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Abstract

This paper presents Temporal-Aware Soft
Prompt Tuning (TASPT), a novel approach
for automatic text dating. Unlike existing
methods, which often overlook the evolution
of word meanings in texts spanning long pe-
riods, TASPT incorporates the unique char-
acteristics of historical texts. It introduces
a temporal-aware text representation that dy-
namically captures both semantic variance and
invariance. This representation is combined
with a soft prompt, enabling efficient param-
eter tuning for automatic text dating. Experi-
ments show that TASPT outperforms all exist-
ing methods on two diachronic datasets: the
Twenty-Four Histories and the Royal Society
Corpus. Our code and datasets are avaliabled
at https://github.com/coderlihong/TASPT

1 Introduction

To enhance the performance of various natural lan-
guage processing tasks, such as information re-
trieval, machine translation, and automatic question
answering, accurately understanding the temporal
information in texts is essential. Many of these
tasks are time-sensitive, as much factual informa-
tion relies on the temporal context. For example,
in Chinese, the word "寺" (temple) primarily re-
ferred to government offices in ancient times but
now typically denotes Buddhist monasteries. Con-
sequently, different eras may yield distinct answers
to the same question. However, in practical appli-
cations, not all texts can be clearly labeled with
corresponding temporal information. One effective
solution to this challenge is automatic text dating
(ATD).

Performing ATD on historical texts with long
time spans presents two main challenges. The first
is learning accurate representations of word mean-
ings. Current ATD methods mainly rely on static
word embeddings (Vashishth et al., 2019; Yu and
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Huangfu, 2019) or pre-trained language models
(Tian and Kübler, 2021; Li et al., 2022; Rosin et al.,
2022) to capture text features. However, as word
meanings evolve over time, these static methods
may fail to capture semantic differences across dif-
ferent periods, impacting ATD performance. The
second challenge is integrating temporal seman-
tic information into the model. Recent research
indicates that continuing training of pre-trained lan-
guage models (PLMs) on texts from different time
periods can improve downstream task performance
(Pramanick et al., 2022; Gaspers et al., 2022; Agar-
wal and Nenkova, 2022). However, these methods
require separate models for each time period, hin-
dering the dynamic integration of temporal infor-
mation in downstream tasks. Another research pro-
posed TALM (Ren et al., 2023), which uses a tem-
poral alignment module to synchronize word repre-
sentations across periods and a temporal adaptation
module to incorporate features, but this pipeline
approach is prone to cascaded error propagation.

Recently, LLMs excel in many natural language
processing tasks by leveraging vast amounts of data.
However, ATD poses a unique challenge due to the
limited ATD-specific data in their training corpora
and the risk of catastrophic forgetting. This limits
LLMs’ ability to grasp the temporal features crucial
for ATD. Our experiments with open-source mod-
els highlight these challenges in applying LLMs to
ATD.

To address the aforementioned challenges, we
propose a novel model named Temporal-Aware
Soft Prompt Tuning (TASPT). Inspired by Hu et al.
(2019a), our approach decomposes word mean-
ing representation in historical texts into three key
components: semantic variance, semantic invari-
ance, and temporal context features. Semantic
variance captures changes in word meanings over
time, semantic invariance identifies meanings that
remain stable, and temporal context features high-
light meanings across various contexts. We define
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specific learning objectives for each component
during pre-training to construct a temporal-aware
text representation tailored for the ATD task. This
representation is then integrated into soft prompts,
and we apply parameter-efficient fine-tuning tech-
niques to optimize the transformer network, achiev-
ing high-performance ATD. Our contributions are
summarized as follows:

• We propose ATD-Bert, a time-aware historical
text representation model that captures seman-
tic variance, semantic invariance, and tempo-
ral context features, enhancing the temporal
domain information of semantic meanings.

• We introduce TASPT, a method that integrates
ATD-Bert with efficient parameter fine-tuning
for automatic text dating.

• We compare TASPT with state-of-the-art ATD
methods, large language models, and existing
soft prompt-based approaches. The experi-
mental results show that TASPT outperforms
baseline methods, demonstrating its effective-
ness in capturing temporal semantic informa-
tion.

2 Related Work

2.1 Automatic Text Dating
Exploring the temporal information in texts is cru-
cial for many NLP tasks. For example, integrating
temporal features in natural language generation
can help reduce hallucinations and factual errors in
large language models (Zhang et al., 2024). How-
ever, detecting temporal labels in unstructured text
remains a challenge. Initial efforts at automatic
text dating utilized n-gram language models (Jong
et al., 2005; Baledent et al., 2020), which relied
heavily on lexical features and showed limited ef-
fectiveness. Recent studies have employed graph
convolutional networks to model the syntactic and
temporal structures of documents (Vashishth et al.,
2019). Additionally, some research has focused on
using sequential (Yu and Huangfu, 2019) or pre-
trained models (Tian and Kübler, 2021; Li et al.,
2022; Rosin et al., 2022) to extract features for date
classification. However, these studies primarily
optimize methods for semantic feature extraction
without addressing the evolution of word meanings
over time. TALM (Ren et al., 2023) enables models
to adaptively understand word meanings in specific
temporal contexts but functions as a pipeline ap-
proach, which may lead to error propagation and

limit performance. To overcome these limitations,
we propose using a pre-trained language model that
integrates semantic variation, invariance, and tem-
poral context features, enhancing dynamic word
meanings for the ATD task.

2.2 Language Evolution

Language evolves continuously over time, and for
the issue of language evolution, the general ap-
proach is to model texts from different periods to
explore the semantic changes. Such works can be
divided into three categories: 1) Learning word rep-
resentations on texts which are divided into fixed
time intervals, then aligning pairwise representa-
tions of different periods (Kulkarni et al., 2015;
Hamilton et al., 2016; Schlechtweg et al., 2019). 2)
Learning global representations of words on the en-
tire corpus, then initializing the embedding matrix
with it to fine-tune word embedding respectively
on each time period (Di Carlo et al., 2019; Vashisth
et al., 2019). 3) Incorporating temporal information
into the learning process of pre-train tasks by appro-
priate learning objectives (Röttger and Pierrehum-
bert, 2021; Pramanick et al., 2022; Gaspers et al.,
2022). However, these works are limited to study-
ing different representations of word meanings and
cannot dynamically adapt to specific tasks and do-
mains, making it challenging to integrate these
methods with downstream tasks. In our method, we
integrate the temporal-aware text representations
into specific tasks through soft prompt approaches,
which enhances the performance of ATD.

2.3 Dynamic Semantic Modeling

Dynamic semantic modeling techniques enable the
generation of more accurate semantic representa-
tions, which benefit various downstream tasks (Ku-
tuzov et al., 2018). Existing approaches typically
divide diachronic corpora into time spans and apply
different algorithms to optimize word meaning rep-
resentations. For instance, some studies use mathe-
matical probability models to establish associations
between word meanings across time slices, incorpo-
rating past semantic meaning into current represen-
tations through adjustable parameters (Yao et al.,
2018; Rudolph and Blei, 2018; Bamler and Mandt,
2017). Other methods optimize semantic features
for different time slices separately, based on anchor
times (Di Carlo et al., 2019; Palamarchuk et al.,
2024). However, these approaches primarily focus
on learning word embeddings at different times
and are not easily integrated into specific down-
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stream tasks. Additionally, existing work often
centers on the semantic shifts of individual words
and their neighbors over time, without considering
the broader context in which the word appears and
how that affects its meaning.

3 Methods

In this section, we introduce a novel framework
based on p-tuning that fine-tunes soft prompts us-
ing a frozen pre-trained language model, signifi-
cantly reducing storage and memory requirements
during ATD training. However, since ATD tasks
require representations from different time periods,
p-tuning alone is insufficient. To address this, we
propose a temporal-aware text representation that
projects texts from various historical periods into
distinct vector spaces. By integrating this represen-
tation with soft prompts, our method better captures
semantic shifts over time, enhancing ATD system
accuracy. The system architecture of TASPT v1
LSTM is shown in Figure 1.

This section is organized as follows: Section 3.1
outlines the structure of ATD-Bert, which includes
three core subtasks: Semantic Variance Learning
(Section 3.1.1), Semantic Invariance Learning (Sec-
tion 3.1.2), and Temporal Context-Aware Learn-
ing (Section 3.1.3). Section 3.2 then explains how
ATD-Bert’s outputs are integrated into three dis-
tinct PEFT architectures.

3.1 Temporal-aware Text Representation

The temporal-aware historical text representation
is designed to capture the distinctive nuances of
historical texts through ATD-BERT, a specialized
pre-trained language model built on the BERT ar-
chitecture and fine-tuned for the ATD task. The
final representation is obtained by decoupling ATD-
BERT’s output into two components: semantic vari-
ance and semantic invariance.

ATD-Bert is an advanced pre-trained language
model that maps texts from various eras into dis-
crete vector spaces, effectively preserving their
temporal essence. Specifically, given a historical
text d =< w1, w2, . . . , wL >, we encode it using
ATD-Bert. The value in the sentence-start token
[CLS] serves as the representation of the entire text
in high-dimensional space, denoted as h, where
h ∈ R768.

h = ATD-Bert(d) (1)

To ensure accurate encodings, ATD-Bert follows
strict criteria. It captures semantic shifts over time

while preserving stable word meanings and being
context-aware. To meet these needs, ATD-Bert
uses specialized training tasks: Semantic Variance
Learning, Semantic Invariance Learning, and Tem-
poral Context-aware Learning.

3.1.1 Semantic Variance Learning

Regarding the variations in semantic meanings of
words, it is common for words to encompass mul-
tiple meanings. As part of the ongoing process
of semantic evolution across different periods of
time, words can acquire new meanings or fall out of
use. To enable our model to discern these changes
within a high-dimensional space, we incorporated
the principles of contrastive learning, ensuring text
representations from more distant eras are distin-
guished by greater differences. Given two histori-
cal documents d and d′, encoded by ATD-Bert into
h and h′, we first reparameterize h with a Multi-
layer Perceptron (MLP):

osv = MLP rep
svl ([h;h

′]) (2)

where osv matches h in size, ’;’ denotes vector con-
catenation. Next, osv passes through another MLP
and a linear transformation to compute psvl and
p′svl , representing the document’s time category:

psvl, p
′
svl = ϕ(MLP poj

svl (osv)) (3)

Here, ϕ aggregates vector values into floating-point
numbers.

Hence, the chronological gap between the two
texts amounts to:

∆p̂svl = p̂svl − p̂′svl (4)

We use the Mean Squared Error loss function to
separate texts based on their temporal distance:

Lsvl =
1

N

N∑

i=1

(∆p̂svl,i −∆psvl,i)
2 (5)

where ∆psvl represents the actual chronological
gap between texts d and d′, and N is the number of
training samples. In the ATD dataset, time periods
are encoded numerically, with smaller values for
closer periods. A larger ∆psvl indicates a greater
temporal distance, implying less similarity between
embeddings h and h′. The loss is minimized via
backpropagation to fine-tune ATD-Bert.
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Figure 1: The architecture of TASPT consists of two key components: On the left, the temporal-aware text
representation module captures historical text representations, encompassing both semantic changes and invariance
of words. On the right, the soft prompt tuning module integrates these representations into the soft prompt and
combines them with a pre-trained language model to facilitate automatic text dating.

3.1.2 Semantic Invariance Learning
In semantic evolution, some words retain their
meaning. We want our historical text representation
to capture these invariant features without compro-
mising ATD task performance. To achieve this, we
implemented adversarial learning, enabling ATD-
Bert to extract commonalities across different pe-
riods. We introduced a discriminator Gd to distin-
guish between the temporal domains of two input
texts. The objectives of ATD-Bert and Gd are oppo-
sitional: the discriminator aims to correctly classify
periods, while a gradient reversal layer (GRL) ad-
justs features in the opposite direction to refine
ATD-Bert’s learning.

In Semantic Invariance Learning, the input is the
concatenated representations of d and d′ (i.e., h and
h′), encoded by ATD-Bert, with the output being
the predicted time period for both documents. A
gradient reversal layer (GRL) connects ATD-Bert
and the discriminator Gd:

psil, p
′
sil = Gd(GRL([h;h′])) (6)

Here, ’;’ denotes vector concatenation, and psil ∈
R|C| is the predicted time period, with Gd as a
simple neural network.

The GRL has no parameters (aside from the

meta-parameter λ, which remains unchanged dur-
ing backpropagation). During forward propagation,
the GRL applies an identity transformation to the
input:

GRL(x) = x (7)

However, during backward propagation, the
GRL reverses the direction of the computed gra-
dients by multiplying them by a negative scaling
factor:

∂GRL(x)

∂x
= −λI (8)

where I is the identity matrix, λ is a meta-
parameter.

The semantic invariance learning module em-
ploys cross-entropy as the loss function:

Lsil =
1

N

N∑

i=1

yi
⊤ log psil,i (9)

where yi is the one-hot vector of the ground truth of
the i-th sample, A⊤ is the transpose of the matrix
A, and N is the number of training samples.

3.1.3 Temporal Context-Aware Learning
Different historical texts often share common con-
textual elements. To further extract the semantic
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invariance features of these texts, we integrated a
temporal context-aware learning module into the
training of ATD-Bert. Specifically, we concate-
nate d and d′ as input and apply masked language
modeling (MLM) on d′, replacing some words
with [MASK] tokens. The input format becomes
d[mask] = {[SEP], w1, . . . , [MASK], . . . , w′

L}.
We compute the representation at the [MASK] po-
sition, h[MASK], and pass it through a softmax over
the vocabulary:

ptcl = softmax(s[MASK]) (10)

where s[MASK] = f(h[MASK]), s[MASK] ∈ R|V |, f
is the MLM head function, and |V | is the vocabu-
lary size. By concatenating d and d′ and training
with a MLM, we treat them as data from distinct
but related domains, allowing the model to learn
domain-invariant features. The learning objective
is to predict the masked word:

Ltcl =
1

K

K∑

k=1

log p(xπk
| X−π) (11)

where Xπ represents the masked tokens and X−π

the unmasked tokens.

3.1.4 Constructing Representations
The overall loss for ATD-Bert is derived from the
joint training of semantic variance learning, seman-
tic invariance learning, and temporal context-aware
learning:

LATD-Bert = Lsvl + Lsil + Ltcl (12)

While the encoded output h from ATD-Bert ef-
fectively represents d, we found that decoupling h
into two components—semantic variance osv and
semantic invariance osi—improves performance
when combined with soft prompts in ATD. Specif-
ically, osv is derived using Eq. 2. Drawing from
the approach in Wang et al. (2023), which uses
an alignment method to capture invariant features
across domains and modalities, we employ both
TCL and SIL to learn osi, which captures shared
word meanings across different historical periods.
Let d[mask] denote the masked d:

osi = R(GRL(h))⊕ ATD-Bert(d[mask]) (13)

Here, GRL(h) ∈ R768, ATD-Bert(d[mask]) ∈
R512×768, and R aligns their shapes through re-
peating and copying arrays, while ⊕ denotes matrix
addition.

3.2 Temporal-Aware Soft Prompt Tuning
For ATD classification, TASPT employs Parameter-
Efficient Fine-Tuning (PEFT) to bridge the gap be-
tween pre-training and fine-tuning. Specifically, it
integrates temporal-aware text representation with
soft prompts for ATD. Soft prompt learning of-
fers various implementation strategies. For the
widely used PPT (Gu et al., 2022), P-tuning v1
LSTM (Liu et al., 2022), and P-tuning v2 (Liu
et al., 2023), we have developed tailored variants of
TASPT: TASPT Pre-trained, TASPT v1 LSTM, and
TASPT v2. Following the PEFT paradigm, TASPT
adjusts only the prompt parameters, making it sig-
nificantly more efficient than full fine-tuning. In
TASPT Pre-trained, TASPT v1 LSTM, and TASPT
v2, the adjustable parameters account for just 1.4%,
3.4%, and 5.2% of the total model parameters, re-
spectively.

To implement the soft prompt methods, the fea-
tures output by ATD-BERT serve as the initial
parameters. Since the temporal embedding from
ATD-BERT cannot be directly mapped to each soft
prompt method, additional processing steps are in-
troduced. Specifically, techniques such as matrix
transposition, matrix downsampling, and reparam-
eterization are employed to effectively incorporate
the temporal embedding into the text dating task.

In the soft prompt tuning phase, we first rep-
resent the temporal-aware text representation as
follows:

o = [MLP (osv);MLP (osi)] (14)

Here, the Multi-layer Perceptron (MLP) is em-
ployed to reparameterize and reduce the dimen-
sionality of the input, with backpropagation occur-
ring through the loss associated with the text dating
component.

3.2.1 TASPT Pre-trained
In TASPT pre-training, we first map a set of virtual
tokens Bv into a continuous vector space using an
embedding layer. By adding this mapped represen-
tation to the temporal-aware text representation, we
obtain the soft prompt P :

P = o⊕ e(Bv) (15)

3.2.2 TASPT v1 LSTM
In TASPT v1 LSTM, the temporal-aware text repre-
sentation is input into an LSTM network for further
reparameterization. The soft prompt is defined as:

P = LSTM(o) (16)
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The LSTM network is fine-tuned through backprop-
agation during the text dating phase.

3.2.3 TASPT v2
TASPT v2 uses a prefix encoder to combine virtual
token embeddings with the temporal-aware text
representation o. Like P-Tuning v2, TASPT v2
incorporates the prefix-tuning approach by adding
learnable parameters before each input layer. To
achieve this, the soft prompt is reshaped as follows:

P = R(MLP ([o; e(Bv)])) (17)

where Bv is a set of virtual tokens, e is an em-
bedding function that maps the virtual tokens into
continuous vectors, MLP represents the prefix en-
coder, and R is a reshape operation that ensures P
has a compatible structure with Liu et al. (2022).

3.2.4 Classification
The soft prompt P is concatenated at the start of
the sequence, forming the model input:

xprompt = {P ; e([CLS]), e(w1), . . . , e(wL)}
(18)

This input is then fed into a frozen pre-trained lan-
guage model (PLM), which generates token repre-
sentations. In our experiments, we selected BERT
as the PLM. We extract the representation of the
[CLS] token, denoted as hplm[CLS], to serve as the
historical text representation for text dating.

The final text dating prediction is obtained by
applying a linear transformation to hplm[CLS]:

ptd = softmax(Whplm[CLS] + b) (19)

The predicted year category ĉ is the index with the
highest value in ptd, where ĉ ∈ Z+.

In the text dating stage, we observe that texts
from nearby periods tend to have similar semantics,
while those from distant periods differ more. To
capture this, we define a new loss function, the text
dating loss:

Ltd = etanh((c−ĉ)2) × 1

N

N∑

i=1

y⊤i log ptd,i (20)

Here, yi is a one-hot vector for the year label of the
i-th sample, and c is the index of the non-zero entry
in yi. When c matches ĉ (the predicted year), Ltd

reduces to cross-entropy loss. Otherwise, it penal-
izes larger deviations more heavily, with smaller
penalties for close predictions, reflecting the se-
mantic similarity of texts from nearby years.

4 Experiment

4.1 Experimental Setup

We evaluated our model on two datasets: the
Chinese "Twenty-Four Histories" and the English
"Royal Society Corpus" (RSC) (Kermes et al.,
2016). Following Ren et al. (2023), we used an
8:1:1 split for training, validation, and testing. De-
tailed information on the dataset and model param-
eter settings can be found in Appendix A.

Baseline: In the experimental setup, TASPT was
benchmarked against three distinct categories of
methods.

We initially selected eight established ATD
methodologies as baseline references: 1) Bayesian
classifier (Yang, 2018): Uses Bayesian probability
and tf-idf for classification. 2) DPCNN (Johnson
and Zhang, 2017): Employs a deep pyramid convo-
lutional neural network for long text classification.
3) Hierarchical Bert (Khandve et al., 2022): Uti-
lizes a hierarchical structure to extract feature in
long text for text dating. 4) Longformer (Beltagy
et al., 2020): Extract information from long texts
and classify it by optimizing the attention struc-
ture. 5) LSTM (Yu and Huangfu, 2019): Uses an
LSTM network for text dating. 6) SBERT (Tian
and Kübler, 2021): Utilizes Siamese and triplet
networks to generate sentence embeddings. 7)
RoBERTa (Li et al., 2022): Applies the RoBERTa
model for chronological classification of ancient
Chinese texts. 8) TALM (Ren et al., 2023): Incor-
porates temporal alignment and adaptation modules
for effective text dating.

We also evaluated the performance of large lan-
guage models for the ATD task. We selected three
state-of-the-art models that excel in processing
both Chinese and English texts, using historical
texts and classification labels as inputs to guide
the LLM in outputting the appropriate label: 1)
Qwen2-7B (Hui et al., 2024): Known for its su-
perior performance across various tasks due to an
optimized architecture and extensive training on
diverse datasets. 2) Meta-Llama3.1-8B (Dubey
et al., 2024): Demonstrates remarkable proficiency
in NLP tasks, particularly in text generation and
comprehension. 3) GLM-4-9B (GLM et al., 2024):
Offers the best Chinese capabilities among all open-
source models with fewer than 10 billion param-
eters. The prompts used in our experiments are
provided in Appendix B.

The TASPT introduced in this study is built on
a soft p-tuning architecture. Thus, we also bench-
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marked existing soft p-tuning methods for the ATD
task against our model: 1) PPT (Gu et al., 2022):
Uses a sequence of continuous vectors as prompt in-
put, concatenated with text representations for pre-
trained models. 2) P-tuning v2 (Liu et al., 2022):
Converts virtual tokens into dense vectors and uses
multi-layer prefix optimization for task adaptation.
3) P-tuning v1 LSTM (Liu et al., 2023): Employs
an LSTM layer to encode prompt features.

Evaluation Metric: Due to label imbalance in
the experimental dataset, we selected macro preci-
sion (P), macro recall (R), and macro F1 as our eval-
uation metrics. Additionally, following the work
of Ren et al. (2023), we utilized a more flexible
evaluation metric, Acc@K, to assess the severity
of errors in the text dating task. This metric con-
siders prediction results with a relative temporal
distance of less than ±⌊K2 ⌋ as correct samples.

4.2 Model Performance
The comparison results of TASPT and baseline
models on the ATD task are presented in Table 1.

First, our model, TASPT, outperformed exist-
ing text dating methods across all metrics on
both datasets. Specifically, it achieved F1-scores
of 89.09% and 61.07%, surpassing RoBERTa’s
87.52% and 59.84%. While other supervised meth-
ods like RoBERTa performed well, TASPT con-
sistently outperformed them. Methods based on
static semantic features, such as the Bayesian clas-
sifier, struggle to capture the differences between
diachronic corpora, leading to poor performance
in the dating task. Additionally, approaches like
DPCNN and Hierarchical BERT, which are de-
signed for long-text modeling, proved ineffective
for the short-text datasets used in this study. Mod-
els such as LSTM, SBERT, and RoBERTa focus
on structural optimization but fail to account for
semantic shifts, limiting their performance. TALM,
while attempting to model semantic changes, suf-
fers from instability due to random initialization
of the semantic space—further emphasizing the
superiority of TASPT.

Second, while we selected the latest large lan-
guage models that incorporate both Chinese and
English corpora in their training data, these mod-
els did not perform well on the ATD task. This
can be attributed to the relatively small proportion
of diachronic texts in their datasets and temporal
hallucination (Qian et al., 2024) in LLMs, which
hampers their ability to effectively establish cor-
relations between texts and their temporal labels.

Furthermore, employing general-purpose LLMs for
the ATD task resembles zero-shot learning, leading
to lower performance compared to more special-
ized supervised methods.

Third, typical prompt learning methods (PPT,
P-tuning v2, P-tuning v1-LSTM) fine-tune pre-
trained models with soft prompts but are signifi-
cantly less effective than TASPT. Our model out-
performs PPT, P-tuning v2, and P-tuning v1-LSTM
by 19.96%, 19.99%, and 18.83% in F1 scores on
the Twenty-Four Histories dataset, highlighting its
superior text representation. TASPT v1 LSTM
achieves the best results, while TASPT v2 under-
performs slightly due to the network shape con-
straints of prefix-tuning. P-tuning results on the
RSC dataset are lower because it lacks the rich dat-
ing cues found in the historical Twenty-Four His-
tories. Nonetheless, TASPT consistently surpasses
traditional P-tuning methods across datasets.

4.3 Ablation Study
In the ablation experiments, we assess the impact of
removing different modules from our method: Se-
mantic Variance Learning (SVL), Semantic Invari-
ance Learning (SIL), and Temporal Context-aware
Learning (TCL). As shown in Table 2, excluding
the SVL module has the most significant effect, re-
ducing performance by 41.89% and 30.94% on the
Chinese and English datasets, respectively. A study
by Hu et al. (2019b) found that about one-third
of words undergo semantic changes over a 120-
year period. Given that the historical texts in our
dataset span an even longer timeframe, the number
of words with altered meanings is likely higher. Ne-
glecting these semantic evolutions severely impacts
ATD performance. Furthermore, the inclusion of
a GRL layer in the SIL module during ATD-Bert
training improves the model’s ability to capture
semantic variance in temporal-aware text represen-
tations, enhancing the module’s effectiveness. Re-
moving SIL results in smaller performance drops
of 0.88% and 0.7%, while excluding TCL reduces
performance by 0.56% and 0.98%. Although SIL
and TCL have less pronounced impacts, linguistic
studies (Hu et al., 2019b; Shah et al., 2018) sug-
gest that many words retain stable meanings over
time, making semantic stability crucial for auto-
matic text dating. Further exploration is needed to
better optimize these modules for the ATD task.

We validated the effectiveness of the semantic
variance learning module by visualizing document
embeddings. We compared historical text embed-
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Twenty-Four Histories Royal Society Corpus
P R F1 Acc Acc@3 Acc@5 P R F1 Acc Acc@3 Acc@5

Bayesian classifier 44.24 23.06 21.75 45.28 63.49 77.80 50.34 22.19 21.69 33.22 56.80 68.54
DPCNN 63.12 62.06 62.17 70.00 82.49 90.03 46.49 42.92 43.45 46.52 82.18 92.41
Hierarchical Bert 46.17 41.41 42.96 50.75 69.57 83.59 29.13 27.22 27.50 30.52 66.00 80.93
Longformer 88.30 87.49 87.87 89.45 94.21 97.29 60.55 60.18 60.29 62.46 90.53 96.60
LSTM 79.76 79.37 79.40 78.51 88.93 95.20 47.13 45.58 45.81 48.17 87.45 96.13
BERT 86.70 86.41 86.47 88.60 94.00 97.37 59.69 59.01 59.21 61.20 90.35 96.45
SBERT 87.55 87.09 87.30 89.28 94.04 97.38 59.65 59.04 59.22 61.16 89.80 95.94
RoBERTa 87.59 87.54 87.52 89.03 94.01 97.31 60.13 59.70 59.84 62.29 90.20 96.30
TALM 64.93 73.60 66.32 65.76 85.47 94.07 53.49 53.83 53.17 59.83 84.71 95.24
Qwen2-7B 9.28 9.50 6.34 6.74 58.07 74.40 28.27 16.52 15.91 20.04 42.45 60.37
Meta-Llama3.1-8B 3.64 4.26 2.52 1.94 14.05 23.46 7.64 0.03 0.06 0.03 13.96 34.06
GLM-4-9B 6.43 9.10 5.42 7.71 46.58 64.25 40.75 0.76 1.40 0.73 14.75 34.80
PPT 71.55 69.20 69.13 75.65 89.54 95.60 24.71 22.79 19.02 26.18 59.60 77.00
P-tuning v2 71.58 69.17 69.10 75.66 89.55 95.60 24.57 22.73 19.37 26.52 59.51 76.66
P-tuning v1-LSTM 69.59 73.10 70.26 76.62 90.33 95.44 27.70 28.42 26.18 31.35 67.56 83.55
TASPT Pre-trained 88.94 87.84 88.34 89.87 94.26 97.66 61.23 60.15 60.53 61.90 92.08 97.27
TASPT v2 89.43 88.33 88.84 90.36 94.60 97.76 61.50 60.65 60.92 62.78 92.09 96.97
TASPT v1 LSTM 89.89 88.36 89.09 90.32 94.88 98.06 61.70 60.68 61.07 62.96 92.29 97.00

Table 1: Model performance comparison on Twenty-Four Histories and Royal Society Corpora.

Dataset Model P R F1

24 Histories

TASPT 89.89 88.36 89.09
- SVL 49.01 47.63 47.20
- SIL 88.90 87.67 88.21
- TCL 89.50 87.67 88.53

RSC

TASPT 61.70 60.68 61.07
- SVL 31.57 32.53 30.13
- SIL 61.32 60.02 60.37
- TCL 60.70 59.89 60.09

Table 2: Results of ablation study on the Twenty-Four
Histories Corpus and Royal Society Corpus.

dings generated by ATD-Bert with and without
this module, projecting both sets into a 2D space
using t-SNE (Van der Maaten and Hinton, 2008),
as shown in Figure 2. The embeddings without
the semantic variance module show color-coded
points roughly separated into distinct areas, but
the boundaries are unclear. In contrast, the embed-
dings with the module cluster texts from different
dynasties into well-defined areas with clearer sepa-
rations. This demonstrates that the temporal-aware
text embeddings from ATD-Bert effectively differ-
entiate historical texts, leading to more accurate
representations for downstream tasks.

5 Detailed Analysis

5.1 Detailed Comparison with RoBERTa
We compared TASPT with RoBERTa, the second-
best baseline, on the Twenty-Four Histories dataset,
assessing precision (P), recall (R), and F1 scores
for ATD across dynasties in Table 3. TASPT v1

(a) our model (b) w/o semantic variance

Figure 2: Comparison of embeddings generated with
and without the Semantic Variance Learning module.

Period TASPT v1 LSTM RoBERTa
P R F1 P R F1

Western Han 88.79 96.07 87.41 84.76 85.24 85.00
Eastern Han 93.50 95.97 94.72 93.88 95.60 94.73
Western Jin 81.92 92.22 92.07 77.35 82.22 79.71

Southern Song 84.88 89.58 87.16 86.17 87.29 86.73
Southern Liang 78.00 72.62 75.21 75.42 71.81 73.57

Northern Qi 89.14 89.77 89.46 89.54 83.07 86.18
Tang 87.99 88.74 88.36 86.61 87.60 87.10

Later Jin 90.09 89.86 89.97 87.73 88.84 88.29
Song 93.47 92.27 92.87 90.86 94.85 92.81
Yuan 98.10 95.91 96.99 97.84 95.42 96.61
Ming 94.12 96.39 95.24 89.77 95.18 92.40
Qing 92.55 87.88 90.16 91.16 83.33 87.07

Table 3: Detailed comparison of TASPT and RoBERTa
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LSTM surpasses RoBERTa, especially in dynasties
with shorter historical spans and higher classifica-
tion errors, such as Western Jin, Southern Liang,
and Northern Qi. For example, TASPT v1 LSTM
improves F1 scores by 12.36%, 1.64%, and 3.28%
in the Later Jin, Southern Liang, and Northern Qi
categories. RoBERTa struggles with these due to
limited data, while our method excels by integrat-
ing semantic invariance and variance features.

5.2 Semantic Evolution Analysis

In this section, we analyze semantic evolution by vi-
sualizing the confusion matrix and presenting case
studies using the Twenty-Four Histories dataset.

Figure 3: Confusion matrix of TASPT v1 LSTM on the
Twenty-Four Histories dataset.

Firstly, we generated the confusion matrix for
the best-performing model, TASPT v1 LSTM, as
shown in Figure 3. For the Southern Liang cat-
egory, 20.48% of the misclassified samples were
incorrectly predicted as belonging to the Tang dy-
nasty, while 1.06% were predicted as Northern Qi.
From a temporal perspective, the relatively short
duration of the Southern and Northern dynasties,
followed by the long and stable literary period of
the Tang dynasty, may explain why Southern Liang
samples were misclassified as Tang or Northern
Qi. Similarly, misclassified samples from the Later
Jin were primarily attributed to the Tang and Song
dynasties. Historically, the Later Jin was a tran-
sitional period between the Tang and Song, with
similar vocabulary and writing styles, which may
have caused the model to confuse these periods.

Figure 4: Semantic evolution of selected Chinese terms

Secondly, we selected three Chinese
terms—"信" (xin), "走" (zou), and "之"
(zhi)—from the Twenty-Four Histories dataset
and visualized their semantic changes using
embeddings generated by ATD-Bert. In Figure
4, the x-axis represents different dynasties, and
the y-axis shows the cosine similarity of each
word to its counterpart in the Western Han dynasty.
As time progresses, the similarity to the Western
Han version decreases, reflecting natural semantic
evolution. Among these words, "之" has remained
relatively stable, primarily functioning as the
particle "of," resulting in a flat cosine similarity
curve. In contrast, "信" and "走" have undergone
significant semantic shifts. "信" once a noun
meaning "integrity" now often refers to the verb
"believe" while "走" originally meaning "flee" in
wartime, now commonly means "walk". These
changes are evident in Figure 4, where the steeper
curves for "信" and "走" indicate a larger shift
from their Western Han embeddings.

6 Conclusion

In this paper, we introduce Temporal-Aware Soft
Prompt Tuning (TASPT), a novel method for au-
tomatic text dating. We design a temporal-aware
text representation that captures semantic variance,
invariance, and temporal contextual features for
the ATD task, integrating it into a soft prompt
with efficient parameter fine-tuning to align with
pre-trained language models. Our experiments on
Chinese and English historical datasets show that
TASPT outperforms existing ATD methods, large
language models, and other soft prompt approaches.
We also found that current large models struggle
with ATD, and future work will focus on improving
their performance in this area.
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Limitation

This study has two main limitations. First, while
the proposed TASPT v2 outperforms p-tuning v2
for the ATD task, it still lags behind TASPT v1
LSTM , suggesting that some information may be
lost when integrating temporal-aware text repre-
sentation into p-tuning v2. Second, our ablation
study revealed that the Semantic Invariance Learn-
ing (SIL) and Temporal Context-aware Learning
(TCL) modules in ATD-Bert had a smaller impact
than expected, despite linguistic research empha-
sizing the importance of capturing semantic invari-
ance in historical texts. We plan to conduct more
in-depth research into these areas and make further
improvements in our future work.
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Appendix A: Dataset and Parameter
setting

Parameter Setting: During ATD-Bert training, the
input length for two text segments is limited to 256,
with 768-dimensional word embeddings. The GRL
layer uses λ = 1, and pre-training leverages BERT
parameters with a 3e-5 learning rate. In the fine-
tuning stage for text dating, the input length for a
single text segment is set to 512. The PLM’s pa-
rameters remain fixed, while only the soft prompt
parameters are fine-tuned. Our source code is avail-
able at https://github.com/coderlihong/TASPT.

Dataset: The "Twenty-Four Histories" consists
of 2,647 volumes, covering various aspects of an-
cient China. Each volume contains around 8,000
characters, totaling approximately 40 million char-
acters. Since some historical records in the corpus
were compiled and summarized by later writers
rather than written during the original time periods,
we assign a timestamp to each document based on
when it was completed. As a result, the time span
of this dataset ranges from 202 B.C. to 1911 A.D.
The RSC is a diachronic corpus of scientific En-
glish spanning 220 years (1660–1880), comprising
9,779 texts organized in 20-year intervals. To meet
model input constraints, the texts were segmented
into subsequences of approximately 420 characters
each. Details of the datasets are provided in Table
4, where the first column shows the number of vol-
umes or articles, and the second column lists the
number of texts.

Appendix B: Prompts of LLMs in
experiments

The details of the prompts of different LLMs we
used are presented in Table 5. For the models with
better performance in Chinese, such as Qwen2-7B
and GLM4-9B, we used Chinese prompts on two
datasets. For Meta-Llama3.1-8B, which perform
better in English corpus, we used English prompts
for text dating task.
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Dataset Year of publication Volumes/Articles Texts Sentences Tokens

Twenty-Four
Histories Corpus

Western Han(202 B.C.-8A.D.) 101 2,310 36,960 940,387
Eastern Han (25-220) 86 1,599 34,509 654,661
Western Jin (266-317) 50 1,537 38,063 861,559

Southern Song (420-479) 99 2,138 43,008 875,995
Southern Liang (502-557) 130 3,341 68,076 1,409,943

Northern Qi (550-577) 108 3,035 63,650 1,266,270
Tang (618-907) 464 13,635 288,018 5,754,282

Later Jin (936-947) 172 5,778 112,191 2,453,350
Song (960-1279) 382 7,984 148,214 3,340,490
Yuan (1206-1368) 610 15,300 288,684 6,440,433
Ming (1368-1644) 172 4,362 84,675 19,407,756
Qing (1616-1911) 273 8,265 178,432 3,416,774

Royal Society
Corpus

1660-1680 684 5,830 6,489 2,391,200
1680-1700 641 5,870 6,653 2,435,136
1700-1720 545 5,658 6,308 2,420,384
1720-1740 674 5,183 24,339 2,181,904
1740-1760 892 9,546 11,269 4,088,349
1760-1780 816 11,114 13,401 4,794,987
1780-1800 519 11,362 14,412 4,858,785
1800-1820 1,184 13,723 19,906 5,945,818
1820-1840 1,114 16,887 24,339 7,292,786
1840-1860 1,466 26,212 37,729 11,411,943
1860-1880 1,185 23,269 33,650 10,225,424

Table 4: Dataset statistics

Twenty-Four Histories Royal Society Corpus

Qwen2-7B/ GLM-4-9B

[Instruction]:请根据我所提供的文本，
判断撰写该文本的作者所属的年代。

请直接输出标签，
按照输出格式进行输出。

请从列表：
西汉,东汉,西晋,南朝宋,
南朝梁,北朝齐,唐,后晋,

宋,元,明,清
中选择其中一个作为输出。

Text:text
输出格式：<年代标签>

[Instruction]:请根据我所提供的文本，
判断撰写该文本的作者所属的年代。

请直接输出标签，按照输出格式进行输出。
请从列表：

1660,1680,1700,1720,
1740,1760,1780,1800,

1820,1840,1860
中选择其中一个作为输出。

Text:text
输出格式：<年代标签>

Meta-Llama3.1-8B

[Instruction]:Please determine the time period of
the author of the text I have provided.

Follow the output format.
Select one from list as output:

西汉,东汉,西晋,
南朝宋,南朝梁,北朝齐,唐,

后晋,宋,元,明,清
Text:text

Output：<label>

[Instruction]:Please determine the time period of
the author of the text I have provided.

Follow the output format.
Select one from list as output:

1660,1680,1700,1720,
1740,1760,1780,1800,

1820,1840,1860
Text:text

Output：<label>

Table 5: Prompts of different LLMs on Twenty-Four Histories and Royal Society Corpora.
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