The Good, The Bad, and The Greedy:
Evaluation of LLMs Should Not Ignore Non-Determinism

Yifan Song" Guoyin Wang

“Peking University

yfsong@pku.edu.cn

Abstract

Current evaluations of large language models
(LLMs) often overlook non-determinism, typ-
ically focusing on a single output per exam-
ple. This limits our understanding of LLM
performance variability in real-world applica-
tions. Our study addresses this issue by explor-
ing key questions about the performance differ-
ences between greedy decoding and sampling,
identifying benchmarks’ consistency regarding
non-determinism, and examining unique model
behaviors. Through extensive experiments, we
observe that greedy decoding generally outper-
forms sampling methods for most evaluated
tasks. We also observe consistent performance
across different LLM sizes and alignment meth-
ods, noting that alignment can reduce sampling
variance. Moreover, our best-of-N sampling
approach demonstrates that smaller LLMs can
match or surpass larger models such as GPT-4-
Turbo, highlighting the untapped potential of
smaller LLMs. This research shows the im-
portance of considering non-determinism in
LLM evaluations and provides insights for fu-
ture LLM development and evaluation. !

1 Introduction

When evaluating a large language model (LLM),
two common generation configurations are com-
monly used: greedy decoding and nucleus sam-
pling (Holtzman et al., 2020). It’s important to note
that given a particular input, the same LLM may
generate significantly different outputs under vari-
ous decoding configurations, a phenomenon known
as non-determinism in generation. However, most
evaluations of LLMs are based on a single output
per example. This practice is primarily due to prac-
tical considerations, as LLM inference and evalua-
tion can be computationally expensive. Neglecting
non-determinism in generation significantly limits

!Code and data are available at https://github.com/Yifan-
Song793/GoodBadGreedy

*Univesity of Washington

Sujian Li" Bill Yuchen Lin**

Allen Institute for Al

byuchen@uw. edu

our comprehensive understanding of LLMs. Addi-
tionally, without reporting the standard deviation
in most current LLLM evaluations, it is difficult to
measure the variability and dynamics of LLMs in
real-world applications.

For certain capabilities such as math reason-
ing (Cobbe et al., 2021; Hendrycks et al., 2021b)
and coding, greedy generation is preferred to en-
sure fair comparisons. Nonetheless, it remains un-
clear whether there are significant differences in
performance between greedy decoding and sam-
pling. Recent investigations have also highlighted
potential issues of instability in LLMs (Li et al.,
2024a; Hassid et al., 2024). In a study where the
best answer was selected from 256 random genera-
tions, the Llama-2-7B model achieved an impres-
sive 97.7% accuracy in solving GSMS8K questions,
even surpassing GPT-4 (Li et al., 2024a). This
phenomenon further underscores the enormous po-
tential of LLMs in their non-deterministic outputs.

Previous studies (Sclar et al., 2023; Mizrahi
et al., 2024; Alzahrani et al., 2024) have exten-
sively examined the influence of different sources
of variance on LLM generation, including prompts
and in-context examples. However, the impact of
different decoding configurations on LLM perfor-
mance has not been fully explored. Herein, we aim
to investigate a series of critical questions regarding
the non-determinism of LLM generations:

* Q1: How does the performance gap between
greedy decoding and sampling differ?

* Q2: When is greedy decoding better than sam-
pling, and vice versa? Why?

e Q3: Which benchmark is most/least consistent
with respect to non-determinism?

* Q4: Do any models possess unique patterns?

Apart from Q1-Q4 in Sec. 3, we also explore the

scaling effect on non-determinism (Sec. 4.1), the

alignment effect on non-determinism (Sec. 4.2),

and how temperature and repetition influence on

generation (Sec. 4.3, 4.4).

4195

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 4195-4206
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/Yifan-Song793/GoodBadGreedy
https://github.com/Yifan-Song793/GoodBadGreedy

Our extensive results reveal these findings:

* For most benchmarks we evaluated, a notable per-
formance gap is observed between greedy gener-
ation and the average score of multiple sampling.
In certain cases, the performance ranking under
different generation configurations differs.

* Greedy decoding exhibits superior performance
than sampling methods on most evaluated bench-
marks, except for AlpacaEval where sampling
shows higher win rate.

» LLMs displayed consistent performance across
different generation configurations for bench-
marks with constrained output spaces, such as
MMLU and MixEval. Notably, tasks involving
math reasoning and code generation were most
impacted by sampling variance.

* The above findings remain consistent across dif-
ferent sizes and families of LLMs.

* Alignment methods, e.g., DPO (Rafailov et al.,
2024), can significantly reduce the sampling vari-
ance for most benchmarks.

* High temperature will significantly harm the rea-
soning and code generation capabilities of LLMs,
while higher repetition penalty leads to improved
performance on AlpacaEval.

Given the non-deterministic nature of LLM gen-
eration, it is essential to explore how to leverage
this characteristic. In Sec. 5, we enable LLMs to
generate multiple responses for a task and pick the
optimal answer with off-the-shelf reward models.
In this best-of-N sampling setting, we observe that
8B-level LMs exhibit the potential to surpass GPT-
4-Turbo on several benchmarks. These findings un-
derscore the importance of scaling inference time
compute through repeated sampling (Snell et al.,
2024; Brown et al., 2024) for further enhancing the
performance of existing LLMs.

2 Experimental Setup

Benchmarks. We select multiple benchmarks for
our experiments, encompassing abilities of general
instruction-following, knowledge, math reasoning,
coding, etc. As summarized in Table 1, the selected
benchmarks are: AlpacaEval 2 (Li et al., 2023),
Arena-Hard (Li et al., 2024b), WildBench v2 (Lin
et al., 2024), MixEval (Ni et al., 2024), MMLU-
Redux (Gema et al., 2024), GSM8K (Cobbe et al.,
2021), and HumanEval (Chen et al., 2021).
AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li
et al., 2024b) and WildBench v2 (Lin et al., 2024)
are general instruction-following benchmarks. Al-

Dataset Instance Num. Sample Num. Metric
AlpacaEval 2 805 16 LC
Arena-Hard 500 16 WR
MixEval 4000 16 Score
WildBench v2 1024 16 WB-Score
MMLU-Redux 3000 32 Acc
GSMSK 1319 128 EM
HumanEval 164 128 Pass@1

Table 1: Statistics of datasets.

pacaEval consists of 805 questions, Arena-Hard
incorporating 500 well-defined technical problem-
solving queries. WildBench including 1024 chal-
lenging real users tasks, which are categorized into
12 categories to enable a fine-grained analysis of
LLM capabilities. For AlpacaEval 2, we report the
length-controlled win rate (LC). For Arena-Hard,
we report the win rate (WR) against the baseline
model. For WildBench, we use task-wise scores
and the corresponding task-macro WB-Score (Lin
et al., 2024) as the metrics.

MixEval (Ni et al., 2024) is a comprehen-
sive mixture of various off-the-shelf ground-
truth style benchmarks. Since the original
MMLU (Hendrycks et al., 2021a) benchmark
is huge and contain numerous ground truth er-
rors (Wang et al., 2024b; Gema et al., 2024), we
use MMLU-Redux (Gema et al., 2024) which
is a subset of 3000 manually re-annotated ques-
tions across 30 MMLU subjects. We also in-
clude GSM8K (Cobbe et al., 2021), and Hu-
manEval (Chen et al., 2021), two popular bench-
marks for evaluating the math and code generation
abilities of LLMs.

LLMs. We test several open-weight LLMs, in-
cluding Llama-3-Instruct (Meta, 2024), Yi-1.5-
Chat (Young et al., 2024), Qwen-2-Instruct (Bai
et al., 2023), Mistral (Jiang et al., 2023a), which
are widely used. A proprietary LLM, GPT-4-
Turbo, is included for comparison. We also con-
sider models of different sizes in the same fam-
ily such as Qwen2 and Yi-1.5 for more analysis.
To study the effect of alignment techniques, we
evaluate models trained with different alignment
methods, including DPO (Rafailov et al., 2024),
KTO (Ethayarajh et al., 2024), IPO (Azar et al.,
2024), ORPO (Hong et al., 2024), RDPO (Park
et al., 2024), and SimPO (Meng et al., 2024). We
use the checkpoints released by Meng et al. (2024).

Setup. We aim to compare the performance of
LLMs under different decoding configurations. We

4196

‘ AlpacaEval 2 (N=16)

‘ Arena-Hard (N=16)

MixEval (N=16)

Model

‘ Greedy Sample Std. A ‘ Greedy Sample Std. A ‘ Greedy Sample Std. A
GPT-4-Turbo 49.6 50.1 0.76 2.5 | 80.1 752 131 36 89.2 83.8 0.18 0.8
Llama-3-8B-Instruct 26.8 29.2 0.88 2.8 23.5 18.4 0.71 2.7 74.6 72.5 0.25 09
Yi-1.5-6B-Chat 17.5 18.0 091 34 13.7 11.8 0.88 3.1 70.0 68.6 026 1.0
Yi-1.5-9B-Chat 23.1 24.1 091 34| 328 27.0 125 44 74.0 727 035 14
Yi-1.5-34B-Chat 34.9 35.0 0.99 39 42.8 40.9 1.82 5.7 81.9 81.8 047 1.5
Qwen2-7B-Instruct 18.2 19.1 251 8.6 23.7 16.1 0.87 3.1 76.2 76.2 0.21 0.6
Mistral-7B-Instruct-v0.2 15.4 13.0 1.02 4.2 12.5 126 057 2.0 69.8 70.0 024 09

Model | MMLU-Redux (N=32) | GSMSK (N=128) \ HumanEval (N=128)
‘ Greedy Sample Std. A ‘ Greedy Sample Std. A ‘ Greedy Sample Std. A
GPT-4-Turbo 82.6 824 043 16| 845 83.8 077 25 89.6 84.1 265 11.0
Llama-3-8B-Instruct 47.8 50.7 0.70 2.8 67.6 64.4 250 134 58.5 31.8 3.62 183
Yi-1.5-6B-Chat 52.1 49.6 0.67 2.5 74.5 73.1 0.92 4.1 48.2 35.7 4.86 19.5
Yi-1.5-9B-Chat 65.5 643 053 23| 829 810 0.69 3.9 55.5 364 492 275
Yi-1.5-34B-Chat 83.2 82.2 034 1.1 85.4 81.7 0.56 29 64.6 49.3 4.08 214
Qwen2-7B-Instruct 64.4 61.7 046 2.1 83.5 72.0 1.74 113 67.7 48.2 4.68 274
Mistral-7B-Instruct-v0.2 | 49.7 484 049 22| 459 420 099 5.1 37.8 259 252 140

Table 2: Results on six popular benchmarks. “Sample” and “Std.” denotes the average score and the standard
deviation of “N” runs under sampling setup. “A” denotes the performance gap between the best and worst run.
Scores where greedy decoding surpasses the sampling average are highlighted in green, while those lower are
marked in red. The intensity of the color indicates the magnitude of the difference (best viewed in color).

select greedy decoding and sampling generation
for the main comparison. For sampling, we set the
temperature to 1.0 and top-p to 1.0.

We use official evaluation scripts for AlpacaE-
val 2, Arena-Hard, WildBench, and MixEval. For
MMLU-Redux, instead of using the next token
probability of the choice letters, we employ zero-
shot CoT and encourage the model to generate
the answer in the form of natural language sen-
tence. For GSM8K and HumanEval, we use Open-
Instruct framework (Wang et al., 2023) to evaluate
the models, which may differ from zero-shot CoT.
We will run more comprehensive evaluations on
these two benchmarks in the future. We sample 16
completions for AlpacaEval 2, Arena-Hard, Wild-
Bench, and MixEval, 32 completions for MMLU-
Redux, 128 for GSM8K and HumanEval.

3 Experimental Results

We present our experiment results in Table 2 and
Table 3. We analyze the results and answer sev-
eral important research questions around the non-
determinism of LLM generations as follows.

N

Q1. How does the performance gap be-
tween greedy decoding and sampling differ?

From the results, we observe a consistent per-
formance gap between greedy decoding and
the sampling method (significance test in Ap-
pendix A). This disparity holds true across vari-

ous LLLMs, whether they are proprietary or open-
source, and across multiple benchmarks encom-
passing instruction-following, language under-
standing, math reasoning, and code generation. For
WildBench, which enables fine-grained analysis of
LLM capabilities, the performance gap is also evi-
dent across all task categories, as shown in Table 3.

o Q2. When is greedy decoding better than
sampling, and vice versa? Why?

For most evaluated tasks and models, greedy de-
coding outperforms sampling. However, AlpacaE-
val serves as a notable exception, where sampling
demonstrates superior performance.

GSMS8K and HumanEval are reasoning tasks
requiring LLMs to solve specific math or coding
problems with definite solutions. MixEval also
follows a deterministic pattern with its ground-
truth-based benchmarks. While AlpacaEval, Arena-
Hard, and WildBench are open-ended instruction-
following benchmarks, AlpacaEval exhibits a con-
trasting behavior compared to the others. The
potential reasons are two folds: Firstly, the task
category distributions vary across different bench-
marks. As highlighted by Lin et al. (2024), 50% of
instances in AlpacaEval are information-seeking,
whereas more than 50% in Arena-Hard are related
to coding and debugging. Furthermore, the diffi-
culty of instances might play an important role. The
tasks in both Arena-Hard and WildBench, sourced

4197

‘ Llama-3-8B-Instruct ‘

Yi-1.5-6B-Chat ‘ Qwen2-7B-Instruct

Metric

| Greedy Sample Std. A | Greedy Sample Std. A | Greedy Sample Std. A
WB-Score | 29.6 262 165 57 | 239 224 167 53| 327 238 213 77
Creative Tasks 422 424 177 67 321 233 103| 396 314 221 85

Planning & Reasoning 33.8 314 1.19 3.6
Math & Data Analysis 17.8 16.0 2.85 9.2
Info/Advice Seeking 39.0 37.4 1.30 55
Coding & Debugging 24.1 16.0 3.12 109

279 27.4 1.77 5.7 36.0 28.1 1.95 6.1
17.4 17.5 1.99 65 27.6 18.5 2.69 104
325 30.2 1.80 6.3 40.3 322 1.84 6.5
16.7 12.8 1.70 54 26.3 15.5 2.82 93

Table 3: Results on WildBench v2, with sampling N=16 generations for each model. In addition to WB-Score, we

also report the score for each task category.

Benchmark Kendall’s 7 p-value
AlpacaEval 2 0.916 1.4E-5
Arena-Hard 0.872 1.8E-6
MixEval 0.789 2.3E-4
MMLU-Redux 0.872 1.8E-6
GSMS8K 0.714 0.030

HumanEval 0.778 0.002

Table 4: Kendall’s 7 correlation and the p-value for the
hypothesis test (the null hypothesis is 7 = 0) for LLM
performance rankings of greedy decoding and average
score of multiple samplings on six benchmarks.

from real users, pose substantial challenges. On
the other hand, instances in AlpacaEval are com-
paratively simpler.

In summary: 1) Greedy decoding generally
proves more effective for most tasks. 2) In the
case of AlpacaEval, which comprises relatively
simpler open-ended creative tasks, sampling tends
to generate better responses.

-®- Q3. Which benchmark is most/least consis-
tent with respect to non-determinism?

In terms of the performance gap between two de-
coding configurations and the standard deviation
across different samplings, MixEval and MMLU
exhibit the highest stability. This stability can be
attributed to the constrained answer space of these
benchmarks. Specifically, MMLU is structured in a
multiple-choice format, and MixEval, comprising
various ground-truth-based benchmarks, prompts
LLMs to generate short answers, further limiting
the output space.

In contrast, GSM8K and HumanEval are rela-
tively less stable with respect to non-deterministic
generations. The performance gap between the
best and worst samplings can exceed 10.0 points.
To address this instability, the LLM community
has adopted specific evaluation protocols. For

GSMBSK, all models are evaluated using greedy
decoding. For HumanEval, models are sampled
multiple times, and Pass@k is used as the final
metric to ensure reliable comparison.

Different decoding configurations can even al-
ter the model rankings in some cases. For exam-
ple, on Arena-Hard, Qwen2-7B is slightly bet-
ter than Llama-3-8B when both use greedy de-
coding; However, Llama-3-8B may outperform
Qwen2-7B when both decode by sampling. To
measure the change in ranking induced by non-
determinism, we compute Kendall’s 7 (Kendall,
1938): N x N — [—1, 1], a non-parametric statis-
tic which measures the correspondence between
two rankings R, Ry (greedy decoding and aver-
age score of multiple samplings, in our case). 7 is
formally defined as:

P—-Q
VP+Q+T)- (P+Q+U)

ey

Ty =

where P is the number of concordant pairs, () is
the number of discordant pairs, 7' the number of
ties only in 1, and U the number of ties only in
Rs. Therefore, 7 > 0 indicates that most pairs are
concordant, and 7 < 0 indicates that most pairs
are discordant. As shown in Table 4, the ranking
in GSM8K and HumanEval are less robust against
different decoding settings.

-®- Q4. Do the models possess distinctive char-
acteristics?

GPT-4-Turbo shows consistent performance
across multiple tasks, with a smaller performance
gap between greedy decoding and sampling, as
well as improved sampling quality. Some open-
weight LLMs, however, exhibit unique character-
istics. For example, Mistral-7B-Instruct-v0.2 dis-
plays inverse behavior on open-ended instruction
following tasks like AlpacaEval and Arena-Hard

4198

AlpacaEval ArenaHard MixEval
50 4 321 ¢ ¢
’ 754 l ¢ .
= 29 4
4 L ¢
45 , . . '
¢ 26 4 74 4 T
404 i L ¢
ni ¢ T -
351 ¢ = = 734 ¥
. 20 o
301 4 Greed,
! ey 17 72

T T T T T T T T T T
Llama-3 DPO KTO IPO ORPO RDPO SimPO Llama-3 DPO KTO

T T T T
IPO ORPO RDPO SimPO

T T T T T T T
Llama-3 DPO KTO IPO ORPO RDPO SimPO

MMLU-Redux GSMSK HumanEval
k2 72
53 T 31 : . ' () !
1 3 ¥ 704 +

’ - ¢ 1 i . 451 l
301 66 1 . ¥ ,
474] T 31 T

3 624 l -

.

44 4 60

[

T 25

T T T T T T T T T T
Llama-3 DPO KTO IPO ORPO RDPO SimPO Llama-3 DPO KTO

T T T T
IPO ORPO RDPO SimPO

T T T T T T T
Llama-3 DPO KTO IPO ORPO RDPO SimPO

Figure 1: Alignment effects on non-determinism.

when compared to other models. Similarly, Llama-
3-8B-Instruct performs better by sampling than by
greedy decoding on MMLU, which is unlike the
behavior of other models.

These observations raise intriguing questions for
future research. Why do certain models exhibit in-
verse behavior on specific tasks? Can these unique
characteristics be leveraged to develop more ro-
bust LLMs? These questions highlight the need
for deeper explorations into the underlying mecha-
nisms of LLMs. Such research could significantly
enhance our understanding of how different models
and training impact model behavior.

4 How Various Factors Influence
Non-Determinism?

In this section, we further investigate how various
factors, such as scaling, alignment, and several
decoding parameters, influence non-determinism.

4.1 Scaling Effect on Non-Determinism

Some might assume that larger LMs will have
lower uncertainty in decoding, leading to lower
variance in performance when sampling. However,
our results challenge this assumption.

We use the Yi-1.5-Chat and Qwen2-Instruct se-
ries to investigate the scaling effect. The results
for the Yi-1.5 and Qwen2 series are presented in
Table 2 and Table 5, respectively. Performance
differences are observed across LL.Ms of various
sizes, ranging from 0.5B to 34B parameters. The
findings in Section 3 are consistent across different
model sizes. However, no pattern related to the

AlpacaEval MMLU
G S Std. | G S Std

Qwen2-0.5B-Instruct 1.1 1.7 077 364 37.0 0.70
Qwen2-1.5B-Instruct 1.9 33 0.88 42.6 42.1 0.68
Qwen2-7B-Instruct 182 19.1 251 61.0 61.7 0.46

GSMSK HumanEval
G S Sd| G S Su

Qwen2-0.5B-Instruct 31.7 143 1.86 28.0 108 2.14
Qwen2-1.5B-Instruct 63.1 36.5 3.20 40.9 22.6 2.94
Qwen2-7B-Instruct 835 720 1.74 677 482 4.68

Model

Model

Table 5: Evaluation results on Qwen2-Instruct with
different model sizes.

number of model parameters could be identified.
For instance, scaling parameters does not result
in lower sampling variance. Notably, Qwen2-7B-
Instruct shows higher variance on AlpacaEval and
HumanEval compared to its smaller counterparts.

4.2 Alignment Effect on Non-Determinism

Alignment methods, such as DPO, enhance LLMs
by learning from preference data. We evaluate
the effects of alignment methods such as DPO,
KTO, and SimPO, using Llama-3-8B-Instruct as
the training starting point (Meng et al., 2024).

As shown in Figure 1, after applying these meth-
ods, both greedy decoding and sampling perfor-
mances are affected. In several tasks, including
AlpacaEval, MMLU, GSM8K, and HumanEval, a
decrease in standard deviation is observed, suggest-
ing that alignment may reduce the diversity of sam-
pling outputs. However, it is crucial to note that not
all alignment methods consistently improve model

4199

(a) Sampling Temperature

t=0.0 M=05 Mt=10 [=15
%0 4 | |

%jlll

AlpacaEval ArenaHard MixEval MMLU GSMS8K HumanEval

(b) Repetition Penalty

30 4 r=0.8 =09 Mr=1.0 Mr=1.1 Wr=12

60
40
20 4

0 -

AlpacaEval ArenaHard MixEval MMLU GSM8K HumanEval

Figure 2: (a) Temperature effects on non-determinism.
(b) Repetition penalty effects on generation. We com-
pare performance of Llama-3-8B-Instruct with different
generation parameters.

performance. For instance, KTO and SimPO lead
to a performance decline in MMLU. Furthermore,
SimPO’s effectiveness appears limited on the re-
cently introduced MixEval benchmark.

4.3 Temperature Effect on Non-Determinism

For sampling generation, temperature serves as a
control mechanism for the randomness of the sam-
pling process, where lower values make the model
more deterministic, whereas higher values make
the model more random. In this section, we present
an ablation study to evaluate the effect of varying
temperatures on non-determinism generation.

As depicted in Figure 2(a), we observe that, for
AlpacaEval, higher temperature will lead to slightly
better performance, which aligns with the results
in Sec. 3. A recent study (Renze and Guven, 2024)
finds that, on multiple-choice QA tasks, changes
in temperature from 0.0 to 1.0 do not have a sta-
tistically significant impact on LLM performance.
Our results on MMLU aligns with their findings.
Another findings emerges when the temperature is
extremely high, such as 1.5. Comparing with open-
ended instruction following, a high temperature
significantly impacts the reasoning and code gen-
eration capabilities of LLMs and the model strug-
gles to solve questions in GSM8K and HumanEval.
However, it still manages to perform relatively well
in open-ended instruction following tasks, such as
AlpacaEval and ArenaHard.

4.4 Repetition Effect on Generation

In addition to parameters that control greedy search
and sampling, there are other parameters that influ-
ence the generation process, such as the repetition
penalty (Keskar et al., 2019). Here we examine the
effect of repetition penalty on generation. Repeti-
tion penalty penalizes new tokens based on whether
they appear in the prompt and the generated text
so far. Values over 1.0 encourage the model to use
new tokens, while values under 1.0 promote the
reuse of tokens. The default repetition penalty in
generation is set at 1.0.

As illustrated in Figure 2(b), in most cases, it
is advisable not to adjust this parameter, as main-
taining the default value tends to yield the best
performance. For AlpacaEval, a higher repetition
penalty like 1.2 results in marginally improved per-
formance. This improvement may be linked to
GPT judges’ preference for shorter, more concise
answers. Regarding MixEval and MMLU, repeti-
tion penalty has a minimal impact on the model’s
performance, since both benchmarks advocate for
the model to generate concise answers. Interest-
ingly, for GSM8K, the model achieves the best per-
formance when the repetition penalty is set at 0.9,
and increasing this penalty parameter will cause
a performance decline. This phenomenon can be
attributed to the nature of mathematical reasoning,
which frequently necessitates the repetition of num-
bers and conditions outlined in the question.

4.5 Surface Patterns in Non-Determinism
Generation?

We try to explore the surface patterns in non-
determinism generation. Firstly, we compare the
generation length of different generation configu-
rations in Table 6. The generation length for Al-
pacaEval and ArenaHard is defined as the length
of the model’s response, while for MMLU and
GSMBSK, it refers to the length of the final answer
with chain-of-thoughts. We observe that the com-
pletions generated by greedy decoding are typically
marginally shorter than those produced via sam-
pling generation. However, this pattern deviates
in the case of Yi series models on AlpacaEval and
GSMSK, where the lengths of responses produced
by both greedy decoding and sampling methods
are comparable.

We also take Qwen2-7B-Instruct on GSM8K as
a case study, where the greedy decoding signifi-
cantly outperforms the sampling generation (83.5
vs. 72.0). As depicted in Figure 3, greedy decoding

4200

Question: Manny signed up for Karate classes for $60. His parents tell him that if his classes end up costing more than $10 per class,
then they won't sign him up again. If there are 10 total classes, how many can he miss before they don't sign him up again?

(G reedy: Manny pays
$60 for 10 classes. So
each class costs 60 / 10
= 6 dollars. If each
class costs more than
10 dollars, then he can't
take the class. So he
canmiss 10-6=4
classes. So the answer
is 4.

Sample 1: Manny paid
60 dollars for 10
classes. So each class
costs 60/ 10=6
dollars. Since 6 dollars
is less than the limit of
10 dollars per class,
Manny's parents will
still sign him up. Thus
Manny can miss all 10
classes. So the answer

Sample 2: Manny pays
10 * $6 = $60 in total if
that is the final cost. So
Manny cannot pay
more than $60 for his
classes. So if he misses
¢ classes, he can miss a
total of 60/60 -c=1 -
¢ more classes before
his parents won't pay
for him to go. So the

Sample 3: The total
cost for $10 per class is
10 * 10 = 100 dollars.
Each class costs him
60/ 10 = 6 dollars.
That means he can
miss 100/ 6 = 16.666
classes. So the answer
is 16. He can only miss
an integer number of
classes, so the answer

answer is 9.

Sample 4: Manny paid
60 dollars for 10
classes. So each class
costs 60/10 = 6 dollars.
Each class costs less
than 10 dollars, so he
can miss up to 9 classes
before they do not sign
him up again. So th

(Y

Q

is 10.

g o)

answer is 1.

is 16. [Error Rate: 89%!]

Figure 3: Case Study on non-determinism: Qwen2-7B-Instruct on GSMS8K. Greedy decoding can effectively address
the question. However, in 128 sampling generations for the same question, the error rate is 89%.

‘ AlpacaEval ‘ ArenaHard

Model

| Len-G Len-S | Len-G Len-S
GPT-4-Turbo 377 389 629 641
Llama-3-8B-Instruct 417 435 589 570
Yi-1.5-6B-Chat 477 479 670 636
Yi-1.5-9B-Chat 500 502 672 692
Yi-1.5-34B-Chat 450 453 693 705
Qwen2-7B-Instruct 420 410 573 594
Mistral-7B-Instruct-v0.2 | 323 372 533 550
Model | MMLU | GSMSK

‘ Len-G Len-S ‘ Len-G Len-S
GPT-4-Turbo 257 272 149 150
Llama-3-8B-Instruct 130 128 65 94
Yi-1.5-6B-Chat 145 158 127 132
Yi-1.5-9B-Chat 160 172 138 140
Yi-1.5-34B-Chat 263 272 143 142
Qwen2-7B-Instruct 75 90 121 139
Mistral-7B-Instruct-v0.2 135 144 121 135

Table 6: Length comparison. Cases where greedy decod-
ing generates shorter responses than sampling average
are highlighted in blue, and marked in purple vice versa.

solves the question effectively. Nonetheless, when
it is the turn for sampling generation, the error rate
surges to 89% within 128 responses. This obser-
vation suggests that the sampling method could
potentially harm reasoning capabilities for LLMs.

5 What is the Full Potential of
Non-Determinism?

Current evaluations of LLMs mainly assess them
based on a single output per instance, which limits
our understanding of their full potential. In this
section, we focus on answering the question: if an
LLM is allowed to try multiple times, how much
can it improve its performance on a challenge task?
In other words, we are assessing the performance

of scaling LLM inference time compute.

Following Jiang et al. (2023b) and Li et al.
(2024a), we adopt a Best-of-N setting, which sam-
ples more than one completions from a weak LLM
and then selects the best answer from /N sampled
responses. To accomplish this, we employ off-
the-shelf reward models, such as ArmoRM (Wang
et al., 2024a) and FsfairX (Xiong et al., 2024a),
to rank the responses of Llama-3-8B-Instruct, se-
lecting the one with the highest reward. We also
include an “oracle” baseline which directly picks
the best response as the upper bound of best-of-N
strategy.

The results are depicted in Figure 4. We
observe a significant performance enhancement
when applying simple best-of-N strategy for mul-
tiple sampled responses. Notably, with the ora-
cle selection, even smaller LL.Ms like Llama-3-
8B-Instruct can outperform GPT-4-Turbo on
MMLU, GSMS8K, and HumanEval. This finding
underscores that compact-sized LLMs already ex-
hibit robust capabilities, highlighting that a more
significant challenge in alignment is to robustly de-
code such knowledge and reasoning paths. Further-
more, cutting-edge reward models can also select
superior responses from multiple generations, and
can outperform GPT-4-Turbo on GSMS8K with only
8 samples. However, there is still a huge perfor-
mance gap between reward models and the oracle
baseline, indicating ample room for improvement.
Simply scaling the sample numbers also fails to
further improve the performance of best-of-N.

Building upon these promising findings, there
are two ways to further enhance the performance
of smaller LLMs. Firstly, probability calibration
techniques can guide LLMs towards generating

4201

AlpacaEval 0 MMLU GSM8K HumanEval
55 1
N 92.1
GPT-4-Turbo 0.1 _________ 90.3]
50 90 GPT-4-Turbo 84.1 @~
GPT-4-Turbo 82.4
45 gd T e
° 42|
840 s 62.2
-
@ 3 701 3
35 e
601 63.1 —@— Oracle
30 . —— —&— ArmoRM
30.0 50 4 FsfairX
304

T T T T T T T T T T
1 2 4 8 16 1 4 8 16 32

Sample Number Sample Number

60 = T T T T T T T T T T T
1 4 8 16 32 64 128 1 4 8 16 32
Sample Number

—
64 128
Sample Number

Figure 4: Potential of Llama-3-8B-Instruct. We use the setting of “Best-of-N”, which selects the best response from
N outputs for each example. We employ off-the-shelf reward models to rank the responses and select the one with
the highest reward, while “Oracle” means the upper bound of Best-of-N method.

superior answers with higher likelihoods. Align-
ment methods, specifically preference optimiza-
tion (Rafailov et al., 2024), play a pivotal role in
this process. Secondly, strategies for identifying
better samples out of many generations warrant
attention. Reward modeling for re-ranking and fus-
ing multiple outputs is thus a key direction (Jiang
et al., 2023b). Self-consistency (Wang et al., 2022)
and advanced prompting techniques (Yao et al.,
2023; Lin et al., 2023), which employs heuristic
selection from multiple completions, is also worth
further exploration. It is worthy to noting, Monte
Carlo Tree Search (Sutton, 2018), an advanced sam-
pling method, has been employed in solving math
reasoning (Chen et al., 2024; Zhang et al., 2024a;
Luo et al., 2024) and LLM agent tasks (Zhang et al.,
2024b; Xiong et al., 2024b) to enhance the perfor-
mance of the policy model.

6 Related Work

LLM Evaluation In recent years, the develop-
ment of various benchmarks has significantly ad-
vanced the evaluation of LLMs. Benchmarks
like MMLU (Hendrycks et al., 2021a), Hel-
laSwag (Zellers et al., 2019), and ARC (Clark
et al., 2018) have expanded the scope by assess-
ing capabilities across knowledge understanding,
and complex reasoning. AlpacaEval (Li et al.,
2023), ArenaHard (Li et al., 2024b), and Wild-
Bench (Lin et al., 2024), leveraging frontier mod-
els as judges, evaluate open-ended instruction-
following capabilities. Moreover, GSM8K (Cobbe
etal., 2021), MATH (Hendrycks et al., 2021b), Hu-
manEval (Chen et al., 2021) focus on evaluating
math reasoning and code generation capabilities.
MixEval (Ni et al., 2024), consisting of several
off-the-shelf benchmarks, serves as a reliable and
efficient LLM evaluation.

Due to the costly nature of LLM inference and
evaluation process, most evaluations of LLMs rely
on a single output per example. In this paper, we
aim to explore the impact of various generation
configurations, particularly non-deterministic gen-
erations, on the performance of LLMs.

Decoding Strategy Given a prompt, LLMs rely
on a decoding strategy to auto-regressively gen-
erate response. The simplest decoding method,
greedy decoding, selects the next token with the
highest probability. Beam search (Freitag and Al-
Onaizan, 2017), an improved version of greedy
search, retains the top-B tokens with the highest
probability at each time step. In order to gener-
ate diverse responses, non-determinism generation
methods, such as Top-k (Fan et al., 2018) and Top-p
sampling (Holtzman et al., 2020), randomly picks
the next token based on the probability distribu-
tion. The temperature parameter serves to balance
response quality and diversity (Ackley et al., 1985).
Other decoding parameters, like length and repeti-
tion penalties (Keskar et al., 2019), are also avail-
able to further control the generation process.

7 Conclusion & Future directions

We investigate a series of critical yet overlooked
questions around non-determinism of LLM genera-
tions. After evaluating several LLLMs across seven
commonly used benchmarks, we have answered
several intriguing research questions. Further anal-
ysis also provides insights on how scaling and align-
ment will effect on non-determinism generation.
We hope this work can enhance our comprehen-
sion of the generation methods and the widely used
benchmarks. Our evaluation results can also be
used for improving future research. For example,
our best-of-N results can serve as a benchmark for
assessing reward models (Lambert et al., 2024).

4202

Limitations

The comparison of greedy decoding and sampling
in this work reveals intriguing findings. However, it
is crucial to acknowledge the limitations of our re-
search. 1) Our evaluation exclusively relies on off-
the-shelf benchmarks, neglecting the analysis of
other content characteristics such as language style.
2) We observe that in most scenarios, greedy decod-
ing will generate better responses than sampling.
However, the underlying principle behind this phe-
nomenon remains unknown. 3) While we showcase
the remarkable potential of LLMs to exhibit robust
capabilities, how to incorporate methods, such as
self-consistency and MCTS, to improve the perfor-
mance of LLMs in a multiple generation setting is
under-explore.

Ethics Statement

This work fully complies with the Ethics Policy.
We declare that there are no ethical issues in this
paper, to the best of our knowledge.

References

David H Ackley, Geoffrey E Hinton, and Terrence J Se-
jnowski. 1985. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169.

Norah Alzahrani, Hisham Abdullah Alyahya, Yazeed
Alnumay, Sultan Alrashed, Shaykhah Alsubaie,
Yusef Almushaykeh, Faisal Mirza, Nouf Alotaibi,
Nora Altwairesh, Areeb Alowisheq, et al. 2024.
When benchmarks are targets: Revealing the sen-
sitivity of large language model leaderboards. arXiv
preprint arXiv:2402.01781.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447-4455.
PMLR.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqgiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. ArXiv preprint,
abs/2309.16609.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv
preprint, abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. ArXiv preprint, abs/2110.14168.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. ArXiv
preprint, abs/2402.01306.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56—60, Vancouver. Associa-
tion for Computational Linguistics.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon
Hong, Alessio Devoto, Alberto Carlo Maria Mancino,
Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mo-
hammad Reza Ghasemi Madani, et al. 2024. Are we
done with mmlu? ArXiv preprint, abs/2406.04127.

Michael Hassid, Tal Remez, Jonas Gehring, Roy
Schwartz, and Yossi Adi. 2024. The larger the better?
improved 1lm code-generation via budget realloca-
tion. ArXiv preprint, abs/2404.00725.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

4203

https://onlinelibrary.wiley.com/doi/pdfdirect/10.1207/s15516709cog0901_7
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1207/s15516709cog0901_7
http://arxiv.org/abs/2402.01781
http://arxiv.org/abs/2402.01781
https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
http://arxiv.org/abs/2405.03553
http://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://arxiv.org/abs/2406.04127
https://arxiv.org/abs/2406.04127
https://arxiv.org/abs/2404.00725
https://arxiv.org/abs/2404.00725
https://arxiv.org/abs/2404.00725
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. ArXiv
preprint, abs/2103.03874.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
Reference-free monolithic preference optimization
with odds ratio. ArXiv preprint, abs/2403.07691.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. ArXiv preprint, abs/2310.06825.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023b.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In An-
nual Meeting of the Association for Computational
Linguistics.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1-2):81-93.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. ArXiv preprint, abs/1909.05858.

Nathan Lambert, Valentina Pyatkin, Jacob Daniel Mor-
rison, Lester James Validad Miranda, Bill Yuchen
Lin, Khyathi Raghavi Chandu, Nouha Dziri, Sachin
Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and
Hanna Hajishirzi. 2024. Rewardbench: Evaluat-
ing reward models for language modeling. ArXiv
preprint, abs/2403.13787.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nan-
ning Zheng, Han Hu, Zheng Zhang, and Houwen
Peng. 2024a. Common 7b language models already
possess strong math capabilities. ArXiv preprint,
abs/2403.04706.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica.
2024b. From live data to high-quality benchmarks:
The arena-hard pipeline.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze
Brahman, Abhilasha Ravichander, Valentina Pyatkin,
Nouha Dziri, Ronan Le Bras, and Yejin Choi. 2024.
Wildbench: Benchmarking 1lms with challenging
tasks from real users in the wild. ArXiv preprint,
abs/2406.04770.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithvi-
raj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren.
2023. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. ArXiv
preprint, abs/2305.17390.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. ArXiv preprint,
abs/2405.14734.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available 1lm to date.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,
Dafna Shahaf, and Gabriel Stanovsky. 2024. State
of what art? a call for multi-prompt 1lm evaluation.
Transactions of the Association for Computational
Linguistics, 12:933-949.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng,
Mahir Shah, Kabir Jain, Graham Neubig, and Yang
You. 2024. Mixeval: Deriving wisdom of the
crowd from IIm benchmark mixtures. arXiv preprint
arXiv:2406.06565.

Ryan Park, Rafael Rafailov, Stefano Ermon, and
Chelsea Finn. 2024. Disentangling length from qual-
ity in direct preference optimization. ArXiv preprint,
abs/2403.19159.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Matthew Renze and Erhan Guven. 2024. The effect of
sampling temperature on problem solving in large
language models. ArXiv preprint, abs/2402.05201.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Richard S Sutton. 2018. Reinforcement learning: An
introduction. A Bradford Book.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024a. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. ArXiv preprint, abs/2406.12845.

4204

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2403.07691
https://arxiv.org/abs/2403.07691
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:259075564
https://api.semanticscholar.org/CorpusID:259075564
https://academic.oup.com/biomet/article-abstract/30/1-2/81/176907
https://academic.oup.com/biomet/article-abstract/30/1-2/81/176907
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.04706
https://arxiv.org/abs/2403.04706
https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2305.17390
https://arxiv.org/abs/2305.17390
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2405.14734
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://arxiv.org/abs/2401.00595
http://arxiv.org/abs/2401.00595
https://arxiv.org/pdf/2406.06565
https://arxiv.org/pdf/2406.06565
https://arxiv.org/abs/2403.19159
https://arxiv.org/abs/2403.19159
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. ArXiv
preprint, abs/2203.11171.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Chandu, David Wad-
den, Kelsey MacMillan, Noah A Smith, Iz Beltagy,
et al. 2023. How far can camels go? exploring the
state of instruction tuning on open resources. Ad-
vances in Neural Information Processing Systems,
36:74764-74786.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024b.
Mmlu-pro: A more robust and challenging multi-task
language understanding benchmark. ArXiv preprint,
abs/2406.01574.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang,
Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
2024a. TIterative preference learning from human
feedback: Bridging theory and practice for rlhf under
kl-constraint. Preprint, arXiv:2312.11456.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024b. Watch every step! 1lm agent learning
via iterative step-level process refinement. arXiv
preprint arXiv:2406.11176.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv
preprint, abs/2305.10601.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. ArXiv preprint,
abs/2403.04652.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou,
Yuqiang Li, and Wanli Ouyang. 2024a. Access-
ing gpt-4 level mathematical olympiad solutions via
monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2024b. Webpilot: A versatile
and autonomous multi-agent system for web task

execution with strategic exploration. arXiv preprint
arXiv:2408.15978.

A Significance Test

We use one-sample t-test to determine whether the
mean performance of multiple sampling is signifi-
cantly different from the score of greedy decoding.
As shown in Table 8, for most cases, p value is less
than 0.05, supporting our findings in Section 3.

B Computational Cost of Best-of-N

In Section 5, we find that . Despite the better per-
formance, best-of-N sampling will introduce extra
computational overhead. Here we provide an analy-
sis of these costs. Specifically, we evaluated Llama-
3-8B-Instruct on GSMS8K using an A100 80G GPU
with vLLM and used FsfairX as the reward model.
Since the reward model can be deployed in parallel,
our focus is on the cost associated with generating
multiple outputs during sampling.

Table 7 illustrates that best-of-N sampling yields
significant performance improvements at a reason-
able computational overhead. For instance, with
a 1.26x increase in computational cost, the accu-
racy of the smaller model improves from 67.6% to
82.0%. With a 2.14x increase, Llama-3-8B-Instruct
achieves an 86.4% accuracy on GSM8K, surpass-
ing GPT-4-Turbo. These results demonstrate that
inference-time scaling can be an effective strategy
for boosting model performance.

Sample Num. 1 4 8 16 32
Inference Time 1x 1.26x 1.66x 2.14x 2.61x
Accuracy 67.6 82.0 83.9 86.4 86.2

Table 7: Computational costs of best-of-N sampling of
Llama-3-8B-Instruct on GSM8K.

4205

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
http://arxiv.org/abs/2406.11176
http://arxiv.org/abs/2406.11176
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2403.04652
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Model ApacaEval 2 Arena-Hard MixEval MMLU-Redux GSMS8K HumanEval
GPT-4-Turbo 0.03 5.0E-12 6.4E-8 3.2E-6 4.7E-21 1.1E-48
Llama-3-8B-Instruct 2.3E-8 1.5E-14 1.6E-15 0.01 6.8E-26 1.0E-3
Yi-1.5-6B-Chat 0.04 4.2E-7 1.9E-12 1.5E-8 1.1E-34 5.7E-62
Yi-1.5-9B-Chat 1.3E-3 9.7E-12 4.0E-10 0.53 7.5E-62 2.3E-78
Yi-1.5-34B-Chat 0.05 3.4E-3 0.48 8.6E-7 4.7E-42 5.8E-81
Qwen2-7B-Instruct 0.18 8.9E-16 0.57 1.5E-9 3.9E-107 3.8E-82
Mistral-7B-Instruct 1.1E-7 0.66 0.02 0.05 1.6E-78 7.9E-89

Table 8: Significance test for Table 2.

4206

