled Resource Consumption
Injection
Open Redirect
Deserialization of Untrusted Data
Other
Improper Authentication
Command Injection

Figure 11: The CWE type that the CVEs belong to.

structured into several levels, making it easier for
developers, security professionals, and researchers
to understand and address security weaknesses.
Here are the main components of the CWE classifi-
cation system:

1. Weaknesses (Base-Level): The most detailed
classification level, each base-level CWE en-
try describes a specific type of vulnerability.
Examples include buffer overflows, SQL in-
jection, and cross-site scripting (XSS).

2. Categories: Category group-related weak-
nesses based on certain attributes or effects.
They provide a higher-level view that helps
understand commonalities between different
weaknesses. For instance, "Resource Man-
agement Errors" is a category that includes
various weaknesses related to resource han-
dling issues.

3. Views: Views are specific perspectives or
lenses through which the CWE list can be ex-
amined. They are designed to meet the needs
of different stakeholders or purposes. Exam-
ples include the "Development View," which
focuses on weaknesses from a software devel-
opment perspective, and the "Research Con-
cepts View," which categorizes weaknesses
based on their conceptual relationships.

4. Compound Elements: These include chains
and composites, which describe combinations

of multiple weaknesses. Chains represent
sequences of weaknesses that lead to an ex-
ploitable condition, while composites describe
complex weaknesses best understood as ag-
gregations of simpler ones.

5. Root Causes: Some CWE entries classify vul-
nerabilities by their root causes. Understand-
ing the underlying cause of a weakness can
help develop more effective mitigation strate-
gies. Root causes might include insufficient
input validation, improper resource manage-
ment, or inadequate error handling.

6. Modes of Introduction: CWE also catego-
rizes vulnerabilities based on how they are
introduced into the software. This includes
phases of the software development lifecy-
cle, such as design, implementation, and de-
ployment. Understanding when and how a
weakness is introduced can help in preventing
similar issues in the future.

The CWE classification system provides a struc-
tured way to analyze and address vulnerabilities,
making it an invaluable tool for improving soft-
ware security practices across the industry. We
summarized the CWE type of our collected CVEs
in Figure 11 and Table 2.

Repository of the selected CVEs. Our selected
repositories of the selected CVEs are listed in Table

4221

3. Our selection on the repositories follow the rule
that their stars should be over at least 5000.

B Patch Generation Details

Database extraction. We built a database by
following (Bhandari et al., 2021)’s CVE col-
lection process. This comprehensive vulnera-
bility dataset is automatically collected and cu-
rated from Common Vulnerabilities and Exposures
(CVE) records in the public U.S. National Vul-
nerability Database (NVD). The goal is to sup-
port data-driven security research based on source
code and source code metrics related to fixes for
CVEs in the NVD by providing detailed infor-
mation at different interlinked levels of abstrac-
tion, such as the commit, file, and method levels,
as well as the repository and CVE levels. The
database structure is shown in Figure 12. We se-
lected the CVE description (cve.description), CVE
scripts (file_change.file_name), and CVE method
(method_change.name) from the database to con-
struct the three-level inputs for the CVE-Bench.

Issue generation. Then, we perform an issue gen-
eration to generate the natural language-described
issue as the input to the tested agents.

For the CVE desc level, we only provide the
CVE description queried from the database. As for
the CVE script level, the ground truth fix commit’s
modified script filename and path will be added to
the issue. Finally, the CVE method level allows
us to add the ground truth fix commit’s modified
method name and path to the issue.

Then, the generated issue will be input to the
agents for code generation. The agents will create
the patch to fix the vulnerability issues.

C Analysis Tool Details

The details of the four distinct analysis tools are as
follows:
• Pylint: Pylint is a highly versatile Python static

analysis tool that helps improve code quality and
conform to coding standards. It checks for errors,
enforces a coding standard, and looks for code
smells. Pylint offers support for customizing the
rules during the analysis, allowing developers to
tailor the tool to their needs. It provides detailed
reports on code quality, which can be integrated
into development environments and continuous
integration systems.

• Bandit: Bandit is a tool specifically designed for
finding common security issues in Python code.

It scans Python programs to identify vulnerabili-
ties like SQL injection, cross-site scripting, hard-
coded passwords, and more. Bandit is highly
configurable, allowing users to exclude certain
tests or files, and can be easily integrated into
CI/CD pipelines for automated security testing.

• Mypy: Mypy is a static type checker for Python.
By adding type annotations to Python code (us-
ing Python’s typing module), mypy checks code
and detects type errors before runtime, which
can significantly improve code reliability and
maintainability. Mypy supports Python’s dy-
namic typing features while adding the benefits
of static type checking, making it a powerful tool
for large codebases.

• Prospector: Prospector is a comprehensive lint-
ing tool that bundles multiple Python static anal-
ysis tools such as Pylint, Bandit, and Mypy,
among others. Running these tools simultane-
ously provides an aggregate view of code quality
and potential issues. The prospector aims to
simplify the setup and configuration of multi-
ple linters and static analysis tools, providing
a unified output that helps developers focus on
improving code quality.

D Limitation

Limited programming language coverage. Be-
cause there are too many programming languages,
our benchmark cannot cover too many types. At the
same time, due to the high complexity of some pro-
gramming languages, it is difficult for us to build a
more robust unit test set.

Limited tested agent types. Since there are rela-
tively few existing agent types, we only conducted
experiments on SWE-Agent (Yang et al., 2024).
Furthermore, Open-Devin (OpenDevin Contribu-
tors, 2024) does not provide a sufficient API for us
to call. It only supports using its API, which limits
CVE-Bench to establish large-scale experiments.

Limited tested foundation models. Until our pa-
per is submitted, we have only performed the ex-
periments on the GPT -4, GPT-3.5, and Llama-3
models. We plan to add more experiments before
the publication.

4222

repo name description stars
WordPress WordPress, Git-ified. This repository is just a mirror of the Word-

Press subversion repository. Please do not send pull requests.
Submit pull requests to https://github.com/WordPress/wordpress-
develop and patches to https://core.trac.wordpress.org/ instead.

16559

showdoc ShowDoc is a tool greatly applicable for an IT team to share
documents online

10631

jenkins Jenkins automation server 19376
symfony The Symfony PHP framework 27375
october Self-hosted CMS platform based on the Laravel PHP Framework. 10791
drawio Source to app.diagrams.net 30936
zulip Zulip server and web app—powerful open source team chat 16305
gocd Main repository for GoCD - Continuous Delivery server 6561
cpython The Python programming language 47121
etherpad-lite Etherpad: A modern really-real-time collaborative document edi-

tor.
13151

onedev Self-hosted Git Server with CI/CD and Kanban 9509
grav Modern, Crazy Fast, Ridiculously Easy and Amazingly Powerful

Flat-File CMS powered by PHP, Markdown, Twig, and Symfony
13415

netty Netty project - an event-driven asynchronous network application
framework

29819

synapse Synapse: Matrix homeserver written in Python 3/Twisted. 9837
qutebrowser A keyboard-driven, vim-like browser based on PyQt5. 8091
django The Web framework for perfectionists with deadlines. 65901
jquery-ui The official jQuery user interface library. 11076
parse-server API server module for Node/Express 19696
Pillow The friendly PIL fork (Python Imaging Library) 10080
salt Software to automate the management and configuration of any

infrastructure or application at scale. Get access to the Salt soft-
ware package repository here:

12675

yii2 Yii 2: The Fast, Secure and Professional PHP Framework 13980
mongoose MongoDB object modeling designed to work in an asynchronous

environment.
24696

ansible Ansible is a radically simple IT automation platform that makes
your applications and systems easier to deploy and maintain. Au-
tomate everything from code deployment to network configuration
to cloud management, in a language that approaches plain En-
glish, using SSH, with no agents to install on remote systems.
https://docs.ansible.com.

54296

guzzle Guzzle, an extensible PHP HTTP client 22038
pipenv Python Development Workflow for Humans. 23211
PHPMailer The classic email sending library for PHP 18596
typed_ast Modified fork of CPython’s ast module that parses ‘# type:‘ com-

ments
212

handlebars.js Minimal templating on steroids. 16719
fail2ban Daemon to ban hosts that cause multiple authentication errors 7393
NodeBB Node.js based forum software built for the modern web 12887

Table 3: The selected repository, description and its star count.

4223

Figure 12: The database structure of the CVEFixes database, database contains recent CVE information and its
corresponding fix commits information.

4224

