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Abstract
With over 300 documented signed languages
worldwide, they serve as essential gateways
for researchers and educators to explore cross-
cultural and cross-linguistic influences on au-
tomatic sign recognition and generation. How-
ever, research in this field remains severely lim-
ited by scarce resources, particularly when an-
alyzing multiple signed languages at once. In
this work, we hypothesize that a linguistically
informed alignment algorithm can improve the
results of sign-to-sign translation models. To
this end, we first conduct a qualitative analy-
sis of similarities and differences across three
signed languages: American Sign Language
(ASL), Chinese Sign Language (CSL), and Ger-
man Sign Language (DGS). We then introduce
a novel generation and alignment algorithm
for translating one sign language to another,
exploring Large Language Models (LLMs) as
intermediary translators and paraphrasers. We
also compile a dataset of sign-to-sign trans-
lation pairs between these languages. Our
model trained on this dataset performs well
on automatic metrics for sign-to-sign transla-
tion and generation. Our code and data will
be available for the camera-ready version of
the paper. Our code and data are available at:
https://github.com/Merterm/sign2sign

1 Introduction

Despite the growing need for advanced signing
technologies, signed language (SL) resources re-
main scarce, posing significant challenges for
computational linguistic research and accessibility
within Deaf or Hard-of-Hearing (DHH) communi-
ties. A crucial step toward improving these tech-
nologies is the development of larger, multilingual
signed corpora. While recent efforts have focused
on collecting pre-aligned video datasets—such as
(Yin et al., 2022) curating videos for 10 SLs and
(Gueuwou et al., 2023) compiling Bible-based
videos in 47 SLs—the real challenge lies in the

Figure 1: This figure depicts how we translate from one
sign language to another. Inputs are shown at the top
(skeletal body positions for CSL), and then the outputs
are at the bottom for DGS. Glosses, which are intermedi-
ary textual representations (such as, ‘山’ for the sign for
‘mountain’ in CSL), are also used with sign sequences.
At its core, a paraphrasing alignment algorithm matches
instances between different corpora.

automatic alignment of signs rather than just data
collection.

Even though these are significant data collection
initiatives, the main bottleneck lies in automatically
aligning signs instead of collecting pre-aligned
videos. So, in this paper, we work towards ways to
align sign language representations automatically
across three signed languages: American Sign Lan-
guage (ASL), Chinese Sign Language (CSL), and
German Sign Language (DGS).
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Text Gloss

ASL
Low self esteem or a low feeling about oneself N/A

is unfortunately very common.

CSL
自卑，就是人类常见的一种表现。 <自卑 > <人 > <人 > <见 > <有 >

Inferiority is a common manifestation of human beings. <inferiority> <human> <human> <see> <have>

ASL Good evening. N/A

DGS
und damit schönen guten abend . BEGRUESSEN SCHOEN GUT ABEND BEGRUESSEN

and have a nice good evening. welcome good evening welcome

CSL
山上雪白一片。 <山 > <颜色 > <雪白 >

The mountains are covered with snow <mountain> <color> <snow white>

DGS
An den Bergen fällt Schnee. BERG SCHNEE

Snow is falling on the mountains. mountain snow

Table 1: This table shows examples of our constructed parallel corpus with ASL-CSL, ASL-DGS, and CSL-DGS
translations. We use our alignment algorithm to get these final results. Here, glosses are intermediary textual
representations for signs in the given source and target SLs. As the How2Sign dataset does not contain original
glosses, we do not show them here. English translations are given underneath the original text for interpretability.

We claim that ways of automatically aligning
can benefit from recent Neural Machine Translation
(NMT) techniques, as well as LLM advancements
(Vaswani et al., 2017a; Liu et al., 2020; Xue et al.,
2021). These recent advancements in sign language
translation models have enhanced communication
between sign and spoken language users. However,
they fail to address the critical communication is-
sues between different groups of signers who use
separate SLs. To ameliorate, we study ways to
combine the power of LLMs, cognitive science,
and linguistic findings to create more effective in-
termediary translators or paraphrasers between SLs.
In this paper, we first present a linguistic analysis
of the differences and similarities of SLs in a data-
driven manner. Then, we propose a paraphrase
alignment algorithm as shown in Figure 1. Using
this approach, we present a multilingual SL cor-
pus derived from multiple uni-language datasets. It
includes over 3,000 pairs covering ASL-CSL, DGS-
ASL, and DGS-CSL parallel videos with textual
annotations (Table 1 shows our corpus’s text sam-
ples). To our knowledge, this is the first corpus that
automatically aligns multiple corpora for a unified
multilingual SL dataset. Finally, we train a gen-
eration model using this dataset and report exper-
imental results on its performance in sign-to-sign
translation tasks. We hope that this dataset and the
automatic alignment algorithm will enable future
research on the communication between signers
from different communities.

2 Related Work

The study of signed languages has seen consider-
able advancements across two main fronts: sign
language recognition (SLR) and sign language gen-
eration (SLG).

SLR has progressed from early visual recogni-
tion (Borg and Camilleri, 2019; Moryossef et al.,
2020; Camgoz et al., 2018; Ko et al., 2019; Yin
et al., 2021), segmentation (Fenlon et al., 2008;
Cormier et al., 2016) efforts to sophisticated mod-
els capable of end-to-end translation (Starner, 1995;
Yang and Sarkar, 2006; Huang et al., 2018; Camgoz
et al., 2018), heavily relying on deep learning tech-
niques like CNN/RNN(Huang et al., 2018; Cheng
et al., 2020) and Transformer-based models (Yin
and Read, 2020; Camgoz et al., 2020; Zhou et al.,
2021b; Cheng et al., 2023; Wu et al., 2023) for
state-of-the-art performances.

Concurrently, SLG has greatly benefited from
larger datasets, such as PHOENIX-14T (Camgoz
et al., 2018) and CSL-Daily (Zhou et al., 2021a),
gradually increasing the accuracy of the genera-
tions (Stoll et al., 2018b; Zelinka and Kanis, 2020;
Saunders et al., 2020a, 2021; Zhou et al., 2021a;
Moryossef et al., 2021; Lin et al., 2023; Müller
et al., 2023b). There have also been works focusing
on more prosodic generations —i.e., the intensity,
duration, and repetition of signs — with better use
of the signing space and with more awareness of
the intensifiers in facial expressions (Inan et al.,
2022; Viegas et al., 2023).

4004



Figure 2: The sign of the word ‘snow’ in Chinese Sign Language (CSL) (Zhou et al., 2021a), German Sign Language
(DGS) (Camgoz et al., 2018), and American Sign Language (ASL) (Duarte et al., 2021) with their glosses. Similar
patterns are shared across these SLs in terms of the use of signing space (e.g., hands moving from top to bottom, as
shown in the orange area), and hand gestures (e.g., bent fingers as an iconic representation of a snowflake, as shown
in the blue areas) are shared across three languages. Contrarily, the duration, and repetition of hand movements may
differ due to other linguistic factors (e.g., the sign is repeated twice in DGS, while only once in CSL and ASL).

Amidst these developments, translation and
alignment in SLG have emerged as critical chal-
lenges. Notable efforts in this area include apply-
ing NMT methods to translate spoken language
text into SL glosses (Zhu et al., 2023). They
demonstrate substantial improvements in both DGS
and ASL corpora. Similarly, earlier studies like
Othman et al. (2011) and projects such as Deep-
ASL (Fang et al., 2018) have explored statisti-
cal and deep learning approaches to address the
alignment of English text and ASL gloss. Bidi-
rectional translation systems, exemplified by Cate
et al. (2017), have introduced generative models
to enhance alignment between ASL and English,
marking significant strides toward more nuanced
translation mechanisms. Also, established chal-
lenges (Müller et al., 2023a) and review articles
(De Coster et al., 2023) for translations between
spoken and signed languages–such as Swiss Ger-
man and Swiss German Sign Language (DSGS)–
have shown the successes and challenges of current
state-of-the-art neural translation systems.

In addition to bilingual translation systems, there
has been recent interest in collecting and curat-
ing multilingual sign translation corpora. Notably,
works of (Yin et al., 2022) curating a subset of
videos from the SpreadTheSign initiative to form a
dataset with parallel data for 10 SLs across various

domains, and (Gueuwou et al., 2023) presenting a
single-domain signed videos in 47 SLs.

Our contribution builds on these established
paths by focusing on the in-the-wild alignment be-
tween different SLs–where already aligned signed
videos are not present–aiming to leverage unique
linguistic features inherent to SLs. This novel ap-
proach, which builds upon the foundational work in
both SLR and SLG, as well as the specific transla-
tion and alignment challenges addressed by recent
research, represents a pioneering effort to enable
direct, meaningful communication across diverse
Sign Language communities.

3 Aligning Different Signed Languages

To align different SL corpora, we first analyze them
linguistically. In a data-driven manner, we also
identify the challenges of aligning these separate
datasets. As a result of these analyses, we pro-
pose an approach that uses a paraphrase detection
module.

Qualitative Linguistic Analysis Historically,
distinct SLs have evolved across various regions
since as early as the 5th century BC (Bauman,
2008), each with its own set of features and rules,
from phonology and syntax to semantics and prag-
matics (Virginia Swisher, 1988). These visual lan-
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guages harness gestures, facial expressions, and
the signing space, leveraging shared cognitive abil-
ities and linguistic conventions that, to some extent,
unify SLs globally. However, significant linguistic
differences exist among SLs and between them and
spoken languages, highlighting the importance of
technological interventions in bridging these gaps.

For instance, despite English being a commonly
spoken language in both the U.S. and the U.K.,
American Sign Language (ASL) and British Sign
Language (BSL) remain mutually incomprehensi-
ble (Pyers, 2012), as the former has been developed
from Old French Sign Language, various village
SLs, and home sign systems; in contrast, the lat-
ter is developed from Old British Sign Language.
These differences underscore the critical role of
technology in exploring the meta-linguistic skills
that transcend the spoken-sign language divide.

As shown in Figure 2, the signs with the same
meaning (snowing) have shared signing spaces and
are more interpretable across different SLs. Build-
ing on this observation, we hypothesize that signed
data (containing videos, body positions, text, and
glosses) that has already been collected for differ-
ent SLs under different corpora can be aligned.

Quantitative Linguistic Analysis Signed lan-
guages can represent information in different as-
pects, such as gestures, movements, facial expres-
sions, and sign duration. Different SLs also have
different prosodic characteristics. To quantify these
differences, we first analyze the average length of
signed video frames by dividing the frame counts
by the number of signs in the video. This can be
regarded as an approximation of the information
representation statistic for an individual sign. We
use glosses as proxies to detect the number of signs
in the video. Since the How2Sign dataset (ASL)
does not contain glosses, we use the texts instead.
We show these preliminary analyses in Table 2.

ASL CSL DGS

min/mean/max min/mean/max min/mean/max

0.1/7.9/115.0 1.6/17.3/73.4 3.2/15.5/71.5

Table 2: The average frame counts per sign across differ-
ent signed languages based on How2Sign (ASL), CSL-
Daily (CSL), and PHOENIX-14-T (DGS) datasets.

It can be observed that ASL tends to utilize a
longer time to present a single sign, while DGS
uses a shorter duration on average. Even though

this is a loose approximation of the information
content per sign, it provides an initial understand-
ing of how the temporality of signed languages
may affect the alignment. Based on these analyses,
we further discuss the challenges of sign-to-sign
translation in Appendix A.

4 Our Approach

In this section, we introduce our approach to
address the challenges of sign-to-sign transla-
tion. We focus on combining already-present sign
video datasets in any language and align with an-
other dataset using paraphrase detection algorithms.
With this approach, we create a new corpus by pair-
ing sign videos from CSL-Daily, PHOENIX-14T,
and How2Sign corpora. In this section, we describe
the details of our alignment methodology, inspired
by our lexical analyses in Section §3. This happens
in three steps: preprocessing, paraphrase detection,
and postprocessing.

4.1 Preprocessing: Curation of Raw Datasets

In this task, we start with three well-established
continuous SL datasets: CSL-Daily (Zhou et al.,
2021a), How2Sign (Duarte et al., 2021), and
PHOENIX-14T (Camgoz et al., 2018) – in which
sign videos are cut into clips with individual sen-
tences and their corresponding transcriptions.1

Each of these datasets already contains its prepro-
cessing steps, and they are standardized across dif-
ferent corpora using methods such as video clip-
ping, signer cropping, and masking. We aggregate
all of the sentences, their corresponding video clips,
and their corresponding glosses (if glosses are un-
available, we obtain the predicted gloss from the
state-of-the-art text-to-gloss translation models.) in
a single format across these datasets. Table 3 shows
the statistics of the three corpora.

4.2 Paraphrase Alignment

To align these different datasets, we focus on the
core NLP task of paraphrase detection applied
to SLs. As the original corpora cover different
data domains (i.e., CSL-Daily consists of daily
life contents while PHOENIX-14T includes sign
videos and corresponding text transcriptions from

1For CSL-Daily, we have signed an agreement of
data use and followed the regulations on the usage of
the dataset from http://home.ustc.edu.cn/~zhouh156/
dataset/csl-daily/. The other two datasets are publicly
available for research purposes only, and we followed their
research conduct agreements.
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Dataset Language Samples (train/dev/test) Data type Sign Vocab

CSL-Daily Chinese Sign Language 18,401 / 1,077 / 1,176 img;gloss;text 2,000

How2Sign American Sign Language 31,128 / 1,741 / 2,322 video; img; text 16k

PHOENIX-14T German Sign Language 7,096 / 519 / 642 video; gloss; text 1,066

Table 3: This table presents several statistics about the continuous SL datasets. These are some of the most commonly
used corpora in the sign language processing literature. Each data collection effort has its own shortcomings and
advantages, e.g. How2Sign contains more than 10k samples, but this makes it difficult to manually annotate signs
with intermediary textual representations, i.e. glosses.

weather broadcasting series), estimating the degree
of content overlap is challenging. Unlike tradi-
tional activity recognition tasks, directly classify-
ing long video clips as a single action is infeasible,
as the video clips encode sentences with complete
meanings. Instead, we focus on “finding the para-
phrases" across different datasets using the pro-
vided textual representations (i.e., sentence tran-
scriptions and gloss annotations).

Dataset Train Test

CSL-Daily - PHOENIX 2,274 669
How2Sign - PHOENIX 317 435
CSL-Daily - How2Sign 630 677

Table 4: Statistics of final constructed parallel dataset.
Each number corresponds to the number of samples of
signed sentences using the given SL dataset pair.

We first utilize an open-source machine trans-
lation model2 to translate all texts (Chinese and
German) into English. Afterward, we employ a
neural paraphrase identification model (Reimers
and Gurevych, 2019) to identify the paraphrases
across all these datasets. We tune the threshold
on the similarity scores with a held-out subset of
human-annotated paraphrase pairs to guarantee the
quality of extracted pairs. While it is possible that
some pairs still lack a similar meaning, we consider
the curated dataset as a valuable yet noisy training
set for cross-lingual sign translations. Table 4
presents the statistics on the final curated datasets.

4.3 Construction and Postprocessing

After identifying candidate sentence pairs using the
paraphrase alignment strategy, we perform multiple
stages of postprocessing to construct our dataset.
After alignment, we end up with multiple candi-
date videos and sentence pairs corresponding to

2https://github.com/Helsinki-NLP/Opus-MT

the same segment–this is due to multiple signers
in each dataset signing the same segment. In these
instances of multiple candidates, we map every
source sign to all the different target signs as sepa-
rate samples. This procedure dramatically enlarges
the final dataset size but also introduces the issue
of duplicated training signals. Yet, as the size of
any SL corpus is orders of magnitude smaller than
a multilingual spoken language machine transla-
tion corpus (i.e., several million pairs (Bojar et al.,
2018)), we posit that such duplication can facilitate
the model better to capture the nuanced mapping
between different SLs.

Once we obtain the video pairs, following prior
work (Saunders et al., 2020b), we convert the se-
quence of sampled frame images into 3D body
poses with skeletal coordinates. To accomplish
this, we first extract 2D skeletal joint positions—
i.e., coordinates corresponding to the location of
upper-body joints (hands, arms, torso) in the two-
dimensional space (please refer to Figures 1 or 3
for visual representations of these skeletal body
positions—from each video using OpenPose (Cao
et al., 2019). As the next and final step, these 2D
coordinates are converted to three dimensions by
utilizing skeletal model estimation techniques as
presented in (Zelinka and Kanis, 2020). Addition-
ally, we apply body pose coordinate normaliza-
tions similar to (Stoll et al., 2018a), to account for
skewed coordinates as the original datasets are con-
structed with different camera angles. Finally, to
post-process the text and glosses for ASL and DGS
data, we split the tokens using whitespace. For
CSL, we apply a Chinese text segmentation tool3

on the texts for tokenization. After these stages,
we end up with our multimodal and multilingual
dataset for three parallel SLs (i.e., ASL-CSL, ASL-
DGS, CSL-DGS). We then use this dataset to train
a translation generation model.

3https://github.com/fxsjy/jieba
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Figure 3: This figure shows the two stages of our approach: alignment and generation. We first have an alignment
module where we identify paraphrases across languages and construct a parallel corpus using the textual modality
for SLs (§4). In the next module, we generate signed videos using baseline models and prompt-tuned LLMs. We
also introduce a multitasking model architecture with the additional gloss recognition auxiliary task (§5).

5 Our Generation Model

The Sign Language Translation (SLT) task gen-
erally involves multiple modular subtasks: sign-
to-gloss, gloss-to-text, text-to-gloss, and gloss-to-
sign translations. Our approach also uses this mod-
ular approach with additional constraints of the
source and target SLs. In this section, we first
introduce a transformer-based baseline model com-
monly used in the literature for sign-to-text trans-
lation (section §5.1). Then, to better utilize the
multi-modality of the SLs, we further propose a
multitasking model (Figure 3) that makes use of
the corresponding glosses that come with the input
sign sequence to introduce more in-domain knowl-
edge into the encoder part. Lastly, we introduce an
LLM-based translation model, which is posited to
be pre-trained with extensive in-domain knowledge
that can be better utilized for the gloss-to-gloss
translation task.

5.1 Baseline Model

We present a baseline model based on the encoder-
decoder architecture. The main goal of the cross-
lingual sign language translation model is to trans-
form a signing video from the source language into
a video in the target language. Formally, given
a sign skeletal sequence X = [x1, ...xN ], a trans-
lation model aims to learn the conditional proba-
bility p = (Y |X) where Y represents the corre-
sponding language’s skeletal pose coordinate se-
quence Y = [y1, ...yT ]. We build a Transformer-
based model (Vaswani et al., 2017b) as our baseline.
This model can generate output skeletal sequence

in an auto-regressive manner. Following prior work
(Saunders et al., 2020b), we feed the encoded input
skeletal joint sequences into a modified decoder,
which employs a counter-based decoding mecha-
nism to guide the generation of continuous joint
sequences y1:T and to decide the end of the gener-
ated sequence. This strategy can be formulated as:

[ŷt+1, ĉt+1] = Model(ŷt|ŷ1:t−1, x1:N ) (1)

where ŷt+1 and ĉt+1 are the generated joint se-
quence and the counter value for the generated
frame t+1. This generation model is trained using
the mean square error (MSE) loss between the gen-
erated sequence ŷ1:T and the ground truth y1:T as
LMSE = 1

T

∑T
i=1(yi − ŷi)

2.

5.2 Model with Gloss-based Multitasking
We propose to frame the task as a multi-task prob-
lem and separate it into two subparts. The first is
source-side sign language recognition, where we
use a continuous sequence-to-sequence learning
function, CTC (Graves et al., 2006), for gloss recog-
nition. Following prior work (Camgoz et al., 2020),
given a video input V , we can obtain the gloss
probabilities at each time stamp as p(gt|V ), using
a linear projection layer followed by a softmax ac-
tivation function. We then utilize CTC to compute
p(G|V ) by marginalizing over all possible Video-
to-Gloss alignments as: p(G|V ) =

∑
π∈B p(π|V )

where π is a path and B represents the sets of all vi-
able paths for the glosses, as did in (Camgoz et al.,
2020). The final recognition loss function is com-
puted as LRecog = 1 − p(G∗|V ) where G∗ is the
oracle path obtained from the dataset.
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We optimize the recognition loss together with
the aforementioned MSE loss for sign joint genera-
tion. The final loss is:

L = α ∗ LRecog + LMSE . (2)

where α is a tunable hyperparamter.

5.3 LLMs for Sign Generation
As the third model family in our setup, we present a
case study using an LLM for translation as proof of
concept. Based on the previous model with an aux-
iliary gloss recognition task, this model also uses
LLMs for the text-to-gloss and gloss-to-gloss trans-
lation tasks. It is postulated that large pretrained
models have better semantic representation capa-
bilities of text; hence, this is an effort to offload
the gloss-based translations to LLMs. We describe
the details of the text-to-gloss and gloss-to-gloss
prompting setup in Appendix E.

6 Evaluations and Results

In this section, we present the automatic metrics we
use and the evaluation paradigm for SLs. Then, we
discuss the results of our experiments with these
metrics.

6.1 Metrics and Back-Translation Model
To evaluate the generated skeletal joints’ quality,
following previous work (Saunders et al., 2020b;
İnan et al., 2022), we back-translated the poses to
the text domain and compared them with ground
truth text, reporting ROUGE-L and BLEU scores
for automatic evaluation. We provide the upper
bound performances of the back-translation models
built with SLT (Camgoz et al., 2020) in Table 6.
Model implementation details and pipeline details
are given in Appendices §C, and §D.

6.2 Automatic Results
We first train end-to-end baseline models on the six
different language pairs. As shown in the first row
of Table 5, the model performs best while trans-
lating ASL into the other two languages. These
improvements could be attributed to the better back-
translation quality than CSL and DGS (Table 6).
At the same time, the ASL language is hard to
back-translate, given its open vocabulary. This is
amenable with recent studies on training sign lan-
guage transformer models (Camgoz et al., 2020)
over the How2Sign dataset (Duarte et al., 2022a).

We also observe that although the model can
translate high-precision tokens from DGS to CSL

and ASL, due to the narrow domain of the Ger-
man Sign Language dataset (mainly weather fore-
casting), BLEU-4 scores are 0 for both models.
With the introduction of the gloss recognition task,
for ASL → X tasks, we observe significant im-
provements across BLEU scores and ROUGE-L
F1 scores. However, for CSL → X tasks, the gloss
does not help much. One other difference is that for
DGS → CSL tasks, though a lower BLEU1 score is
obtained with the introduction of the auxiliary task,
we observe that the BLEU3 score is improved. One
of our main takeaways is that when evaluating SLs
with a larger vocabulary and less repetitive patterns
of inputs, current back-translation metrics fail to
evaluate the quality of the generated videos.

LLM results We present GPT-4 results for gloss-
to-gloss generation, which was then evaluated
against the ground truth of manually annotated
glosses. The results from this experiment can be
observed in Table 7. Here, it can be seen that the
BLEU-3 and BLEU-4 scores are very low (around
0-5%). This shows that, at the sentence level, LLM
translations may not be reliable replacements for
rule-based gloss recognizers or transformer-based
encoders. It can also be claimed that the BLEU met-
ric cannot fully capture the semantic differences of
glosses across SLs.

Further, it can be seen that ASL to DGS transla-
tion receives high scores, while ASL to CSL does
not. Further, the opposite is true when CSL is trans-
lated to either of these languages. This may be due
to the nature of the textual representations of signs
using different glossing styles. As CSL glossing
uses Chinese characters that are morphemes both
in Chinese and CSL, while glossing for DGS and
ASL uses letters which are phonetic units in En-
glish and German while a sign is a morpheme in
DGS and ASL. This may be due to Chinese glosses
packing more meaning and leading to better gloss-
to-gloss matching and translations by the LLM.
Overall, this case study on the LLMs as interme-
diate modules for translating glosses and texts for
SLG shows that they are a new avenue to explore.
Yet, we can not currently rely on their role and
efficacy in sign-to-sign translation.

6.3 Qualitative Error Analysis

To go beyond the limitations of automatic back-
translation metrics and investigate how our system
generates the videos, we perform a qualitative anal-
ysis of our model outputs (Table 8).
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ASL → CSL DGS

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
baseline 17.00 0.94 0.00 16.46 14.18 6.80 5.73 13.22
multitasking 17.16 1.19 0.00 16.82 15.86 8.08 6.81 14.53

CSL → ASL DGS

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
baseline 10.97 2.22 0.96 10.32 14.68 6.36 5.21 13.91
multitasking 10.77 2.18 0.93 10.34 14.67 6.32 5.16 14.09

DGS → ASL CSL

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
baseline 9.01 1.51 0.69 7.71 25.62 0.00 0.00 27.75
multitasking 9.29 1.40 0.55 7.90 20.91 4.34 0.00 22.16

Table 5: This table shows the results for our experiments on sign-to-sign translation (source → target) results on
the test set, bolded lines are better results of the two models. Model performances vary across different languages
pointing to the need for multilingual and aligned corpora.

Language BLEU1 BLEU4 ROUGE

ASL 18.90 2.93 17.51
DGS 30.42 12.36 30.10
CSL 23.30 2.25 23.19

Table 6: This is the table for back-translation results
between within ground truth skeletal joints, glosses, and
texts. These are upper bounds for the performance of
the back-translation model itself.

Language BLEU1 BLEU3 BLEU4

ASL → DGS 19.9 1.89 1.09
ASL → CSL 3.2 0.00 0.00
DGS → ASL 53.25 4.85 2.71
DGS → CSL 5.2 0.00 0.00
CSL → ASL 39.22 4.94 2.83
CSL → DGS 49.74 4.49 2.50

Table 7: Gloss translations using GPT-4 (source →
target) results on the test set.

One concern in Table 5 is the low BLEU4 score
of 0.00 for the ASL/DGS to CSL translation task.
Since the Chinese texts are pre-tokenized with the
tokenization tool, it is less usual that continuous
4-grams appear in both the reference and oracle
texts. Meanwhile, for ASL and CSL datasets with
open-domain vocabularies, current alignments are
not accurate enough and may introduce errors in
the training stage. For instance, in the second ex-
ample in Table 8, there is no mention of specific
food names for breakfast in the source video of
ASL. However, both the generated video and the

automatically paired reference video in CSL pro-
duce milk as one of the foods ordered/eaten. This
can be due to the domain of CSL, which covers
daily-life entities.

Meanwhile, for ASL and CSL to DGS genera-
tions, we can refer to the back-translated results to
examine the generation quality. As illustrated in the
third row of Table 8, even though “good night” is
over-generated, the back-translation result matches
the paired DGS target sentence.

7 Discussions

We discuss essential challenges that demand future
efforts in sign-to-sign generation. One such chal-
lenge is the difficulty of cross-linguistic and cross-
cultural alignments. Similar to spoken languages,
SLs can be affected by the physical and cultural
factors of the user population. Thus, sign represen-
tations are not unified across SLs. There have been
initiatives in the sign language processing commu-
nity to use SignWriting as an intermediary unified
textual representation (Jiang et al., 2023), but this
is still in the process of wide adoption. In any case,
as a community, we need more data with diverse
and sociocultural relevance in addition to limited
weather forecast- or Bible-based datasets. For fur-
ther discussion on the sociolinguistic aspects of this
problem, please refer to Appendix §F.

Another point of discussion is surrounding au-
tomatic evaluation metrics for signing. Current
evaluations are restricted to the back-translation
results of the generated sign videos, which lack
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Source Text Generated (back-translation) Paired Target

da haben wir am morgen schnee und 明天||白天||会||下雨。 下雪 ||了||，||今天||真冷。
schneeregen .
Here we have snow and sleet in the
morning. It will rain during the day tomorrow. It’s snowing, it’s so cold today.

我||想||一杯||牛奶 ||，||你||要|| 早饭||我||吃||的||是||面包
Now, a typical day starts with 什么||饮料||？ ||和||牛奶||。
breakfast. I want a glass of milk, what do you want? I had bread and milk for breakfast.

Hi hallo und guten abend hallo und guten abend
Hello and good night Hello and good night

Table 8: This table presents a qualitative analysis of model outputs. For non-English texts, we provide English
translations (underlined) at the bottom of each row. Bold words are correctly translated across languages. For
Chinese texts, we use the symbol “||” to mark the tokenized word boundaries of prediction, which leads to the poor
BLEU4 performance in Table 5. We find that, although sometimes the automatically aligned pairs do not covey the
identical meaning, our model can produce reasonable results and cover salient tokens. The examples are selected
from DGS-CSL, ASL-CSL, and ASL-DGS from top to bottom.

spatial and temporal context, as discussed by Inan
et al. (2022). The lack of a proper evaluation metric
remains a problem that needs to be addressed by an
aggregated effort from different fields surrounding
the SL research community. Moreover, the fact
that there are significantly few publicly available
resources for SL with glosses limited our choice
and scope of datasets to the PHOENIX-14T and
CSL-Daily dataset. The ASL, such as How2sign
(Duarte et al., 2021) came without oracle glosses,
and we have to utilize imperfect SLT models to de-
rive glosses from the original text, thus introducing
more errors.

8 Conclusions and Future Work

In this work, we address the problem of cross-
lingual SLT, introducing a challenge for automatic
video translation between SLs with a focus on au-
tomatic, linguistically informed alignment. Our
effort facilitates cross-lingual sign language under-
standing and offers insights into signed languages’
social, cognitive, and linguistic nuances, improving
our understanding of their use across communities.

We release the first automatically aligned corpus
with cross-lingual pairs that span three SLs, which
can serve as a benchmark for future research. We
show that LLMs can also be instrumental as in-
termediary translators, yet further experimentation
and incorporation are necessary to judge their effi-
cacy. We demonstrate that incorporating the gloss
information can assist in understanding the video,
which highlights the need for using intermediary
textual representation to integrate more structure
or stronger signals for better translation systems.

Future work could involve better body pose extrac-
tion techniques to better understand cross-linguistic
and cross-cultural semantics and prosody of SLs.
Also, text-to-video retrieval approaches (Duarte
et al., 2022b; Zuo et al., 2023) can be used to verify
video alignments across different SLs.

Ethics Statement

All models and analyses are built on publicly avail-
able datasets. Privacy is an important issue in
general in sign language processing. This work
presents an example of ways that we can employ au-
tomatic skeleton and then avatar generation to pre-
serve the signers’ privacy. Instead of using the orig-
inal frames that could leak the personal information
of signers, we extract human skeletal joints and
generate videos accordingly. Our work depends on
pretrained models such as word and image embed-
dings. These models are known to reproduce and
even magnify societal bias present in training data.
Moreover, like many machine learning-based NLP
methods, our methods are likely to perform better
for content that is better represented in training,
leading to further bias against marginalized groups.

Limitations

One limitation of our work is the cumulative error
propagation that dissipates through the paraphrase
identifier, sign language translation model, and
back-translation, amplifying the total error. Due to
the domain gap between different corpora, it is im-
practical to identify identical sign language video
pairs based on transcriptions for those with longer
and more complicated meanings. Experimental re-
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sults demonstrate the need for better-constructed
large-scale datasets with high-quality alignments
and a focus on linguistics.

Another limitation of this work is automatic eval-
uation. The current back-translation technique is
the only available automatic method in addition
to human evaluation. In this work, we did not
employ human evaluation due to limited available
resources. Having human evaluation on this dataset
is a possible future direction to validate the quality
of the generations and alignments.
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A Challenges in Sign-to-Sign Translation

Although substantial efforts have been made in
SLR and SLG, aligning different signed languages
proves challenging due to their distinctiveness. The
main challenges are discretizing continuous sign-
ing — i.e., delineating where a morphological unit
of sign starts and ends — focusing on bilingual
translations, and multilingual alignment. For one,
there is a lack of research on accurately segment-
ing and recognizing discrete signs in continuous SL
datasets with an open vocabulary. The current state-
of-the-art SLR model (Renz et al., 2021) achieves a
temporal boundary prediction F1 score of only 0.53
on the PHOENIX-14T dataset, limited to British
Sign Language (BSL) and DGS. The largest word-
level ASL dataset (Li et al., 2019) reports a Top-1
retrieval accuracy of 30% for a vocabulary of 2,000
words. Other SL corpora can have even smaller
vocabularies, ranging from forty (DGS) (Ong et al.,
2012) to a few hundred (CSL), with low recogni-
tion accuracies. These performances raise ques-
tions about the accuracy of isolated sign recogni-
tion for subsequent generation tasks with multiple
languages.

Finally, in-the-wild alignment of multiple signed
languages presents separate challenges from trans-
lation using a cleaned and parallel corpus. Mul-
tiple datasets have been recently made available
for sign translation with multiple languages. How-
ever, most of these datasets present a subset of
already aligned parallel videos in multiple signed
languages. For instance, the Spreadthesign-Ten
(SP-10) dataset introduced in Yin et al. (2022)
presents parallel videos available for 10 SLs from
the SpreadTheSign initiative. Even though a data
collection initiative is key, curating already-aligned
signed videos does not contain many of the chal-
lenges required to align these videos. The main
challenge in alignment comes from curating sign
videos that were not previously aligned. Address-
ing this challenge can benefit the data scarcity and
parallelizing unaligned multilingual sign videos
already existing in the literature.

B ASL gloss extraction

We retrained a sign language translation model
that produces glosses from the texts using the
transformer-based model (Yin and Read, 2020).

The model is trained on ASLG-PC12 (Othman and
Jemni, 2012), which contains 87,709 training pairs.
Following the setup in (Yin et al., 2021), we used
their pre-processed glosses as the target.

C Model Implementation Details

We implemented all models for the sign video trans-
lation task based on the codebase released by (Saun-
ders et al., 2020b). Different from their gloss/text-
to-sign language generation, we modified the en-
coder part to accept human skeletal joints as inputs.
For the end2end model, Both the encoder and de-
coder are built with two layers, 4 heads, and an
embedding size of 512. We apply Gaussian noise
with a noise rate of 5, as proposed by Saunders
et al. (2020b). All network parts are trained with
Xavier initialization (Glorot and Bengio, 2010),
Adam optimization (Kingma and Ba, 2015) with
default parameters and a learning rate of 1e-3. The
model takes 3 hours to train on 1 NVIDIA RTX
5000 GPU. We keep the model size fixed for our
proposed model with auxiliary tasks. The output
layer for gloss recognition has a dimension of 512.
The model takes 4 hours to train on 1 NVIDIA
RTX 5000 GPU. For the end2end model, we search
the recognition loss weight α between (1, 0.1, and
0.01), and use 0.01 in the final result table.

We implemented the back-translation model on
top of the original SLT code (Camgoz et al., 2020).
The transformer models are built with one layer,
two heads, and an embedding size of 128. The fea-
ture size is changed to 150, which is the sequence
length of generated skeleton joint sequences. The
recognition loss weight and translation loss weight
are set to 5 and 1 for CSL and DGS back-translation
models. We set the recognition loss of 0 for ASL,
given that the dataset does not come with oracle
gloss annotation. Back-translation models take
around 1-3 hours for training and evaluation for
all three languages. All models introduced above
are implemented with Pytorch (Paszke et al., 2019).

D Pipelining Details

We build the pipelines as follows: for each source
sign language, we reuse the back-translation model
that can recognize texts from the continuous skele-
tal joint sequences. For machine translation, we
use Google Translate to translate the recognized
texts into the corresponding language. We further
feed the translated results into the corresponding
Progressive-Transformer based models (Saunders
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et al., 2020b) that are trained on the 3 datasets. For
ASL, we find that the first stage recognizer per-
formed poorly and failed to recognize the accurate
meanings of ASL videos. We thus experimented
with the pair of DGS-CSL, where the models are
working relatively better. We reported the result of
DGS-CSL translation: BLEU-1 of 15.75, BLEU-2
of 1.10, BLEU-4 of 0.0, and ROUGE-L of 16.57,
which is worse than end2end models (bottom right
corner) in Table 5 (BLEU-1 25.62 and ROUGE of
27.75).

E LLM Prompting Details

Text-to-Gloss The task setup of text-to-gloss
translation changes from the previous models,
which involve training and finetuning, to one
that is done at the inference level using LLMs.
We prompt GPT-4 with the default parameters
(temperature= 1, max tokens= 256, top p= 1,
frequency penalty= 0, and presence penalty= 0)
to translate text to SL glosses. This task is text-
only and assumes that LLMs already understand
the textual representations of SLs. We measure
the success of this text-to-gloss translation with
LLMs by comparing the generated glosses with
the ground truth using automatic metrics. In the
case of How2Sign, which lacks glosses, we use the
other model’s outputs of glosses for a comparison.

Gloss-to-Gloss To translate across different SLs,
we translate the intermediary textual representa-
tions using an LLM, which we call the gloss-to-
gloss task. For gloss-to-gloss translation, we again
prompt GPT-4 with the default parameters to trans-
late between ASL, CSL, and DGS, exploring all
possible translations of these glosses. The specific
prompt we use is “Translate the following
American Sign Language glosses: [GLOSSES]
to Chinese Sign Language glosses”. In ad-
dition, we incorporate sign language rules as ad-
ditional context. Again, it is assumed that LLMs
already contain a priori an understanding of the SL
glosses. To test the performance of the gloss-to-
gloss translations, we use automatic metrics when
there are ground truth glosses both in the source
and target SL. We use the best-performing other
model’s outputs when there are no ground truth
glosses.

F Sociolinguistic Discussion

The absence of a global sociolinguistic understand-
ing of signing, which fully accommodates the depth

and complexities of regional SLs, poses significant
barriers to cross-cultural and transnational commu-
nication, educational accessibility, and emergency
communication (Hiddinga and Crasborn, 2011).
Yet, this is a difficult issue to tackle and requires
international collaborations and interdisciplinary
initiatives. Further, there have been concerns, such
as in the ‘Amsterdam Manifesto,’ regarding the
lack of interpreters who can translate into multiple
SLs at international conferences (Christian Rath-
mann, 2000; Rosenstock, 2004). In the manifesto,
there is a call for abandoning the effort to interpret
into multiple SLs, which faces logistical difficul-
ties, and instead focus on interpreting into a widely
used SL or International Sign (IS) language. Due
to the interdisciplinary and social nature of these
issues, a quick solution is not yet evident.
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