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Abstract

As large language models (LLMs) scale,
improving their efficiency and adaptability
across tasks becomes increasingly critical.
The Mixture-of-Adapter (MoA) framework
offers a promising solution by training a small
pool of lightweight adapters at each layer
and selecting the most suitable ones for each
input, merging their outputs with the original
layer’s. However, existing MoA approaches
do not allow sharing adapters across different
layers, leading to unnecessary redundancy and
poor generalization of trained adapters. To
tackle these challenges, we propose “Sparser
MoA (SMOA)”, which trains a unified adapter
pool shared across layers, introducing a
much sparser routing choice of experts per
layer. Enforcing such sparsity improves the
Cross-Layer Generalization (CLAG) capability
and specialization of each adapter, thereby en-
hancing SMOA’s adaptation to different tasks.
Extensive experiments across multiple base
LLMs show SMOA reduces active adapters
by over 85% while significantly boosting task
accuracy, paving the way for developing more
efficient, generalizable, and modular LLMs.

1 Introduction

Mixture-of-Experts (MoE) (Jacobs et al., 1991) has
achieved remarkable success when applied to the
recent large language models (LLMs). Its infer-
ence cost can remain constant even with increased
experts (model capacity). With diverse expertise
developed by different experts, MoE LLMs exhibit
advantages on adaptation to downstream tasks, by
dynamically routing each input to the expert(s) of
the best match. During the training of MoE, the
dynamic routing mechanism encourages expert spe-
cialization for different tasks (Shazeer et al., 2017;
Fedus et al., 2022) and facilitates knowledge shar-
ing among similar tasks (Ma et al., 2018; Li et al.,
2023). However, training MoE is expensive in com-
putation and the amount of training data.

In contrast, Parameter-Efficient Fine-Tuning
(PEFT) (Ding et al., 2023) only requires to train
a few parameters such as a soft prompt, prefix, or
adapter (Hu et al., 2021) for each expert with the
backbone LLM frozen. This motivates the Mixture-
of-Adapters (MoA) (Zadouri et al., 2023; Dou et al.,
2023; Wang et al., 2023). Since adapters are much
smaller and more efficient to train than the full
model, they are better suited for rapid and efficient
adaptation to new tasks (Liu et al., 2022). Since the
backbone LLM captures most of the shared knowl-
edge, the adapters can focus on the specialized
skills or knowledge. Hence, MoA’s architecture
not only enables efficient training of experts but
also promotes their specialization.

In this paper, we study to improve the general-
ization and expert diversity of MoA. Existing MoA
approaches restrict experts to specific layers (Wang
et al., 2023), resulting in redundancy and poor gen-
eralization. Our empirical analysis in Section 3
reveals significant redundancy of adapters in each
layer and across multiple layers, in which many
adapters are interchangeable and fail to develop dis-
tinct expertise. We also observe backbone-expert
redundancy: masking out all experts in a layer
does not cause significant performance drop, indi-
cating the redundancy of learned adapters to the
backbone LLM. Furthermore, our analysis high-
lights redundancy across layers. Masking mul-
tiple layers of experts simultaneously only causes
minor performance drops, indicating that experts
trained for different layers do not develop suffi-
ciently diverse expertise. On certain datasets, using
a single layer of experts outperforms utilizing all
experts, revealing the underutilization of experts in
existing MoA methods. In other words, the trained
MoA fails to fully exploit MoA’s model capacity
and potential of adaptation to diverse tasks.

Motivated by the analysis, we propose “Sparser
MoA (SMOA)”, which improves upon existing
MoA methods in two principal ways as shown in
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Figure 1: Comparison of (a) existing MoA vs. (b) our
SMOA. (a) adopts a pool of adapters and a router for
each layer so the experts cannot be shared across layers.
(b) uses a global router to dynamically select and acti-
vate only a subset of experts from a shared adapter pool,
enabling multiple layers to share experts.
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Figure 2: Average performance gains over LoRA (y-
axis) and the number of activated experts (x-axis), for
four MoA methods applied to four base LLMs. SMOA
achieves greater gains with fewer experts activated.

Figure 1. Firstly, to enhance the generalization
capability of experts and reduce their redundancy,
we introduce a pool of adapters shared across
layers. This allows MoA to select and merge
adapters across different layers dynamically, and
each adapter is trained on tokens from different lay-
ers, thereby encouraging knowledge sharing and
transfer. We propose a global router to select a
few experts from the pool for each layer and merge
them to process input tokens. This reduces the
number of active experts and improves Cross-Layer
Generalization (CLAG).

Secondly, to mitigate the redundancy of experts
w.r.t. the backbone LLM, we incorporate each layer
of the backbone LLM as an additional expert and

apply a regularization term to increase its merg-
ing weight. This encourages the adapter experts
to learn skills complementary to the backbone ex-
pert and focus on more specialized tasks. It also
improves the diversity of the adapter pool by pre-
venting them from learning sharable knowledge of
the backbone.

We further develop a curriculum learning strat-
egy that guides the expert learning from special-
ization to generalization. In particular, we start by
training adapters specific to each layer and then
gradually allow them to be shared across neighbor-
ing layers. This improves cross-layer generaliza-
tion while avoiding cross-layer redundancy.

In experiments, we train SMOA on multi-task
data with limited data per task. We evaluate its
in-distribution (ID) on training tasks and out-of-
distribution (OOD) performance on unseen tasks,
which is critical for assessing SMOA’s adaptation
capability. As shown in Figure 2, SMOA outper-
forms existing MoA methods in both ID and OOD
scenarios with fewer experts activated per instance.
Specifically, SMOA consistently improves accu-
racy (up to 2.94%) across various tasks and base
LLMs. SMOA dramatically reduces activated ex-
perts per instance—to as low as 12.73%—thereby
improving the memory efficiency without compro-
mising performance.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning (PEFT)

PEFT optimizes pretrained language models
for specific tasks with minimal computational
overhead. Adapter-based methods (Houlsby et al.,
2019) insert task-specific adapters between model
layers to capture task nuances while preserving
pretrained parameters. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) reduces finetuning com-
plexity by approximating adaptation parameters
with low-rank matrices, maintaining performance.
Prefix Tuning (Li and Liang, 2021) enriches
PLM input with task-specific prefixes, guiding
finetuning efficiently. Prompt-based tuning (Lester
et al., 2021) provides task-specific prompts during
finetuning, facilitating effective adaptation with
minimal parameter updates.

Low-Rank Adaptation (LoRA) fine-tunes a tar-
get module’s parameters V ∈ Rd×k efficiently for
specific tasks, using low-rank matrices A ∈ Rr×k

and B ∈ Rd×r, with r ≪ min(d, k). The adapted
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module’s forward computation is

y′ = y +∆y = Vx+BAx, (1)

where x is the input and y and y′ are the original
and adapted outputs.

2.2 Mixture of Adapters
Mixture of LoRA (MoL) adopts a consistent frame-
work for integrating N LoRA experts into each
layer of pre-trained models. Central to this frame-
work is the token-level assignment, facilitated by
a router module that distributes gating weights to
various experts based on the input token represen-
tations (Zadouri et al., 2023; Dou et al., 2023; Gao
et al., 2024). Alternatively, some approaches have
opted for assigning the same set of weights learned
for all samples (Wang et al., 2023). Mathematically,
this process can be represented as:

∆y =
N∑

n=1

unBnAnx, (2)

where Bn and An represent transformations of
expert-n and un is its routing weight.

2.3 Mixture of Experts (MoE) in LLM
The MoE paradigm, originally introduced to opti-
mize expert specialization in under-parameterized
models by Jacobs et al. (1991), has recently gained
traction for its efficacy in scaling model expressive-
ness efficiently (Fedus et al., 2022; Shazeer et al.,
2017). While previous studies primarily focused on
pre-training stages, our paper uniquely investigates
finetuning, a critical yet under-explored aspect.
Despite the performance potential of MoE models,
computational efficiency and expert specialization
remain challenging. Techniques such as optimal as-
signment schemes aim to mitigate these hurdles by
balancing compute loads and streamlining training
procedures (Lewis et al., 2021). Moreover, little
prior work has explored the interactions between
different layers in MoE models (Li et al., 2024).

3 Analysis of Redundancy in MoA

Existing MoA approaches do not allow adapters to
be shared across different layers, which may lead
to redundancy of learned experts. To empirically
verify this intuition, we conduct a series of experi-
ments on a trained Mixture of LoRA (MoL) model
(implementation details in Appendix A), where
we selectively mask out a portion of experts and

Table 1: Changes in accuracy (%) when randomly
masking out experts in a fine-tuned Mixture of LoRA at
varying ratios (“100%” equals to backbone only). The
mean and variance are reported across 8 commonsense
QA datasets. Within-Layer Redundancy: nearly
zero performance drop when experts in the same layer
are masked out. Backbone-Expert Redundancy:
negligible impact even with all adapters masked
out. Redundancy Across Layers: Nearly zero
performance drops when masking experts in a subset
of layers. Underutilization of Experts: Significant
degradation is observed only when all experts over all
layers are masked out. The complete results of masking
experts in each of the 32 layers are reported in Table 5.

Masked
Layer(s)

Masking Ratio

20% 40% 60% 80% 100%

1 0.00%±0.13 0.03%±0.11 0.00%±0.07 0.01%±0.09 -0.14%±0.40

16 0.01%±0.07 0.03%±0.08 0.00%±0.07 0.00%±0.08 -0.11%±0.37

32 0.00%±0.02 0.00%±0.02 0.00%±0.00 0.00%±0.03 -0.03%±0.19

{1,16,32} 0.00%±0.08 0.02%±0.09 0.00%±0.08 0.02%±0.04 -0.09%±0.69

All 0.04%±0.08 0.05%±0.14 -0.02%±0.11 0.04%±0.12 -22.43%±9.52

examine whether the performance will suffer a no-
ticeable degradation. The result can indicate redun-
dancy among experts within each layer or across
different layers.
Our findings reveal that redundancy exists not
only within the same layer (among experts & be-
tween the backbone and experts) but also across
layers, which might undermine the development of
diverse expertise on experts in MoA. Moreover, the
experts across multiple layers still fail to develop
distinct functionalities, which does not fully exploit
the potential of the MoA architecture.
(a) Redundancy among Experts within the Same
Layer. We observe significant redundancy among
experts within the same layer. As shown in Table 1,
masking up to 80% of the experts in any given layer
results in minimal performance changes. This indi-
cates that the experts within each layer are largely
interchangeable, with overlapping functionalities,
failing to develop specialized roles.
(b) Redundancy between Experts and the Pre-
trained Backbone. Beyond the redundancy among
experts themselves, we also find redundancy be-
tween the experts and the pre-trained backbone net-
work. Even when all experts in a layer are masked,
as depicted in Table 1, the performance impact re-
mains negligible. This suggests that the pre-trained
backbone can compensate for the absence of ex-
perts, highlighting a lack of unique contributions
from the experts.
(c) Redundancy across Layers. The redundancy
extends beyond individual layers, as illustrated in
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Table 1. Even when multiple layers of experts
are masked simultaneously, the performance drop
is not substantial. This finding implies that the
knowledge encoded in experts across different lay-
ers is not sufficiently diverse to leverage their multi-
layer structure effectively. As Table 6 illustrates,
in extreme cases, utilizing a single layer of experts
within the MoL outperforms the use of experts
across all layers on some datasets.
(d) Underutilization of Experts. The MoA frame-
work applies LoRA as experts in MoE and en-
ables models to dynamically adapt to diverse tasks.
However, our findings indicate that the current
MoA implementation falls short of this goal. De-
spite the theoretical promise of MoE to introduce
task-specific diversity, masking up to 80% experts
across all layers leads to only marginal changes
in performance (Table 1), indicating underutiliza-
tion of these additional experts. Substantial perfor-
mance degradation only occurs when all experts
are masked, leaving the backbone to function alone.
This highlights a fundamental limitation of MoA: a
small random subset of adapters and the backbone
LLM suffice to preserve the performance. Hence, it
fails to fully exploit the capacity of all the adapters.

4 Sparser Mixture-of-Adapters (SMOA)

In MoA, the routing of experts to tokens deter-
mines the data each expert is trained on and thus is
critical to the generalization capability of adapters.
As highlighted in Section 3, constraining experts
to specific layers often results in redundancy and
weakens generalization. Unlike previous works,
we propose SMOA, which adopts a global pool of
adapters shared across layers (Section 4.1) and a
global router to select a sparse subset of adapters
for each layer’s inputs (Section 4.2). This architec-
ture helps reduce the redundancy of adapters across
layers and improves their generalization with the
sparse expert assignment.

4.1 Cross-Layer Shared Pool of Adapters

MoA applies one or a few adapters to a layer or
module of a pretrained model, such as an attention
module or a feedforward layer. In our framework,
these adapters possess diverse expertise and can be
deployed flexibly across various layers and mod-
ules. However, as highlighted in Section 3, existing
MoA approaches confine experts to specific lay-
ers, leading to redundant adapters across layers and
poor generalization.

To overcome these limitations, we introduce a
global pool of N adapters θ1:N shared across all
the L layers. This global pool promotes knowledge
transfer across layers and allows each layer to se-
lect diverse experts tailored to the layer’s inputs
from a large pool. Encouraging the adapter sharing
reduces the redundancy of MoA and enhances its
generalization capability during training.

4.2 Global Router for Sparse Expert Selection
Given the cross-layer adapter pool, we introduce
a global router that dynamically routes each in-
put token or instance in every layer to a small
subset of adapters in the pool. By enforcing the
sparsity of expert selection, we can encourage the
cross-layer generalization capability of adapters
during training. For simplicity, our elaboration
on routing strategy will mainly focus on a single
layer or module. It can be directly extended to
different layers. Specifically, given a global pool
of N adapters, for an input sequence of s tokens
x = [x1, . . . ,xs] ∈ Rs×d (where each token has
a d-dimensional embedding), the following proce-
dure aims to select a subset of adapters from the
global pool.
Token-to-Expert Routing Score. To effectively
map input instances to the right experts, we intro-
duce an embedding representation for each expert.
Each expert is associated with an embedding vector
en ∈ Rd, refined during training to highlight its
areas of specialization. By representing both the
experts and the input in the same embedding space,
we measure their similarity to determine the best
expert for a given input.

The routing score of each token xi for expert-n
is computed as the inner product ⟨xi, en⟩ which
measures how well each expert matches the token.
These scores are then converted into probabilities
using softmax, i.e.,

wn,i =
exp ⟨xi, en⟩∑N
j=1 exp ⟨xi, ej⟩

, (3)

Sparse Selection of Experts. We implement a
majority voting mechanism to select a subset of
adapters for each layer, under a constraint of the
maximum number of selected adapters. Instead
of selecting experts for each token, all tokens con-
tribute to the voting process, resulting in a more
robust and consistent ranking of experts for the
entire input sequence x.

We define Al as the set of nl experts selected
for layer l. The majority voting problem of expert
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selection can be formulated as

max
Al⊆[N ],|Al|≤nl

1

s

∑

n∈Al

s∑

i=1

wn,i, ∀ l ∈ [L], (4)

which can be solved by ranking all the N adapters
with

∑s
i=1wn,i and selecting the top-nl adapters.

Reweighting Selected Experts. Given the experts
in the activated expert set Al for each layer l, we
apply Eq. (3) to the nl selected adapters instead of
the N adapters to obtain ŵn,i. The final routing
weight un of each selected adapter n ∈ Al is

un =
1

s

∑

n∈Al

ŵn,i, (5)

where
∑

n∈Al
un = 1 and we apply the above

procedure to every layer.

5 Training SMOA with Cross-Layer
Generalization (CLAG)

With the cross-layer shared pool of adapters,
SMOA enables experts to be sparsely activated
and reused across layers, thereby improving the
use efficiency and reducing redundancy. To encour-
age the Cross-Layer Generalization (CLAG), we
train a pool of adapters to gain diverse and spe-
cialized expertise complementary to the backbone
base model. To this end, we introduce a training
objective to enforce adapters’ complementarity via
a redundancy regularization in Section 5.1. The
training algorithm is detailed in Section 5.2, with a
curriculum learning strategy outlined in Section 5.3
to balance expert specialization and generalization.

5.1 Training objective with
Expert-Redundancy Regularization

Expert-Redundancy Regularization. Pre-trained
base model as the backbone network contains ex-
tensive general knowledge derived from large-scale
training data, providing a strong foundation for var-
ious tasks. However, in MoA, the specialization
of adapters is often hindered by learning redun-
dant information overlapping with the backbone’s
capabilities, leading to the redundancy shown in
Section 3.

We introduce a regularization strategy to address
this limitation by encouraging experts to learn spe-
cialized skills while the backbone handles common
patterns in the data. This synergy between the back-
bone and experts improves the overall effectiveness
of the model.

Specifically, we train embedding for each layer
of the backbone, denoted as c = [c1, . . . , cL] ∈
RL×d. The fitness of the backbone at layer-l for
token xi is computed as ⟨xi, cl⟩. To compare the
backbone layer with the N adapters, we compute
its relative fitness for input token xi at layer-l as

vl,i =
exp ⟨xi, cl⟩

exp ⟨xi, cl⟩+
∑

n∈Al
exp ⟨xi, en⟩

(6)

The relative fitness of backbone layer-l for the
whole input sequence can be computed by aver-
aging vl,i over all the s tokens, i.e., 1

s

∑s
i=1 vl,i,

which is then used to weight the merged adapters
∆y in Eq. (1), i.e.,

∆y←
(
1− 1

s

s∑

i=1

vl,i

) ∑

n∈Al

unBnAnx (7)

To encourage the complementarity of adapters to
the backbone base model, we apply a regularization

R(e1:N , c1:L) =
1

Ls

L∑

l=1

s∑

i=1

vl,i (8)

which encourages the usage of backbone layers
and thus steers the adapters’ focus on learning com-
plementary knowledge and skills. Our empirical
results in Section 6.2 demonstrate the effectiveness
of R(e1:N , c1:L) on encouraging backbone
utilization and promoting diversity among experts.
Overall training objective of SMOA is defined as

min
θ1:N ,e1:N ,c1:L

E(x,y)L[F (x; θ1:N , e1:N , c1:L),y]

−αR(e1:N , c1:L),
(9)

where F (x; θ1:N , e1:N , c1:L) denotes the SMOA
model output for input x (each layer output follows
Eq. (1)), and L(·, ·) denotes the loss of the target
task. The weight α controls the trade-off between
performance and diversity.

5.2 Training Algorithm

The full training procedure for SMOA is outlined
in Algorithm 1, which dynamically optimizes the
cross-layer shared adapter pool θ1:N , the global
router (parameterized by e1:N ), and the weight of
merged adapters (parameterized by c1:L). At each
layer-l, it selects a sparse subset of experts Al most
related to the input tokens (in terms of their routing
scores wn,i). It then merges the selected adapters
with the recomputed routing weights un and the
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backbone-adapter balancing weight (based on vl,i).
The merged model is trained to minimize the reg-
ularized loss in Eq. (9). This iterative training en-
courages expert specialization while maintaining
synergy with the backbone, hence resulting in MoA
with less redundancy and better generalization per-
formance to diverse tasks.

Algorithm 1 SMOA Training

1: Input: L-layer pre-trained model, N experts
2: Initialize: experts θ1:N , expert embedding

e1:N , backbone embedding c1:L
3: for each training step do
4: for l ∈ {1, · · · , L} do
5: wn,i ← calculate token-to-expert routing

score by Eq. (3) and (5)
6: Al ← select adapters by solving Eq. (4),

to select nl experts
7: un ← recompute routing weights for

selected experts by Eq. (3) and (5)
8: vl,i ← calculate the fitness of the

backbone layer by Eq. (6)
9: ∆y←merge selected adapters by Eq. (7)

10: end for
11: θ1:N , e1:N , c1:L ← solving Eq. (9)
12: end for
13: Return: Optimized θ1:N , e1:N , c1:L

5.3 A Specialization-to-Generalization
Curriculum

We propose a curriculum learning strategy to guide
the training of SMOA towards achieving better
specialization-generalization trade-off. Specifi-
cally, we start by assigning each adapter to a spe-
cific layer so it can focus on acquiring deep, spe-
cialized knowledge suited to the layer’s unique de-
mands. Once adapters have developed their spe-
cialized capabilities, we gradually transition to-
ward enhancing their generalization ability across
different layers. This is done by allowing layer-
n’s adapters to be selected by neighboring layers
l ∈ [n−∆l, n+∆l], where ∆l is a hyperparameter.

This progressive curriculum from per-layer
specialization to cross-layer generalization guides
each adapter to develop a balanced skill set–first
honing their strengths in specific layers and then
expanding their adaptability as they learn from
diverse contexts across multiple layers. By training
on tokens from multiple layers, the adapters evolve
into versatile components capable of capturing a
wide range of knowledge, significantly boosting the

model’s overall generalization ability to handle un-
seen tasks and complex scenarios more effectively.

6 Experiments

Models. We focus on finetuning compact language
models, specifically Phi-3 (Abdin et al., 2024), Phi-
2 (Gunasekar et al., 2023), Gemma (Team et al.,
2024), and OLMo (Groeneveld et al., 2024)—to
explore the effectiveness of MoA on models that
are not inherently robust, as applying MoA to al-
ready robust models provides limited insights into
its true impact.
Datasets. We evaluate our approach in a multi-
task learning setting with limited and few-shot
examples, covering both in-distribution (ID) and
out-of-distribution (OOD) scenarios. By leverag-
ing shared knowledge across tasks, we address
the challenges of limited data. For ID evaluation,
we use the Commonsense Finetuning Dataset (Hu
et al., 2023), which integrates data from multiple
sources, including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-e, ARC-c (Clark et al.,
2018), and OBQA. Fine-tuning is conducted on
15,000 samples, with evaluations on standard test
sets. For OOD evaluation, we assess generalization
on the MMLU benchmark after fine-tuning on the
CrossFit dataset (Ye et al., 2021), which includes
few-shot samples from 160 diverse tasks. This
setup rigorously tests our method’s ability to
generalize to unseen tasks.
Baselines. We use LoRA as a baseline to highlight
the advantages of employing MoA. We also com-
pare against Mixture of LoRA (MoL) (Zadouri
et al., 2023; Dou et al., 2023). Although these
methods exhibit minor differences in auxiliary
losses, they follow the same framework introduced
in Section 2. Additionally, we compare with
MultiLoRA (Wang et al., 2023), which uses fixed
weights to merge LoRA experts at each layer.

6.1 Main Results

Our results, summarized in Table 2, clearly show
that SMOA consistently outperforms existing meth-
ods across all commonsense datasets. Fine-tuning
the pre-trained Phi-2 model, SMOA achieves an
accuracy of 75.61%, marking a notable average
improvement of 2.94% over its closest competitor.
In contrast, methods such as MoL and MultiLoRA
show inconsistent performance and frequently fail
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Table 2: In-distribution (ID) accuracy (%) on eight commonsense datasets.

BoolQ PIQA Social
IQA

Hella-
SWAG

Wino-
grande

ARC-
E

ARC-
C OBQA Avg.

Phi-33.8B 62.57 84.44 70.27 74.17 68.90 92.17 82.76 74.60 76.24

LoRA 68.93 83.03 78.05 74.55 79.79 94.36 86.95 85.20 81.36 (+5.12)
MoL 60.89 83.51 69.09 74.32 66.61 91.67 80.38 73.40 74.98 (- 1.26)
MultiLoRA 69.02 84.00 77.53 74.08 79.08 94.36 84.73 83.00 80.73 (- 0.63)

SMOA 69.79 85.15 78.35 74.93 80.58 94.70 87.37 87.00 82.23 (+5.99)

Phi-22.7B 59.79 59.58 41.45 32.50 53.59 69.53 53.67 42.00 51.51

LoRA 62.20 79.87 72.82 52.33 69.69 89.65 76.19 78.60 72.67 (+21.16)
MoL 63.46 80.79 75.18 54.60 72.38 90.61 76.79 79.40 74.15 (+22.64)
MultiLoRA 62.35 77.75 71.03 50.00 63.61 87.67 74.15 73.80 70.05 (+18.54)

SMOA 66.21 81.01 75.49 57.27 75.30 90.87 77.13 81.60 75.61 (+24.10)

Gemma2B 60.95 49.51 33.06 25.04 49.96 25.08 22.70 28.20 36.81

LoRA 62.17 50.05 33.73 25.14 49.57 25.67 22.87 27.80 37.13 (+0.32)
MoL 61.47 49.51 32.91 25.04 49.57 25.17 22.70 27.40 36.72 (- 0.09)
MultiLoRA 62.17 49.46 33.57 25.04 49.96 26.26 23.89 27.60 37.24 (+0.11)

SMOA 62.26 51.25 38.69 25.34 52.88 32.70 27.82 29.00 39.99 (+3.18)

OLMo1B 62.17 49.51 32.91 25.04 49.57 25.08 22.70 27.60 36.82

LoRA 62.17 49.51 32.91 25.05 49.57 25.08 22.70 27.60 36.82 (+0.00)
MoL 62.17 49.51 32.91 25.05 49.57 25.08 22.70 27.60 36.82 (+0.00)
MultiLoRA 62.17 49.51 32.91 25.05 49.57 25.08 22.70 27.60 36.82 (+0.00)

SMOA 62.17 51.74 33.78 25.50 51.22 26.30 26.45 29.40 38.32 (+1.50)
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Figure 3: Weights of backbone
experts across layers and tasks,
achieved by SMOA applied to OLMo
(base LLM). Backbone experts
in the mid-layers achieve larger
weights, indicating the importance of
regularization (Section 5.1) in training
complementary and diverse adapters.
Figure 6 shows consistent patterns
observed on other pre-trained models.

to surpass the baseline LoRA, reflecting inefficient
utilization of the MoA framework. These results
underscore SMOA’s effectiveness in delivering
specialized, task-specific improvements.

Table 3 shows OOD generalization results
on the MMLU benchmark after fine-tuning on
CrossFit. SMOA attains an average accuracy of
56.19% on MMLU with Phi-2, surpassing the best
baseline by 1.88%. This shows SMOA’s superior
ability to generalize to unseen tasks.

Table 3: Out-of-distribution (OOD) accuracy (%) on
unseen tasks from STEM, Humanities, Social Sciences,
and other categories of MMLU.

STEM Human-
ities

Social
Sciences Other Avg.

Acc

Phi-22.7B 46.59 59.85 68.78 54.05 54.31
LoRA 46.37 59.89 69.59 55.60 54.71
Mixture of LoRA 47.26 60.49 71.58 55.87 55.17
MultiLoRA 45.96 60.50 71.47 56.81 55.19
MoAIR 48.28 62.93 72.17 57.05 56.19

Gemma2B 32.03 37.68 32.52 34.65 33.18
LoRA 30.62 31.43 29.07 33.37 30.60
Mixture of LoRA 30.62 31.43 29.07 33.37 32.00
MultiLoRA 28.16 31.77 29.97 32.93 30.21
MoAIR 31.72 38.30 32.99 36.79 34.23

Training Efficiency SMoA achieves higher ac-
curacy than baseline methods while maintaining
competitive training efficiency. As shown in Ap-
pendix E (Table 9), SMoA’s wall-clock time per
batch (38.54s) is faster than Mixture of LoRA
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Figure 4: Routing weights of MoA experts across three
layers of Gemma with MoA fine-tuned by (1) Mixture
of LoRA and (2) SMOA. Experts in (1) lack diversity
as reflected by the nearly even routing weights across
tasks. Experts in (2) show diverse coverage of tasks.
The sparsely activated experts (lower overall weights)
are due to the backbone LLM’s complementarity. This
highlights an efficient allocation of specialized experts.

(42.08s) and only marginally slower than Multi-
LoRA (31.85s), despite introducing dynamic cross-
layer routing. The minimal increase in trainable
parameters (0.00289% of total parameters) further
demonstrates its practicality.

6.2 SMOA Encourages Expert Specialization

Our findings on redundancy reflect a common chal-
lenge in MoE models: achieving true expert spe-
cialization. While MoE models are designed to
leverage specialized knowledge from individual ex-
perts, redundant expert allocation often undermines
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this goal, reducing efficiency. Prior studies, such as
Jiang et al. (2024), have shown that MoE models
frequently struggle to achieve meaningful special-
ization, with experts failing to prioritize specific
tasks effectively.

Our analysis of the MoL framework also sup-
ports these findings. As shown in Figure 4 (i), the
routing weights are nearly uniformly distributed
across tasks, indicating that experts fail to develop
task-specific specialization and instead acquire gen-
eralized knowledge. This limits the effectiveness
of the experts, contributing to redundancy and inef-
ficiency within the MoL framework.

In contrast, SMOA addresses this issue by en-
couraging the backbone to handle shared knowl-
edge, allowing newcomer experts to focus on spe-
cialized, task-specific residuals. Figure 4 (ii) re-
veals that, under SMOA, the distribution of expert
weights shows distinct task preferences, demon-
strating clear task-wise specialization. This high-
lights SMOA’s ability to effectively train special-
ized experts. While some experts are sparsely ac-
tivated or unused, this reflects SMOA’s adaptive
design, which dynamically selects experts based
on task demand, reducing unnecessary activation
and ensuring resources are allocated where they are
needed most.

To gain deeper insights into expert-redundancy
regularization, we analyze the relative fitness of the
backbone versus newcomer experts, 1

s

∑s
i=1 vl,i,

at each layer, as illustrated in Figure 3. The results
reveal several key insights:

Dependency on the backbone varies by layer
and dataset. As depicted in Figure 3, there is a
noticeable increase in dependency on the backbone
in the middle layers post-fine-tuning, compared to
the front and back layers. This pattern is also ob-
served in other fine-tuned models (Figure 6), indi-
cating that the importance of adapters varies across
layers, while SMOA adjusts their contributions au-
tomatically. While this trend is consistent across
datasets, the degree of dependency on the backbone
at specific layers differs by dataset. This variation
demonstrates SMOA’s ability to effectively adjust
expert contributions for different datasets (tasks),
highlighting its adaptive capacity and flexibility.

Dependency on backbone promotes expert
specialization. Our task-wise specialization anal-
ysis across all layers (Figure 5) reveals greater
expert specialization in the middle layers, which
aligns with the increased backbone dependency ob-
served in Figure 6. This indicates a synergistic

relationship: as reliance on the backbone increases,
experts are better able to focus on task-specific re-
finements. This supports SMOA’s design principle
of leveraging the backbone to promote expert spe-
cialization, ultimately improving task performance
and efficiency.

6.3 SMOA Learns to Drop Redundant
Experts

To address the issue of expert redundancy, as out-
lined in Section 3, SMOA introduces a shared
adapter pool that enables efficient selection and
reuse of adapters across multiple layers and target
modules. This mechanism dramatically reduces the
number of active experts required while maintain-
ing strong task performance. As shown in Table 4,
SMOA lowers expert utilization in Phi-2 to just
12.73%, a major improvement over the 100% uti-
lization seen in baseline methods. This efficiency
is achieved by allowing Phi-2 to adapt three target
modules simultaneously, with shared adapters flex-
ibly applied across these modules—whereas other
pre-trained models are restricted to adapting just
one (Appendix A). This modular sharing represents
a pivotal advancement, enabling SMOA to opti-
mize performance with fewer adapters and paving
the way for more scalable, adaptable systems.

Table 4: Average expert utilization rate (%) across all
datasets. The baseline adopts layer-specific experts and
requires to use all of them (100% utilization). In con-
trast, SMOA sparsely activates experts across layers.

Total
Experts

Avg.
Utilization

Phi-33.8B 256 58.75%±0.46

Phi-22.7B 768 12.73%±0.25

Gemma2B 140 60.39%±0.92

OLMo1B 128 76.34%±0.70

6.4 Sensitivity Analysis and Ablation Study

Extreme sparsity: High performance with mini-
mal activated experts. Our sensitivity analysis of
nl demonstrates that activating just 2 experts per
layer yields performance nearly equivalent to us-
ing 8 experts (Table 7). This underscores SMOA’s
remarkable efficiency, as it maintains robust perfor-
mance while significantly reducing the number of
active experts, highlighting its capacity for sparse
yet effective expert utilization.
Expert-redundancy regularization optimizes
expert specialization without sacrificing per-
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formance. The expert-redundancy regularization
(Section 5.1), promotes expert specialization, as
detailed in Section 6.2, while maintaining or even
improving overall model performance as shown
in Appendix E. This regularization strikes a crucial
balance, fostering diversity among experts without
compromising effectiveness.

7 Conclusions

We introduce SMOA, a new approach designed to
address the limitations of traditional MoA methods
in fine-tuning LLMs. SMOA leverages a unified
cross-layer shared pool of adapters, enabling a sig-
nificantly sparser selection of experts for each in-
stance while maintaining robust performance. We
further enhance specialization by directing experts
to focus on residual information not covered by
the backbone. Extensive evaluations across various
LLMs consistently show that SMOA outperforms
existing methods in both in-distribution and out-
of-distribution tasks, achieving superior generaliza-
tion with fewer activated adapters. These results
position SMOA as a step forward in developing
more adaptable MoA frameworks for LLMs.

Limitations

While our approach achieves strong performance
with significantly fewer experts, a few limitations
remain. The number of activated experts per layer,
is currently fixed. Currently, the number of ac-
tivated experts per layer is fixed. Although this
method is effective, it may not be optimal across
all datasets. Adopting a more automated or adap-
tive mechanism could further improve performance
across a wider range of tasks. Additionally, while
our approach demonstrates robustness across mul-
tiple datasets, it has primarily been evaluated in
multi-task and few-shot learning settings. Further
investigation is needed to assess its effectiveness
in extreme low-resource or highly specialized do-
mains where expert specialization could play a
more crucial role. In future work, we aim to ad-
dress these limitations.
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A Implementation Details

We conduct training on an NVIDIA A100 GPU, us-
ing a batch size of 128 and a micro-batch size of 4.
The learning rate is set to 3e-4 and optimized with
the AdamW optimizer, incorporating a warmup of
80 steps and a cosine scheduler with restarts to
manage the learning rate decay. LoRA ranks are
set to 8 for fine-tuning Phi-3 and 16 for the other
models. Training spans 3 epochs.

For all models, we use 8 pre-layer experts
(N = 8) and set the number of layers nl = 8.
The hyperparameter α is swept over the range
{0.005, 0.01, 0.05, 0.1}.

We fine-tune four pre-trained models: Phi-2, Phi-
3, Gemma, and OLMo. LoRA is applied to differ-
ent modules in each model:

• For the Phi-2 model, the target modules in-
clude q_proj, k_proj, and v_proj.

• For the Phi-3 model, we target the qkv_proj
module.

• For the Gemma model, the k_proj module is
targeted.

• For the OLMo model, we focus on the
att_proj module.

B Redundancy Analysis

To evaluate the redundancy within the Mixture of
LoRA model, we performed two sets of experi-
ments: one focused on progressively masking ex-
perts across different layers, and the other on deac-
tivating all but one layer of experts.

Table 5 shows the performance change when
randomly masking experts within specific layers
at different masking ratios, where 100% masking
represents using the backbone model alone. The
results, averaged across 8 commonsense reasoning
datasets, show minimal performance degradation
as experts are progressively masked. Even with
high masking ratios, the performance drop remains
within a small margin, suggesting a high level of
redundancy in the expert layers. Notably, the vari-
ance across datasets is also low, indicating that
the model remains robust despite significant expert
masking.

In Table 6, we explore the extreme case of us-
ing experts from only a single layer. Interestingly,
for the BoolQ dataset, activating experts in Layer
16 outperformed using all layers, suggesting that

certain layers are more critical to performance than
others. However, for most other datasets, deacti-
vating all but one layer led to notable performance
drops, particularly in later layers such as Layer 32.
This analysis highlights that while some layers may
be redundant, others play a key role in task-specific
performance, and the importance of each layer can
vary across datasets.

These findings emphasize the potential for re-
ducing model complexity by selectively utilizing
experts without significant performance trade-offs.

C Specialization Analysis

Results for expert specialization across datasets.
Figure 5provides a comprehensive analysis of ex-
pert specialization in the Gemma model across all
layers and 8 tasks. The results reveal clear spe-
cialization trends, with certain experts consistently
receiving higher assignment weights for specific
tasks. Notably, the middle layers exhibit stronger
specialization compared to the front and back lay-
ers, where a single expert often dominates task
allocation. This indicates a clear task-expert corre-
spondence in these layers.

Backbone dependency across layers and mod-
els. Figure 6 illustrates the weight assigned to
the backbone across different layers, models, and
datasets, shedding light on the backbone’s role in
expert specialization. A consistent trend emerges:
the backbone LLMs are assigned higher weights
in the middle layers, indicating that the backbone
primarily handles general knowledge processing in
these layers. This aligns with the observation that
experts in the middle layers show a strong prefer-
ence for certain tasks.

This analysis underscores the dynamic interac-
tion between the backbone and experts: while the
backbone leads in processing general knowledge,
the surrounding experts diversify their responsi-
bilities, adapting to handle task-specific nuances
across datasets. This balance highlights the flexi-
ble architecture of the model, where the backbone
ensures stability, and the experts provide special-
ized capabilities.

Experts diversify over topics. Instance-level
routing provides valuable insights into how experts
specialize in handling different topics. As illus-
trated in Figure 7, each expert demonstrates distinct
preferences for specific topics, reflecting effective
specialization. The varying intensity of the routing
weights across topics indicates that certain experts
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Table 5: Performance change (%) when randomly masking experts within within specific layers of a fine-tuned
Mixture of LoRA at different masking ratios. A 100% masking ratio corresponds to using the backbone only. We
report mean and variance reported across 8 commonsense datasets.

Masked
Layer(s)

Masking Ratio

20% 40% 60% 80% 100%

1 0.00%±0.13 0.03%±0.11 0.00%±0.07 0.01%±0.09 -0.14%±0.40

2 -0.04%±0.09 0.02%±0.11 -0.03%±0.09 0.00%±0.05 -0.03%±0.08

3 0.00%±0.05 -0.02%±0.13 -0.01%±0.10 -0.03%±0.12 0.00%±0.06

4 0.00%±0.07 -0.01%±0.08 0.04%±0.08 0.05%±0.08 0.07%±0.10

5 -0.03%±0.06 -0.02%±0.11 0.01%±0.08 -0.01%±0.05 0.01%±0.04

6 0.02%±0.03 -0.05%±0.06 -0.05%±0.09 0.02%±0.07 -0.04%±0.09

7 -0.02%±0.08 -0.03%±0.09 0.00%±0.04 -0.02%±0.06 0.02%±0.05

8 0.00%±0.11 0.02%±0.08 -0.03%±0.09 -0.01%±0.05 0.04%±0.04

9 -0.04%±0.08 -0.01%±0.10 0.00%±0.08 -0.01%±0.07 0.01%±0.06

10 -0.01%±0.11 0.01%±0.08 0.00%±0.10 -0.02%±0.13 -0.03%±0.09

11 -0.01%±0.09 -0.01%±0.02 0.03%±0.09 0.01%±0.10 -0.01%±0.09

12 0.00%±0.05 0.04%±0.10 0.00%±0.03 0.04%±0.09 -0.02%±0.04

13 -0.01%±0.08 0.01%±0.08 0.02%±0.05 0.00%±0.10 0.00%±0.05

14 0.04%±0.07 0.02%±0.10 0.06%±0.09 0.01%±0.08 0.01%±0.09

15 0.03%±0.14 0.01%±0.06 0.01%±0.05 -0.01%±0.11 -0.03%±0.06

16 0.01%±0.07 0.03%±0.08 0.00%±0.07 0.00%±0.08 -0.11%±0.37

17 0.02%±0.09 0.03%±0.05 0.00%±0.10 0.03%±0.07 0.01%±0.08

18 0.00%±0.04 0.00%±0.07 -0.02%±0.10 -0.01%±0.02 0.01%±0.03

19 -0.02%±0.04 0.02%±0.03 -0.04%±0.11 0.04%±0.04 -0.02%±0.03

20 0.03%±0.07 -0.02%±0.06 0.01%±0.06 -0.01%±0.03 -0.01%±0.05

21 0.00%±0.09 0.02%±0.04 0.01%±0.08 -0.03%±0.06 -0.03%±0.09

22 0.00%±0.04 0.02%±0.05 -0.01%±0.02 -0.01%±0.04 0.02%±0.04

23 -0.01%±0.04 0.01%±0.08 0.01%±0.05 0.02%±0.04 0.04%±0.03

24 0.00%±0.06 0.01%±0.04 -0.02%±0.09 0.00%±0.05 -0.01%±0.11

25 0.03%±0.08 0.02%±0.05 -0.01%±0.11 0.03%±0.10 0.01%±0.09

26 0.02%±0.03 0.05%±0.06 0.04%±0.10 0.00%±0.05 -0.02%±0.03

27 0.02%±0.08 -0.01%±0.05 -0.02%±0.06 0.00%±0.07 0.04%±0.07

28 -0.02%±0.07 -0.07%±0.07 -0.05%±0.07 0.02%±0.08 -0.03%±0.05

29 0.01%±0.03 0.03%±0.07 0.02%±0.03 0.02%±0.08 0.02%±0.05

30 0.01%±0.05 0.03%±0.10 0.00%±0.08 0.00%±0.04 0.00%±0.07

31 0.01%±0.04 -0.04%±0.08 -0.02%±0.08 0.00%±0.04 0.00%±0.05

32 0.00%±0.02 0.00%±0.02 0.00%±0.00 0.00%±0.03 -0.03%±0.19

are more suited to specific content areas, while
others are more generalized. This diversification
showcases the model’s ability to dynamically route
instances to the most relevant experts, maximizing
the efficiency and relevance of the task processing.

D Sensitivity Analysis

In this section, we explore the sensitivity of our
model’s performance to the number of activated ex-
perts (nl) per layer. Understanding this relationship
is essential for balancing model efficiency and per-
formance. We conducted experiments varying nl

from 1 to 8, using the pre-trained Gemma model as

the baseline. Table 7 shows the results across three
datasets: BoolQ, HellaSWAG, and OpenBookQA.

The analysis reveals that even with only 2 ac-
tivated experts per layer, the model achieves per-
formance nearly equivalent to that of 8 experts,
with a minimal drop in accuracy (from 62.26%
to 62.20% on BoolQ). This indicates that activat-
ing fewer experts can maintain strong performance
while improving computational efficiency. Addi-
tionally, performance across tasks remains stable
as nl increases, suggesting that beyond a certain
threshold, activating additional experts has dimin-
ishing returns.
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Figure 5: Specialization analysis of the Gemma model, displaying assignment weights for each expert across all
layers for 8 tasks.
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Figure 6: Weight assigned to the backbone across layers and across different pre-trained models, showing variance
over 8 datasets. Within the same fine-tuned model, dependency on backbones varies by dataset.
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Figure 7: Routing weights assigned to 7 experts for instances with varying topics.

Table 6: Performance change (%) when deactivating
experts for all but one layer. Extreme case: Using a
single layer of experts within the Mixture of LoRA
outperforms all layers of that.

Dataset
Activated Layer

Layer 1 Layer 16 Layer 32

BoolQ -16.03% 0.43% -2.69%
PIQA -8.43% -5.33% -11.59%
SIQA -8.09% -11.92% -22.67%

HellaSWAG -16.66% -6.33% -20.00%
Winogrande -17.52% -13.57% -17.60%

Arc Easy -3.62% -8.63% -16.08%
Arc Challenge -5.20% -13.99% -17.57%
Openbookqa -7.00% -15.80% -29.00%

Our findings underscore the power of sparse ac-
tivation, which enables the model to use resources
more efficiently by activating only the necessary
experts per layer.

E Ablation Studies

In this section, we assess the impact of key compo-
nents of SMOA, specifically the cross-layer shared

Table 7: SMOA with different nl.

nl BoolQ HellaSWAG OpenBookQA

1 61.16 25.04 29.00
2 62.20 25.24 29.00
3 62.17 25.20 29.00
4 62.20 25.30 29.00
5 62.08 25.08 29.00
6 62.20 25.34 29.00
7 62.24 25.32 29.00
8 62.26 25.34 29.00

expert pool and the proposed expert-redundancy
regularization.

First, we demonstrate that the cross-layer shared
adapter pool significantly reduces the number of
activated experts, which enhances model efficiency
without sacrificing performance, as discussed in
Section 6.3. This pooling mechanism optimizes
expert utilization by allowing experts to be shared
across layers, reducing redundancy and ensuring
that only the most relevant experts are utilized.

Second, we evaluate the effectiveness of the
expert-redundancy regularization on model perfor-
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Table 8: Comparison of SMOA with and without regularization.

BoolQ PIQA Social IQA HellaSWAG Winogrande ARC-E ARC-C OpenBookQA Avg.

SMOA (w/o regularization) 62.16 51.22 38.49 25.08 51.96 32.52 27.21 29.00 39.69
SMOA 62.26 51.25 38.69 25.34 52.88 32.70 27.82 29.00 39.99

Table 9: Training efficiency comparison of SMoA and baseline methods on Phi-22.7B . SMoA achieves higher
accuracy with minimal computational overhead.

Model Wall Clock Time
per Training Batch (s) Total Parameters Trainable Params

(Percentage of Trainable Params) Avg. Acc (%)

Base Model (Phi-2) - 2,779,683,840 - 51.51
LoRA 12.13 2,783,616,000 3,932,160 (0.14%) 72.67
Mixture of LoRA 42.08 2,813,108,064 33,424,128 (1.19%) 74.15
MultiLoRA 31.85 2,811,141,888 31,458,048 (1.12%) 70.05
SMoA 38.54 2,813,189,984 33,506,048 (1.19%) 75.61

mance. The regularization encourages more dis-
tinct expert specialization, improving the model’s
overall task handling capability. Table 8 presents
the performance comparison between SMOA with
and without regularization. The regularized ver-
sion consistently outperforms the unregularized
one across all datasets, leading to an overall im-
provement in the average performance.

F Training Efficiency Analysis

To further validate the practical applicability of
SMoA, we compare its computational cost and pa-
rameter efficiency against baseline methods in Ta-
ble 9. The additional cost of SMoA in terms of
trainable parameters is minimal—just 0.00289%
of the total parameters. The wall clock time per
training batch (38.54s) is faster than Mixture of
LoRA (42.08s) and comparable to MultiLoRA
(31.85s), demonstrating its efficiency in training
despite introducing dynamic routing. These re-
sults demonstrate that SMoA balances efficiency
and performance effectively, achieving higher aver-
age accuracy (75.61%) than baselines like Mixture
of LoRA and MultiLoRA, while introducing only
minimal computational overhead. This justifies the
method’s practical applicability despite concerns
about time complexity.
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