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Abstract

Self-Consistency mitigates hallucinations in
Large Language Models (LLMs) by sampling
multiple reasoning paths, but it lacks a system-
atic approach to determine the optimal num-
ber of samples or select the most faithful ratio-
nale. To address this limitation, we introduce
Reasoning-Aware Self-Consistency (RASC), a
novel framework that enhances sampling effi-
ciency and reasoning faithfulness by dynam-
ically evaluating both outputs and rationales.
RASC assesses the quality of reasoning and
the consistency of answers for each generated
sample, using these assessments to guide early
stopping decisions and rationale selection.The
framework employs criteria-based stopping
and weighted majority voting, enabling more
informed choices on when to halt sampling and
which rationale to select. Our comprehensive
experiments across diverse question-answering
datasets demonstrate that RASC outperforms
existing methods, reducing sample usage by
approximately 70% while maintaining accu-
racy. Moreover, RASC facilitates the selection
of high-fidelity rationales, thereby improving
the faithfulness of LLM outputs. Our approach
effectively addresses the efficiency-accuracy
trade-off in LLM reasoning tasks, offering a
new perspective for more nuanced, faithful,
and effective utilization of LLMs in resource-
constrained environments. 1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable complex reasoning capabili-
ties in various domains (Wan et al., 2024b; Ahn
et al., 2024a), particularly when employing chain-
of-thought (CoT) prompting (Wei et al., 2022)
which allows LLMs to generate reasoning paths
(RPs) before answers. Building upon this, Wang

*These authors contributed equally to this work.
†Corresponding authors.
1Code available at: https://github.com/

wan19990901/RASC/tree/Submission_Code

et al. (2023) introduced Self-Consistency (SC), a
decoding strategy that significantly enhances rea-
soning performance by sampling multiple RPs and
marginalizing over these samples. This approach
has substantially improved LLM’s performance
across various reasoning domains (Tan et al., 2023;
Ahn et al., 2024b). However, SC’s effectiveness
is tied to the number of reasoning paths sampled,
creating a critical trade-off between performance
and computational cost. While the original paper
show that sampling more paths (e.g., 40) gener-
ally leads to better performance, there’s no sys-
tematic method to determine the optimal number
of samples for any given task. This ambiguity of-
ten results in over-sampling, leading to excessive
computational demands (Li et al., 2024b). Thus,
we need more efficient methods that can maintain
SC’s reasoning benefits while reducing its compu-
tational burden.

Recent research has introduced early-stopping
mechanisms to address the computational costs of
Self-Consistency. Adaptive Consistency (AC) (Ag-
garwal et al., 2023) employs incremental sampling,
terminating when a clear majority emerges based
on a predefined probability distribution, while
Early Stopping Self-Consistency (ESC) (Li et al.,
2024b) segments the preset sample size into win-
dows and stops sampling when answers within a
window achieve uniformity. Although these meth-
ods effectively reduce computational demands,
they fail to address two critical limitations in the
original self-consistency approach: (1) they treat
all samples equally for sampling decisions, basing
the stopping criteria solely on the consistency of fi-
nal answers, with this uniform treatment extending
to the use of majority voting; (2) these approaches
lack of a formal mechanism to distinguish and pri-
oritize the most faithful and high-quality rationale
among the selected samples, which can be critical
in domains that require precise explanations such
as healthcare and science (Wang et al., 2024a; Lu
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Figure 1: Comparison between Self Consistency and Reasoning-Aware Self Consistency (RASC) methods for a
reasoning problem. The top half illustrates the standard Self Consistency approach, generating multiple reasoning
paths and using majority voting for the final answer. The bottom half demonstrates RASC’s improvements:
it assigns scores based on the qualities of both answers and reasoning paths, effectively handling incorrect or
irrelevant responses. RASC’s resampling and stop condition mechanisms optimize sampling, enhancing efficiency
and maintaining accuracy. Moreover, RASC enables the selection of the most faithful rationale among generated
samples, improving the quality and reliability of the reasoning process in complex tasks

et al., 2022; Wu et al., 2024).

To address these limitations while preserving the
benefits of self-consistency, we propose Reasoning-
Aware Self-Consistency (RASC), a framework that
enhances the original SC approach. As illustrated
in Fig. 1, our method assesses both the rationales
across samples and the consistency of final an-
swers, which enables more nuanced and efficient
sampling. RASC is motivated by the principle
that higher-quality rationale often leads to better
LLM reasoning (Zelikman et al., 2022). By lever-
aging this insight, RASC prioritizes robust rea-
soning in decision-making and enables early stop-
ping when a consistent pattern of high-quality RP
and consistency of answers is observed. This ap-
proach not only improves efficiency but also allows
RASC to identify the most faithful and high-quality
chains of thought among selected samples. Our
approach significantly outperforms existing meth-
ods across 10 datasets spanning Commonsense,
Mathematical, and Symbolic reasoning, reducing
sample usage by 60%-80% while maintaining or
improving accuracy. Furthermore, experiments
demonstrate RASC’s ability to select high-fidelity
chain-of-thought reasoning, as well as its robust-

ness across various datasets, prompting strategies,
and multiple base LLM models, highlighting its
adaptability to different efficiency-accuracy trade-
offs and application needs. This combination of
efficient sampling, high-fidelity reasoning selec-
tion, and broad applicability positions RASC as a
versatile and powerful tool for enhancing the rea-
soning capabilities of large language models. In
summary, our key contributions are as follows:

• Analysis of Sampling-Based LLM Reason-
ing Techniques: We present the first system-
atic evaluation of current SC-based sampling
methods for LLM reasoning, offering new
insights into their limitations, including the
disregard for reasoning quality, uniform sam-
ple weighting, and the inability to identify the
most faithful rationale.

• Reasoning-Aware Self-Consistency (RASC)
Framework: We propose a novel framework
that accounts for both rationale quality and
answer consistency to dynamically select the
number of samples and the best rationale for
sampling-based LLM reasoning .

3614



• Robust Evaluation: We showed RASC out-
performs existing techniques in efficiency and
explanation quality across various settings.

2 Related Work

2.1 Self-Consistency and Sampling Methods
Self-Consistency (SC) (Wang et al., 2023) is a pow-
erful decoding strategy that mitigates LLM hallu-
cinations by sampling multiple reasoning paths
and deriving final answers through majority vot-
ing. Recent studies have demonstrated SC’s criti-
cal importance and versatility across different do-
mains: Huang et al. (2024) showed that SC out-
performs alternative approaches like multi-agent
debate for reasoning tasks, while Chen et al. (2024)
and Wang et al. (2024b) successfully extended SC
to open-ended generation tasks including reason-
ing domains and text summarization. However,
despite its effectiveness, SC incurs significant com-
putational costs at inference time due to its re-
quirement for multiple sampling iterations. To
address this limitation, researchers have proposed
several adaptive approaches: Adaptive Consistency
(AC) (Aggarwal et al., 2023) employs incremental
sampling with a Dirichlet-based stopping criterion,
while Early-Stopping Self-Consistency (ESC) (Li
et al., 2024b) segments sampling into sequential
windows and stops when answers achieve unifor-
mity. Although these methods effectively reduce
computational demands, they primarily focus on
checking the consistency of answers but overlook
sample quality variations and the reasoning pro-
cess’s importance. Our work extends these ap-
proaches by addressing such limitations, aiming
to enhance both the computational efficiency and
faithfulness of self-consistency techniques.

2.2 Chain-of-Thought Prompting and
Reasoning Process

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has significantly enhanced LLM perfor-
mance through step-by-step reasoning, with vari-
ants (Kojima et al., 2022; Zhou et al., 2023) further
refining this approach. Recent work has sparked
the idea that higher-quality intermediate reasoning
paths lead to better final answers (Zelikman et al.,
2022; Zhang et al., 2024a; Khan et al., 2024), con-
cerns about the faithfulness of CoT-generated ex-
planations have also emerged, particularly the risk
of hallucination snowballing (Zhang et al., 2024b).
This has prompted a research theme on how to eval-
uate the intermedaite reasoning paths (Lightman

et al., 2024; Radhakrishnan et al., 2023; Golovneva
et al., 2023) and developing methods for reasoning
path correction for better reasoning (Wan et al.,
2024a; Miao et al., 2024; Weng et al., 2023).Build-
ing on these advancements, our work introduces
RASC, which adapts CoT evaluation frameworks
to the self-consistency setting to dynamically en-
hancing the reliability and faithfulness of SC-based
reasoning.

3 Reasoning-Aware Self-Consistency

Self-Consistency (SC) and its variants enhance
question-answering accuracy in Large Language
Models (LLMs) by generating multiple answers,
but often overlook reasoning processes, leading
to inefficient sampling. We propose Reasoning-
Aware Self-Consistency (RASC), a framework that
optimizes sampling efficiency while maintaining
accuracy by evaluating both reasoning paths and
answers. RASC introduces a sufficiency scoring
function that combines reasoning quality and an-
swer consistency features, mapped to a continu-
ous score via an optimized classifier. The frame-
work employs a dynamic sampling process with
a buffer of high-quality samples, stopping when a
predefined capacity is reached. Finally, RASC uses
weighted majority voting based on the scores to
select the final answer and most faithful reasoning
path. This approach integrates reasoning evalua-
tion into the self-consistency process, offering a
more faithful and computationally efficient method
for complex question-answering tasks in LLMs.

3.1 Reasoning and Answer Level Features

We formalize our sufficiency scoring approach by
defining a function F : X → [0, 1], where X rep-
resents the space of all possible reasoning-answer
pairs. This score is a composite measure of rea-
soning quality and answer consistency, indicating
whether it’s sufficient to terminate sampling. For a
given reasoning-answer pair x = (r, a) ∈ X , we
approximate F (x) through a composition of func-
tions: F (x) ≈ fθ∗(ϕ(x)). Here, ϕ : X → Rn is a
feature extraction function mapping the reasoning-
answer pair to an n-dimensional real-valued vector,
and fθ∗ : Rn → [0, 1] is an optimized classifier
that outputs a continuous sufficiency score given
the n-dimensional input value. To capture both rea-
soning quality and answer consistency, we design
ϕ to extract two sets of features:
Reasoning Quality Features: These features as-

3615



Table 1: Answer-Level and Reasoning-Level Features for RASC. These features were designed based on our
preliminary analysis (Appendix A.8) and insights from previous literature (Jin et al., 2024; Li et al., 2024a; Zhang
et al., 2023; Huang et al., 2025; Hosking et al., 2024; Bang, 2023; Tu et al., 2020; Golovneva et al., 2023). They
capture various aspects of reasoning quality and answer consistency. Symbols in parentheses indicate relationships
between samples: *-Consistency targets exact matches, while -Relevance considers vocabulary overlap. This
comprehensive set of features enables RASC to make informed decisions about sampling sufficiency. Refer to
Table 20 in appendix for specific examples.

Feature Description Calculation

Answer-Level Features

Local-Consistency
(at ↔ at−1)

Check if the current answer is the same as the prior answer. LC = 1 if at = at−1,
otherwise LC = 0

Global-Consistency
(at ↔ a1, ..., at−1)

Check if the current answer is within the previous answers. GC = 1 if at ∈ A,
otherwise GC = 0

Parsing-Error (at) Ans: error → Parsing-Error = 1; Ans: 2 → Parsing-Error = 0 PE = 1 if the answer is
an error, otherwise
PE = 0

Reasoning-Level Features

RP-Length Reasoning path string length. RP-Length = len(RP )
Num-of-Steps (rt) Number of steps in reasoning paths. Num-of-Steps =

count(steps)
Step-Relevance (rt) The coherence between the reasoning steps (number of

overlapping words).
SR = |A∩B|

|A∪B| where
A = vocab in stept−1,
B = vocab in stept

Question-Relevance
(rt ↔ Q)

The similarity between the input question Q and the reasoning
path.

QR = |A∩B|
|A∪B| where

A = vocab in question,
B = vocab in RP

Error-Admitting (rt) The LLM acknowledges making mistakes during the response. EA = 1 if ERROR else
EA = 0

Local-Relevance
(rt ↔ rt−1)

The similarity between the current and previous generated
reasoning paths.

LR = |A∩B|
|A∪B| where

A = vocab in RPt−1,
B = vocab in RPt

Global-Relevance
(rt ↔ r1, ..., rt−1)

The similarity between the concatenation of all previous sample
RPs and the current sample RP.

GR = |A∩B|
|A∪B| where

A = vocab in RP1−t−1,
B = vocab in RPt

sess the quality of the RPs generated through CoT
prompting. As shown in Table 1, these include
measures such as RP-Length, Num-of-Steps, Step-
Relevance, and Question-Relevance. These fea-
tures capture the coherence, relevance, and depth
of the reasoning process. In this study, the rele-
vance was calculated as Jaccard Similarity.

Answer Consistency Features: These fea-
tures, including Local-Consistency and Global-
Consistency as shown in Table 1, evaluate the con-
sistency of answers in the generated samples.

The feature extraction function ϕ now com-
bines both Reasoning Quality and Answer
Consistency features into a single vector: ϕ(xi) =
[Local Consistency(xi), ...,Global Relevance(xi)]
Feature Set Applicability and Extensibility:
Our feature set provides a strong foundation for
evaluating reasoning quality and answer consis-
tency. We designed ϕ with a modular architecture
to allow future integration of additional features

as our understanding evolves. Importantly, these
features are intentionally lightweight, avoiding
computationally intensive extractors to optimize
the cost of SC while maintaining effectiveness.

3.2 Sampling and Decision Process
Sufficiency Score Computation: We learn a scor-
ing function f : Rn → [0, 1] from a family of
parameterized functions F , where each function
is denoted as fθ for parameters θ. Given a dataset
D = (xi, yi)

M
i=1, where xi = ϕ(ri, ai) is the

feature vector of the i-th reasoning-answer pair
(ri, ai), and yi ∈ 0, 1 indicates the correctness of
the answer, we obtain the optimal parameters θ∗

by minimizing:

θ∗ = argmin
θ

(
1

M

M∑

i=1

L(fθ(xi), yi)
)

(1)

Where L represents the loss function (e.g., cross-
entropy).
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Figure 2: Reasoning-Aware quality features. Different
colour corresponds to different feature visualizations.
Ans: Output Answer. The upper dashed box is the
reasoning-level features, and the lower dashed box is
the answer-level features. The blue and purple arrows
represent relative relations between different samples
(consistency and relevance).

Stop Condition: For a sequence of K sampled
reasoning-answer pairs xi

K
i=1, we compute suf-

ficiency scores SSi = fθ(ϕ(xi)) using the opti-
mized function fθ. We maintain a buffer B of
high-quality pairs with sufficiency scores above a
predefined threshold T :

B = (ri, ai) | SSi ≥ T (2)

The sampling process terminates when |B| ≥ N ,
where N is a predefined capacity.
Key Trade-off Parameters: N and T are crucial
for balancing sample reduction and accuracy. N
determines the number of high-quality samples re-
quired before stopping, while T sets the threshold
for considering a sample as high-quality. Adjusting
these parameters allows RASC to prioritize either
greater sample reduction or higher accuracy.
Weighted Sampling for Answer and Rationale:
Upon reaching the stop condition, RASC deter-
mines the final answer and reasoning path through
weighted majority voting using the sufficiency
scores of pairs in B:

(Ans,RP) =
(
argmax

a∈A


 ∑

(ri,ai)∈B,ai=a

SSi


 ,

argmax
rj :(rj ,Ans)∈B

SSj

)
(3)

where A represents the set of possible answers,
B is the buffer of high-quality reasoning-answer

Algorithm 1 RASC Early Stopping

1: Input: Query Q, Threshold T , Buffer Size N ,
Scoring Function F , Base LLMM

2: Output: Final Answer Abest, Best Reasoning
Apth RPbest

3: B ← {} ## Initialize empty buffer
4: while |B| < N do
5: (Ai, RPi)←M(Q)
6: SSi ← F (Ai, RPi)
7: if SSi ≥ T then
8: B ← B ∪ {(Ai, RPi, SSi)}
9: end if

10: end while
11: A ← {A|(A,RP, SS) ∈ B}
12: Abest ← argmax

A∈A

∑
(A′,RP,SS)∈B:A′=A SS

13: RPbest ← argmax
RP

{SS|(Abest, RP, SS) ∈
B}

14: return Abest, RPbest

pairs, and SSi is the sufficiency score for the i-
th pair. This approach ensures that higher-quality
reasoning-answer pairs have greater influence on
the final decision. The answer (Ans) with the high-
est weighted sum of sufficiency scores is selected,
and then the most faithful reasoning path (RP) is
chosen as the one with the highest sufficiency score
among those supporting the selected answer. For
complete details, refer to Algorithm 1 and Ap-
pendix C for theoretical justification.

4 Experiments

4.1 Experimetnal Setup

Baseline and Data: We compare RASC against
three established baseline methods: SC (Wang
et al., 2023), AC (Aggarwal et al., 2023), and ESC
(Li et al., 2024b). Following the previous work,
our main evaluation dataset comprises 16,725 sam-
ples spanning commonsense reasoning (Date Un-
derstanding, CommonsenseQA), symbolic reason-
ing (boolean expressions, disambiguation, last let-
ters), and mathematical reasoning (GSM8K, AS-
DIV, MathQA, SVAMP). To assess generalizability
on unseen data, we use out-of-distribution datasets
including BigBench (bench authors, 2023) and
StrategyQA (Geva et al., 2021), comprising an
additional 10,824 examples that require implicit
reasoning steps across various topics. See the Ap-
pendix for the configurations of the baseline meth-
ods (A.4) and the data (A.6).
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Table 2: Performance of Different Reasoning Methods on Mathematical, Commonsense, and Symbolic Reasoning
Benchmarks, including Chain-of-Thought (CoT), Self-Consistency (SC), Early-Stopping Self-Consistency (ESC),
Adaptive Consistency (AC), and Reasoning-Aware Self-Consistency (RASC). Metrics include Number of Samples
Generated ( # of Gen), Accuracy (Acc), and Gained Accuracy per Sample relative to CoT.

Model Method
Benchmark Category

Mathematical Reasoning Commonsense Reasoning Symbolic Reasoning

# of Gen Acc Gain/Sample # of Gen Acc Gain/Sample # of Gen Acc Gain/Sample

GPT-4

CoT 1 82.1% - 1 83.2% - 1 92.5% -
SC 40 87.5% 0.139% 40 88.0% 0.123% 40 97.3% 0.123%

ESC 6.86 (-82.9%) 87.3% 0.889% 7.93 (-80.2%) 88.5% 0.767% 5.54 (-86.2%) 97.3% 1.056%
AC 5.89 (-85.3%) 87.3% 1.065% 6.15 (-84.6%) 87.2% 0.779% 4.43 (-88.9%) 97.3% 1.395%

RASC 4.59 (-88.5%) 87.5% 1.503% 4.74 (-88.1%) 88.3% 1.367% 4.19 (-89.5%) 97.3% 1.500%

GPT-3.5 Turbo

CoT 1 63.5% - 1 71.2% - 1 80.1% -
SC 40 69.1% 0.144% 40 76.1% 0.126% 40 85.3% 0.134%

ESC 14.94 (-62.7%) 69.3% 0.417% 10.86 (-72.9%) 76.4% 0.527% 7.55 (-81.1%) 86.0% 0.903%
AC 12.49 (-68.8%) 67.6% 0.357% 8.34 (-79.2%) 75.0% 0.517% 6.39 (-84.0%) 84.7% 0.853%

RASC 6.62 (-83.5%) 69.4% 1.054% 4.95 (-87.6%) 76.1% 1.238% 4.36 (-89.1%) 85.3% 1.547%

Vicuna-13B

CoT 1 36.2% - 1 50.1% - 1 41.5% -
SC 40 41.7% 0.141% 40 55.9% 0.149% 40 47.3% 0.149%

ESC 20.29 (-49.3%) 40.5% 0.223% 20.89 (-47.8%) 50.5% 0.020% 23.05 (-42.4%) 44.0% 0.113%
AC 17.44 (-56.4%) 42.3% 0.371% 19.92 (-50.2%) 55.9% 0.306% 25.77 (-35.6%) 49.3% 0.314%

RASC 8.24 (-79.4%) 42.0% 0.801% 7.83 (-80.4%) 55.0% 0.718% 8.71 (-78.2%) 45.3% 0.494%

Llama2-7B

CoT 1 18.5% - 1 63.2% - 1 19.5% -
SC 40 23.0% 0.115% 40 68.9% 0.146% 40 24.2% 0.121%

ESC 27.25 (-31.9%) 23.5% 0.190% 8.85 (-77.9%) 68.9% 0.726% 31.03 (-22.4%) 24.8% 0.177%
AC 23.91 (-40.2%) 21.5% 0.131% 7.97 (-80.1%) 68.3% 0.735% 24.62 (-38.5%) 24.2% 0.199%

RASC 10.71 (-73.2%) 23.2% 0.484% 5.11 (-87.2%) 68.9% 1.390% 13.09 (-67.3%) 24.8% 0.439%

Implementation Details: Our experiments utilize
LLAMA2-7B (Meta, 2024), GPT3.5-turbo/GPT4
(OpenAI, 2024), and Vicuna-13B (Chiang et al.,
2023). For parameters of our algorithm, we make
buffer size N being 5 with a quality threshold T of
0.5 based on experimental results in Figure 3. We
use customized metrics that measure the trade-off
between efficiency and accuracy to select the best
hyper-parameters. We use Logistic Regression
as a lightweight sufficiency scoring model, which
shows a comparable correlation with human judg-
ments and efficiency on running time. We keep the
parameters learned from training set and apply it
on testset to prevent overfitting. LLM inference is
applied with a temperature of 0.5. See Appendix
A for further details on experimental setup, includ-
ing computational resources, model configurations,
and prompts. Additional results, including analysis
of various base models and Pearson correlation of
other NLG metrics with human juedgement, can
be found in Appendix B.

4.2 Main Results

RASC Excels Across Diverse Reasoning Tasks
and LLMs: Table 2 showcases RASC’s perfor-
mance across a wide spectrum of reasoning tasks
and base Language Models (LLMs). Our compre-
hensive analysis reveals that RASC consistently
achieves superior sample efficiency while main-

taining similar accuracy across mathematical, com-
monsense, and symbolic reasoning tasks. This su-
perior performance and efficiency are statistically
significant across multiple benchmarks and mod-
els, as detailed in Appendix B.2. The robustness of
performance of RASC is further highlighted by its
consistent effectiveness across diverse LLMs, from
closed-source models like GPT-3.5 Turbo and GPT-
4 to open-source alternatives such as Vicuna-13B
and Llama2-7B.

Table 3: Performance and Time Analysis of Methods
Using GPT-4. Analysis of other models and costs can
be found in Appendix B.3.

Method Accuracy
(%)

Inference
Time (s)

Non-
Inference
Time (s)

Total
Time (s)

SC 90.9 398.9 0.00 398.9
ESC 91.0 67.8 0.04 67.9
AC 90.6 54.9 0.06 55.0
RASC 91.0 45.1 2.05 47.2

Note: Values are averages per question over all data.

RASC Excels in Computational Efficiency: Ta-
ble 3 empirically highlights RASC’s improvement
in computational efficiency over other methods.
While SC incurs minimum additional computa-
tional overhead, it requires the longest inference
time. AC and ESC, on the other hand, introduce rel-
atively small overhead due to their stopping criteria
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Table 4: Performance comparison of different feature sets across reasoning tasks. Answer-level features include
final answer characteristics. Reasoning-level features capture the quality of the reasoning process. Combined
Features incorporate both answer-level and reasoning-level features. See Table 1 for more feature details.

Feature Set Mathematical Reasoning Symbolic Reasoning CommonSense Reasoning
# Gen Acc (%) # Gen Acc (%) # Gen Acc (%)

Answer-level only 10.86 55.5 7.75 58.0 6.65 74.9
Reasoning-level only 5.50 50.4 4.30 55.9 3.08 72.4
Combined Features 8.20 55.8 6.28 58.1 5.63 75.0
Results are averaged across all datasets and models. # Gen: Average number of generated samples. Acc: Accuracy.

Figure 3: Effects of varying N and T on performance tradeoffs, illustrating how changes in these parameters impact
both accuracy (RASC Correctness) and the average number of samples generated.

calculations. RASC, although introducing the high-
est non-inference processing time for feature ex-
traction, substantially reduces the overall inference
time, which typically constitutes the largest portion
of the total computational cost. Notably, RASC
reduces inference time by approximately 80% com-
pared to SC, while maintaining similar accuracy,
and outperforming other efficient methods. We
thus claim that as long as the non-inference over-
head remains relatively smaller than the savings in
inference time, RASC will consistently prove more
computationally efficient. These gains hold across
other evaluated models and is especially significant
when inference speed is slower, as demonstrated
in Table 14 in the Appendix.

4.3 Analysis

Robust Performance and Tunable Efficiency:
Fig. 3 shows RASC’s performance across various

threshold (T ) and buffer size (N ) configurations.
RASC demonstrates a unique combination of per-
formance stability and customizable efficiency. Ac-
curacy improves consistently as T increases from
0.1 to 0.5, with the most significant gains between
T = 0.1 and T = 0.3. Increasing N from 3
to 7 generally enhances accuracy, albeit with di-
minishing returns. This stability across hyper-
parameter values showcases RASC’s robustness.
RASC allows preference-based tuning: lower T
and N values prioritize efficiency with minimal
accuracy loss, ideal for resource-constrained sce-
narios, while higher values maximize accuracy at
increased computational cost. This dual character-
istic of robustness and adaptability enables RASC
to optimize for specific accuracy or efficiency re-
quirements across various computational environ-
ments.
Performance Analysis on Tasks with Varying
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Table 5: Performance on MMLU Math Categories
(GPT-4)

Method
Elementary College Abstract

Mathematics Mathematics Algebra

#Gen Acc Gain/Sample #Gen Acc Gain/Sample #Gen Acc Gain/Sample

CoT 1 95.8 – 1 75.4 – 1 71.0 –
SC 40 97.8 0.051 40 84.0 0.231 40 76.0 0.128
ESC 4.23 97.6 0.558 8.93 83.8 1.114 12.45 75.8 0.442

(-89.4%) (-77.7%) (-68.9%)

ASC 3.85 97.7 0.669 7.56 83.7 1.323 10.28 75.7 0.510
(-90.4%) (-81.1%) (-74.3%)

RASC 3.12 97.7 0.904 6.15 83.9 1.726 8.54 75.9 0.651
(-92.2%) (-84.6%) (-78.7%)

Note: Categories arranged in order of increasing diffi-
culty (Elementary → College → Abstract)

Difficulty: To further validate RASC’s effective-
ness across different difficulty levels, we conducted
experiments using the MMLU benchmark, exam-
ining performance on mathematical topics of vary-
ing complexity: Elementary Mathematics, College
Mathematics, and Abstract Algebra.

The results reveal two key patterns. For harder
tasks (Abstract Algebra), RASC requires more
samples (8.54 vs 6.15 for College Math) to achieve
confident stopping, reflecting the reasoning varia-
tions in evaluating complex reasoning and result
in better performance gains. However, for easier
tasks (Elementary Mathematics), RASC achieves
extreme sampling efficiency due to rapid recogni-
tion of correct reasoning patterns although with
a slight less performance improvement. Notably,
while harder tasks require more samples, they still
maintain significantly reduced sampling compared
to SC , demonstrating RASC’s ability to balance
sampling efficiency with task complexity.

Individual Impact of Reasoning-Level and
Answer-Level Features: Our comprehensive ab-
lation studies reveal the crucial interplay between
reasoning-level and answer-level features across
various reasoning tasks. Table 4 demonstrates that
integrating both feature types consistently out-
performs models using either feature set alone
regarding the trade-off between accuracy and
number of samples generated, validating our hy-
pothesis of their complementary nature. While
answer-level features provide a strong baseline, as
established in previous work, our novel incorpo-
ration of reasoning-level features, providing ad-
ditional insights form the intermediate reasoning,
significantly enhances the model’s capabilities in
distinguishing better samples, thus reducing the
number of generations needed. This synergistic
combination enables a more holistic capture of
the reasoning process, highlighting the importance

of considering both the reasoning path and the fi-
nal answer in evaluating and optimizing language
model outputs.
Selection of High-Fidelity Chains of Thought:
Table 6 demonstrates RASC’s superiority over Self-
Consistency (SC) in rationale selection across tra-
ditional metrics and manual evaluation, with a 0.7-
point increase in Human-Eval Score on a 5-point
scale. Qualitative analysis in Appendix also sup-
ports this: for a travel distance question (Table
9, Sample 1), RASC provides a clear, correct ex-
planation (human scores: 5) while SC introduces
ambiguity (scores: 2). This analysis shows RASC’s
superior capability in selecting faithful and high-
quality Chains of Thought (CoTs), consistently
producing more accurate, coherent, and relevant
explanations for improved problem-solving.

Table 6: Comparison of RASC and SC on CoT Faith-
fulness. This evaluation used 200 randomly selected
questions from our training set. For RASC, we picked
the CoT with the highest sufficiency score, and for SC,
we selected a random CoT sample that produced the cor-
rect final answer. The evaluation assessed BARTScore,
CTC, BLURT, and human-evaluated faithfulness scores.
For BARTScore, CTC, and BLURT, we manually cre-
ated golden CoTs as reference.

Metric RASC SC Diff.

BARTScore (Yuan et al., 2021) 0.61 0.39 +0.22
CTC (Deng et al., 2021) 0.55 0.45 +0.10
BLURT (Sellam et al., 2020) 0.58 0.42 +0.16
Human-Eval Scorea 4.7 4.0 +0.70

aOn a scale of 1-5. All other scores range 0-1, represent-
ing ranked-based scores where 1 indicates better metrics for
RASC over SC and 0 means the other way around. See
Appendix A.11 for details on human evaluation criteria and
golden CoT creation process.

4.4 Robustness and Generalizability

Table 7: Impact of Different Prompting Strategies on
Performance on 100 Random Question from GSM8K
dataset, a subset data from Mathematical Reasoning,
with GPT-3.5 Turbo (a/b: a = accuracy (%), b = avg.
samples)

Method Zero-shot Few-shot Least-to-Most

SC 69.0 / 40.0 75.0 / 40.0 85.0 / 40.0
ESC 67.0 / 9.3 75.0 / 9.5 85.0 / 8.8
AC 69.0 / 8.8 74.0 / 8.4 85.0 / 7.0
RASC 69.0 / 5.1 75.0 / 5.3 85.0 / 5.0

RASC is consistent on Different Prompts:
To check RASC’s robustness to different input
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prompts, we evaluated RASC’s performance using
three distinct CoT prompting strategies: zero-shot
(Kojima et al., 2022), few-shot (Wei et al., 2022),
and least-to-most (Zhou et al., 2023). As Table.7
shows, RASC consistently outperforms other meth-
ods across all prompting strategies, demonstrating
higher accuracy and lower sample (5 steps on av-
erage) requirements. This consistency highlights
RASC’s adaptability to various ways of eliciting
reasoning from language models.
Cross-Domain Adaptability and Performance
Scaling: To evaluate RASC’s generalizability be-
yond our training distribution for reasoning eval-
uations, we tested it on two external datasets, in-
cluding BigBench (bench authors, 2023) and Strat-
egyQA (Geva et al., 2021) comprising 10,824 ex-
amples requiring implicit reasoning steps across
various topics. Using GPT3.5 turbo as the base
model, RASC demonstrated robust performance
on these unseen, complex datasets. As illustrated in
Figure 6 in Appendix, RASC achieved the highest
accuracy while significantly reducing the average
number of samples generated compared to other
methods. Notably, RASC outperformed SC in ac-
curacy (0.581 vs 0.579) while using only 14.5% of
the samples (5.8 vs 40.0). It also surpassed both
ESC and AC in both accuracy and efficiency. This
performance suggests RASC’s resilience across
varied data distributions, highlighting its ability
to generalize effectively to novel reasoning tasks
without compromising accuracy or computational
efficiency.

5 Conclusion

Through our investigation of sampling-based LLM
reasoning, we discovered that the quality of inter-
mediate reasoning paths serves as a crucial early
indicator for efficient sampling decisions. Building
on this insight, we developed RASC, a framework
that strategically incorporates reasoning path evalu-
ation into the sampling process. Our approach not
only achieved a 60-80% reduction in required sam-
ples while maintaining accuracy. By introducing
principled methods for assessing reasoning qual-
ity and selecting the most faithful rationale from
generated samples, RASC provides a systematic so-
lution to the challenge of balancing computational
efficiency with reasoning reliability in LLMs. The
framework’s success across diverse reasoning tasks
demonstrates that focusing on the quality of inter-
mediate reasoning, rather than just final answers,

offers a promising direction for developing more
efficient and trustworthy LLM reasoning systems.

6 Limitations

While RASC demonstrates significant improve-
ments in efficiency and faithfulness across various
reasoning tasks, it is important to acknowledge
some limitations and areas for future research:

• Feature Limitations: While RASC signif-
icantly reduces LLM calls, its reliance on
manually designed features introduces com-
putational overhead and potential limitations.
The feature extraction process adds process-
ing time that, although generally outweighed
by savings from reduced LLM calls, could im-
pact performance in scenarios requiring rapid
responses or when handling large batches of
simple queries. Moreover, these hand-crafted
features, while empirically effective, may not
capture all aspects of high-quality reasoning
across different domains. Future work could
explore adaptive strategies that dynamically
adjust feature computation based on runtime
constraints, investigate lightweight feature ap-
proximations, and leverage unsupervised or
transfer learning approaches to automatically
identify more comprehensive reasoning qual-
ity features.

• Faithfulness Evaluation: While we have
shown improvements in faithfulness of the
selected chain of thought reasoning, the evalu-
ation relies on automated metrics and limited
human evaluation. A more extensive human
evaluation could provide stronger evidence on
our work.
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A Appendix: Experimental Details

A.1 Base Models
The language models used in our experiments have
varying numbers of parameters:

• LLAMA2-7B: This model has 8 billion parame-
ters (Meta, 2024).

• GPT3.5-turbo: The exact number of param-
eters for this model is not publicly disclosed
by OpenAI (OpenAI, 2024).

• Claude-3-Haiku: The number of parameters
for this model is not publicly available from
Anthropic (Anthropic, 2024).

• Vicuna-13B: This model has 13 billion pa-
rameters (Chiang et al., 2023).

A.2 Computational Resources and
Infrastructure

Our experiments were conducted using various
models and computing resources. Below, we detail
the computational budget for each model and the
specifications of our computing infrastructure.

Computational Budget

• LLAMA2-7B: We consumed approximately
100 GPU hours for generating all the collected
data, running the model, generating CoT sam-
ples, and processing the results.

• GPT3.5-turbo: Approximately $500 was
spent on API calls to OpenAI, covering all
experiments including data generation, CoT
samples, and result processing.

• Claude-3-Haiku: The total cost for API calls
to Anthropic was approximately $300.

• Vicuna-13B: We utilized approximately 150
GPU hours for experiments, including exper-
imental running, inference on CoT samples,
and data processing.

Computing Infrastructure Our experiments
were conducted on a computing infrastructure
equipped with the following hardware:

• GPU: NVIDIA GeForce RTX 3070 Ti

• CPU: 16 cores 11th Generation Intel Core i7
Processors

• RAM: 64GB DDR4

• Storage: 1TB NVMe SSD

This infrastructure provided the necessary com-
putational power and storage capacity to efficiently
run our experiments across various models and
datasets.

A.3 Model Configurations

• Temperature: For all LLM calls, we used a
temperature setting of 0.7 to balance creativity
and coherence in the generated outputs.

• Max Tokens: The maximum number of to-
kens for each response was set to 1024 for
consistency across models.

• Top-p (nucleus sampling): We used a top-
p value of 0.95 for all model calls to ensure
diverse yet relevant outputs.

A.4 Algorithm Configurations

• ESC Algorithm: We used a window size
of 5 for the Entropy-based Stopping Criteria
(ESC) algorithm.

• Adaptive Consistency Algorithm:
We used the default settings with stop-
ping_criteria=BetaStoppingCriteria(0.95) and
max_gens = 40.

A.5 Used Packages

In this study, several online available Python pack-
ages are used to conduct experiments and analysis:

• NLTK: For calculating Jaccard Similarity,
Ngram, tokenizer

• statistics: For computing logistic regression

• PyTorch: For using pre-trained LLM

• pandas: For data manipulation

• json: Loading and saving JSON data

• sklearn: For supervised learning models train-
ing and evaluation

• adaptive_consistency: For implementing
adaptive consistency algorithm
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• Levenshtein: For computing Levenshtein dis-
tance

• transformers: For Hugging Face pre-trained
model usage

• LangChain: For LLM API usage and answer
parser

A.6 Datasets
To assess the generalizability and robustness of
our proposed Reasoning-Aware Self-Consistency
(RASC) method, we utilize a diverse range of
datasets across multiple reasoning categories. Our
evaluation leverages Question Answering datasets
spanning three main categories:

Mathematical Reasoning: GSM8K, ASDIV,
MathQA, SVAMP

Commonsense Reasoning: Date Understand-
ing, CommonsenseQA

Symbolic Reasoning: Boolean Expressions,
Disambiguation, Last Letters

These datasets provide a comprehensive foun-
dation for evaluating our method across various
problem domains and task types.

Out-of-Domain (OOD) Data: To rigorously
test the adaptability and robustness of our RASC
method, we incorporate out-of-domain (OOD)
data, specifically StrategyQA (Geva et al., 2021)
and BigBench (bench authors, 2023). StrategyQA
is a question answering benchmark designed for
multi-hop reasoning, featuring:

• 2,780 examples requiring implicit reasoning
steps.

• Diverse, short questions covering a wide
range of strategies.

• Annotations including reasoning step decom-
position and supporting evidence.

• A novel data collection procedure to ensure
challenging and diverse questions.

BigBench is a comprehensive benchmark consist-
ing of:

• 204 tasks contributed by 450 authors across
132 institutions.

• Diverse topics including linguistics, math,
common-sense reasoning, and social bias.

• Tasks designed to be beyond the capabilities
of current language models.

• Evaluations across various model scales and
architectures.

By using these datasets, we aim to evaluate
RASC’s performance on questions that require
complex, multi-step reasoning strategies not ex-
plicitly stated in the question. This allows us to
verify the performance of our method on unseen
data that demands sophisticated reasoning capabil-
ities, providing insights into its real-world applica-
bility and resilience across different computational
environments and language model architectures.
Using GPT3.5 turbo as the base model, RASC
demonstrated robust performance on these unseen,
complex datasets, comprising a total of 10,824 ex-
amples requiring implicit reasoning steps across
various topics.

A.7 Data Processing
We used a custom data preprocessing pipeline im-
plemented in Python to clean and prepare the input
data for our experiments:

• For text normalization, we employed NLTK’s
word_tokenize and WordNetLemmatizer.

• We used the json_parser module to parse the
results and extract quality features from the
model outputs.

• Our preprocessing pipeline includes steps for
handling missing data, removing duplicates,
and standardizing text formats.

For more detailed information on our data
processing techniques, please refer to our
GitHub repository https://anonymous.4open.
science/r/SC_conf-2D4B/README.md.

A.8 Common LLM Errors and Feature
Selection

A.8.1 Common LLM Errors
As a crucial part of the solution, a faithful rea-
soning path is even more important than simply
getting the correct answer to the question. There-
fore, it is crucial for sampling methods, such as
self-consistency, to consider the content quality
of the reasoning path itself. To better understand
the types of errors that LLM often makes during
the response, we utilize common mathematical
reasoning and commonsense reasoning datasets
to systematically summarize the common errors.
We start with the common errors observed by
Golovneva et al. (2023) and form an initial set
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of potential quality features defined in Table 20.
After human evaluation and statistical analysis, the
most frequent mistakes that a bad reasoning path
has include inconsistency with the question, lack
of step coherence (lack of a logical flow), calcu-
lation mistakes, and hallucinations. In addition,
we observe that LLMs are more likely to halluci-
nate when the generated context gets significantly
longer. In addition, we observe that the RP always
leads to an incorrect answer when it ’admits’ that
a mistake has been made in any of the proposed
steps. However, the purpose of this study is not to
comprehensively analyzing common mistakes or
design automated metrics, we purposely exclude
features that require intensive computational cost,
such as features that have to be extracted by utiliz-
ing external machine learning models (SenteceBert,
Transformers, or other neural network-based fea-
ture extractors).

A.8.2 Answer-level Features

These features include measures such as
consistency between consecutive answers
(Local-Consistency), consistency with the most
common previous answer (Global-Consistency),
and detection of deviations from expected response
formats (Parsing-Error).

A.8.3 Reasoning-level Features

Our novel contribution lies in introducing
reasoning-level features, which capture the in-
trinsic qualities of each Reasoning Path (RP).
These features evaluate various aspects of the
RP, such as the length and number of reason-
ing steps (RP-Length, Num-of-Steps), the log-
ical flow between steps (Step-Relevance), and
the relevance to the input (Question-Relevance).
We also include time depedent features that
compare the current RP with previous ones
(Local-Consistency, Global-Consistency) and de-
tect self-acknowledged mistakes or uncertainties
(Error-Admitting). Refer to Table 20 for more
examples. While similar work like ROSCOE
(Golovneva et al., 2023) introduces sets of
reasoning-level features, our approach extends this
by incorporating time-dependent features that com-
pare the current RP with previous ones, allowing
us to evaluate the consistency and progression of
reasoning across multiple steps

A.9 Preliminary Feature Analysis

Table 8 presents the correlation coefficients be-
tween each feature and the Correctness variable,
along with the p-values from t-tests.

Feature Correlation P-value
Local-Consistency 0.367 0.00
Global-Consistency 0.403 0.00
RP-Length -0.0861 0.00
Num-of-Steps -0.0476 0.00
Step-Relevance -0.0264 1.25e-169
Question-Relevance -0.0423 0.00
Error-Admitting -0.0492 0.00
Local-Relevance 0.0530 0.00
Global-Relevance 0.0850 0.00

Table 8: Correlation with Correctness and P-values (3
significant figures)

Global-Consistency (0.403) and Local-
Consistency (0.367) show the strongest positive
correlations with Correctness, suggesting these
similarity measures between the actual solution
and generated content are most predictive of
correctness. All features show statistically
significant differences between correct and
incorrect instances (p-values ≈ 0). RP-Length,
Error-Admitting, Question-Relevance, Num-of-
Steps, and Step-Relevance have weak negative
correlations, indicating that longer solutions or
those with more steps are slightly less likely to
be correct. Word clouds of internal mistakes
(Figures 4 and 5) reveal that both LLAMA3 and
GPT-3.5-TURBO models frequently acknowledge
potential errors and limitations, using phrases
like "There seemed to be a mistake" and "Not
enough information". These findings suggest that
improving the model’s ability to generate solutions
similar to the actual solution and encouraging
concise responses could enhance performance,
while the models’ self-awareness of mistakes
could be leveraged to improve reliability.

A.10 Sample Generation Prompts

In this study, we explore three different prompting
strategies: Chain of Thought (CoT), Few-Shot, and
Least-to-Most. Each strategy aims to enhance the
performance of Large Language Models (LLMs)
in generating reasoning paths (RPs) for given ques-
tions.
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Figure 4: Word Cloud of Internal Mistakes for
LLAMA3

Figure 5: Word Cloud of Internal Mistakes for GPT-3.5-
TURBO

A.10.1 Chain of Thought (CoT) Prompting
CoT prompting explicitly requires LLMs to reason
through the question step by step. We utilize zero-
shot prompting to generate RPs in our datasets.
The prompt is defined as follows:

System Message: You are a professional
specialized in {subject}. You need to help
me answer the given question. Notice that
you need to solve the question step by step
and as detailed as possible. Do not jump to
the answer directly. You must follow the RP
format instructions.
Human Message: {question}

A.10.2 Few-Shot Prompting
Few-shot prompting provides the LLM with exam-
ples of how to solve problems using step-by-step
reasoning. This approach helps guide the model in
generating structured and detailed responses. The
prompt is structured as follows:

System Message: You are a professional
specialized in {subject}. Your task is to an-
swer the given question using step-by-step
reasoning. Follow the examples provided,
breaking down your thought process into

clear steps before providing the final an-
swer.
Human Message: Here are two examples
of how to solve problems using step-by-step
reasoning:
[Example 1 and Example 2 are provided
here, demonstrating step-by-step problem-
solving]
Now, please solve the following question us-
ing a similar step-by-step approach: {ques-
tion}

A.10.3 Least-to-Most Prompting
The Least-to-Most approach involves break-
ing down complex problems into simpler sub-
problems, solving them in order of increasing com-
plexity, and using those solutions to address the
main question. This strategy is particularly use-
ful for tackling intricate problems. The prompt is
structured as follows:

System Message: You are an expert prob-
lem solver specialized in {subject}. Your
task is to break down and solve complex
problems using the Least-to-Most approach.
This means you’ll divide the main problem
into simpler sub-problems, solve them in or-
der of increasing complexity, and use those
solutions to address the main question.
Human Message: Let’s solve problems us-
ing the Least-to-Most approach. Here’s an
example:
[An example demonstrating the Least-to-
Most approach is provided here]
Now, please use this Least-to-Most ap-
proach to solve the following problem.
Break it down into simpler sub-problems,
solve them in order, and then use those so-
lutions to address the main question: {ques-
tion}

Each of these prompting strategies aims to elicit
detailed, step-by-step reasoning from the LLM, en-
abling us to generate high-quality reasoning paths
for analysis and comparison.

A.11 Human Evaluation Criteria
Annotator Profile: The evaluation was conducted
by a group of 10 individuals: 7 males and 3 females.
The age range of the annotators was 23-30 years
old, with a median age of 25. All annotators hold
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technical degrees spanning mathematics, computer
science, and statistics, ensuring their capability to
comprehend the logic behind the generated ratio-
nales effectively. Their educational backgrounds
are as follows:

• 1 Assistant Professors (1 in Computer Sci-
ence)

• 6 PhD candidates (1 in Computer Science, 4
in Data Science, 1 in Statistics)

• 3 Master’s students (1 in Data Science, 1 in
Electrical Engineering, 1 in Computational
Mathematics)

Geographically, the annotators represent two
countries:

• 3 from the United States

• 7 from China

Professionally, 8 are currently in academia (1
assistant professors, 5 PhD candidates, 2 Master’s
students), while 2 work in industry with Master’s
degrees and 1-3 years of relevant work experience
related to technology.

Ethical Considerations and Consent: Prior to
participating in the evaluation process, all annota-
tors were provided with information detailed the
study’s objectives, the nature of their participation,
and how their data would be utilized. Specifically,
annotators were informed that their ratings, demo-
graphic information, and any generated "golden"
CoTs would be used for research purposes and
potentially published anonymously. They were
assured of the confidentiality of their personal in-
formation and the anonymization of their responses
in any resulting publications. Annotators were also
informed of their right to withdraw from the study
at any point and request the removal of their data.
The data retention policy, including the duration of
data storage and the method of eventual deletion,
was clearly outlined. Furthermore, annotators were
provided with contact information for the research
team to address any concerns or questions about
their data usage.

Evaluation Instruction: Human evaluators
were asked to rate the generated Chain of Thought
(CoT) responses on two main criteria:

1. Overall Quality [1-5]: This criterion assesses
whether the generated response answers the
question in a well-justified manner. The scale
is interpreted as follows:

• 1: Incomprehensible and completely in-
correct. The response is unintelligible or
entirely unrelated to the question.

• 2: Mostly incorrect with major flaws in
reasoning. The response may be par-
tially related to the question but contains
significant errors or misunderstandings.

• 3: Partially correct but with notable gaps
or minor errors. The response addresses
the question but lacks full justification or
contains some inaccuracies.

• 4: Mostly correct with minor imperfec-
tions. The response is well-justified and
accurate, with only slight room for im-
provement.

• 5: Clear, correct, and fully justified. The
response comprehensively answers the
question with sound reasoning and no
errors.

2. Coherency [1-5]: This criterion evaluates
whether the whole generated response makes
sense, regardless of its correctness in address-
ing the context. The scale is interpreted as
follows:

• 1: Completely incoherent. The response
is a jumble of words or concepts with no
logical flow or structure.

• 2: Mostly incoherent with occasional
comprehensible parts. The response has
severe issues with logical flow, making
it very difficult to follow.

• 3: Partially coherent but with noticeable
lapses in logic or structure. The response
has a basic structure but contains confus-
ing or disconnected elements.

• 4: Mostly coherent with minor clarity
issues. The response has a clear logi-
cal flow with only slight ambiguities or
structural weaknesses.

• 5: Perfectly coherent and easy to under-
stand. The response has a clear, logi-
cal structure with smooth transitions be-
tween ideas.

The overall score for each evaluated response is
calculated as the average of these two metrics.

In addition to manually evaluating the best CoT
responses (based on our method) and a randomly
chosen CoT from SC, evaluators were also tasked
with creating a "golden" CoT when necessary so
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that we have a reference available to calculate the
BARTScore (Yuan et al., 2021). This process in-
volved:

1. Reviewing a random CoT for human-like rea-
soning.

2. Assessing whether the flow of logic closely
resembles what a human solver would do, con-
sidering:

• Natural, step-by-step reasoning pro-
cesses

• Logical order of steps
• Inclusion of relevant intermediate calcu-

lations or considerations
• Appropriate level of detail for human-

like problem-solving

3. Rewriting the CoT if it did not closely resem-
ble human-like reasoning, ensuring:

• Maintenance of the correct answer while
improving the reasoning process

• Structure reflecting human approach to
problem-solving

• Clear, concise, and easy-to-follow re-
sponse

This comprehensive evaluation process ensures
a thorough assessment of the quality and coherency
of generated CoT responses, as well as the creation
of human-like golden standards when needed. See
Table 9 for two examples.

A.12 Evaluation Metric for Accuracy-Cost
Trade-Off

To quantitatively assess the trade-off between accu-
racy and cost, we introduced a custom metric that
balances both factors. This metric normalizes the
accuracy and cost values and computes a weighted
average to provide a single score representing the
overall performance of a method.

Let acc denote the accuracy of a method, and
cost denote the computational cost, measured as
the number of samples generated. Additionally, let
sc_acc and sc_cost represent the accuracy and cost
of the Self-Consistency (SC) method, respectively.
Let single_sample_acc and direct_cost denote the
accuracy from using only the first sample’s answer
and the cost of the direct sampling method, respec-
tively.

The metric is defined as:

metric = 0.5×acc_factor+0.5×cost_factor (4)

where acc_factor and cost_factor are normal-
ized values of accuracy and cost, calculated as
follows:

acc_factor =





1 if acc ≥ sc_acc
0 if acc ≤ sam_acc

acc−sam_acc
sc_acc−single_acc otherwise

(5)

cost_factor =





1 if cost ≤ dr_cost
0 if cost ≥ sc_cost

sc_cost−cost
sc_cost−dir_cost otherwise

(6)
The acc_factor is normalized to be between 0

and 1, where 1 corresponds to an accuracy greater
than or equal to the SC method, and 0 corresponds
to an accuracy less than or equal to the accuracy
using just the first sample’s answer. Similarly, the
cost_factor is normalized to be between 0 and 1,
where 1 corresponds to a cost less than or equal to
the direct sampling method, and 0 corresponds to
a cost greater than or equal to the SC method. The
metric function calculates the weighted average
of acc_factor and cost_factor, giving equal impor-
tance to both accuracy and cost. A higher value of
the metric indicates a better trade-off between accu-
racy and cost. This function enables us to compare
different methods and configurations based on their
ability to achieve high accuracy while minimizing
computational cost.

A.13 Reproducibility
To ensure reproducibility of our results:

• We set a fixed random seed (42) for all ran-
domized processes.

• All experiments were run using Python 3.8.10
in a conda environment. The full list of de-
pendencies and their versions can be found in
the requirements.txt file in our repository.

B Appendix: Additional Results

B.1 Impact of Base Estimator:
The performance of different sufficiency scoring
models, as summarized in Table 10, identifies Lo-
gistic Regression as the most effective model in

3629



Table 9: Comparison of Best CoT, SC CoT, and Golden CoT with Human Evaluation

Sample Question AnswerRASC Rationale SC Rationale Golden CoT Ratings (Qua, Coh)

Best SC

1 Elvis starts driv-
ing from his
house and trav-
els west for 5
hours. Then
he turns around
and travels east
for 8 hours. If
he was driving
at an average
speed of 18mph
for both parts
of the journey,
how far is he
from his house
now?

54
miles

If Elvis traveled west
for 5 hours at 18mph,
he covered 5 x 18
= 90 miles. When
he traveled east for 8
hours at 18mph, he
covered 8 x 18 = 144
miles. The distance
he is from his house
now is the difference
between the two dis-
tances, which is 144
- 90 = 54 miles. The
answer is 54 miles.

If Elvis drove west
for 5 hours at 18mph,
he covered a dis-
tance of 5 * 18 =
90 miles. When he
turned around and
drove east for 8
hours at 18mph, he
covered a distance of
8 * 18 = 144 miles.
The total distance he
covered is 90 + 144
= 234 miles. How-
ever, we do not know
the direction of his
house. If he is now
east of his house, he
is 144 - 90 = 54
miles away. If he is
now west, he is 90 -
144 = -54 miles away.
So, we need more
information to deter-
mine the distance he
is from his house.

Elvis drove for 5
hours at 18mph, so
he covered 5 * 18
= 90 miles to the
west. He then turns
around and drives for
8 hours at 18mph,
so he covers 8 * 18
= 144 miles to the
east. The total dis-
tance from his house
is 144 - 90 = 54 miles
to the east. The an-
swer is 54 miles.

5, 5 1, 3

2 Are the
founders
of Skype from
Asia?

No The founders of
Skype are from
Europe, not Asia.
The founders are Es-
tonians Ahti Heinla,
Priit Kasesalu, and
Jaan Tallinn. So the
answer is no.

The founders of
Skype are Niklas
Zennström and
Janus Friis, both
of whom are from
Europe (Sweden and
Denmark, respec-
tively). Therefore,
the answer is no.

The founders of
Skype are from Eu-
rope. The founders
of Skype are Esto-
nians Ahti Heinla
and Priit Kasesalu.
Estonia is a country
located in Northern
Europe, not Asia. So
the answer is no.

4, 5 2, 4

Note: Qua = Quality, Coh = Coherency. Ratings are on a scale of 1-5, with 5 being the highest.

terms of accuracy and sample utilization. This
finding shows the importance of selecting an ap-
propriate sufficiency scoring model to maximize
the benefits of the RASC approach. These results
are obtained by training the sufficiency scoring
models on the training set and then fine-tuning the
best set of hyperparameters (N and T) using the
customized metrics. The final evaluation is per-
formed on the test set to ensure the robustness of
the model.

Among the sufficiency scoring models evaluated
Logistic Regression achieves the highest accuracy
of 46.0% while requiring the lowest average num-
ber of samples (5.87) compared to other models.
This indicates that it effectively captures the rela-

Table 10: Performance Comparison of Sufficiency Scor-
ing Models

Model Accuracy (%) Num. Samples

Random 41.9 9.77
NB 45.9 7.91
LR 46.0 7.87
RF 45.8 8.38
HHEM 42.4 9.92
Table 11: *HHEM: Hallucination Detector Model based on
microsoft/deberta-v3-base, initially trained on NLI data
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tionship between the features extracted from the
RP and the likelihood of hallucination, which al-
lows RASC to make informed decisions during the
weighted majority voting process.

The accuracy of Random model drops below
the baseline of Self-Consistency. The poor per-
formance of the Random model, which assigns
sufficiency scores randomly, emphasizes the im-
portance of using a well-designed scoring model
in the RASC approach. Without a meaningful as-
sessment of the generated content’s quality and
consistency, the weighted majority voting process
cannot effectively distinguish between reliable and
unreliable samples, leading to suboptimal results.

The HHEM Model, which is a DeBERTa-based
hallucination detector sourced from Hugging Face
(Honovich et al., 2022), does not perform as well
as the other models in this context. This suggests
that relying solely on a pre-trained model without
considering the specific characteristics and require-
ments of the RASC approach may not yield the
best results. The superior performance of models
like Logistic Regression (LR), Naive Bayes (NB),
and Random Forest (RF), which utilize manual fea-
ture engineering tailored to the RASC framework,
highlights the importance of crafting features that
capture the nuances of the generated content as we
discussed in the method section.

B.2 Statistical Significance

To rigorously evaluate the performance of RASC,
we conducted statistical significance experiments
across multiple benchmarks using various lan-
guage models. The comparison between RASC
(Reasoning-Aware Self-Consistency) and SC (Self-
Consistency) methods reveals interesting patterns
across different reasoning types. In terms of cor-
rectness, Tables 18 show no statistically significant
differences between RASC and SC across com-
mon sense, mathematical, and symbolic reasoning
tasks. However, the steps comparison in Tables
19 demonstrates that RASC consistently requires
significantly fewer steps than SC across all rea-
soning types, with p-values of 0 indicating strong
statistical significance. This holds the same for AC
and RASC comparison as demonstrated in Table
15 and Table 16 These results suggest that while
RASC maintains comparable correctness to SC,
it achieves this with substantially improved effi-
ciency in terms of the number of steps required.

Table 12: Performance and Time Analysis of Methods
Using Llama2.

Method Accuracy
(%)

Inference
Time (s)

Non-
Inference
Time (s)

Total
Time (s)

SC 38.7 560.00 0.01 560.01
ESC 39.1 313.32 0.40 313.72
AC 38.0 263.62 0.54 264.16
RASC 39.0 134.96 2.05 137.01

Note: All values are averages per 1 question.

Table 13: Pearson Correlation of Different Metrics with
Human Ratings

Metric Pearson Correlation
RASC Score 0.68
BARTScore 0.52
BLURT 0.58
CTC 0.65

Note: Higher correlation indicates closer alignment with hu-
man judgments. All correlations are statistically significant (p
< 0.01).

Note: SC stands for Self-Consistency, a baseline method

for comparison.

B.3 Additional Performance and Time
Analysis

This section focuses on the performance and time
analysis of the open-source Llama2 model.

Table 14 compares different methods using the
Llama2 model. RASC achieves the highest ac-
curacy (38.86%) while significantly reducing in-
ference time. Compared to SC, RASC improves
accuracy by 0.33 percentage points and reduces
total time by 66.23

These results demonstrate RASC’s effectiveness
in enhancing both performance and time efficiency.
While we don’t provide direct cost analysis for
closed-source models, the substantial reduction in
inference time achieved by RASC would likely

Table 14: Performance and Time Analysis of Methods
Using Llama2.

Method Accuracy
(%)

Inference
Time (s)

Non-
Inference
Time (s)

Total
Time (s)

SC 38.7 560.00 0.01 560.01
ESC 39.1 313.32 0.40 313.72
AC 38.0 263.62 0.54 264.16
RASC 39.0 134.96 2.05 137.01

Note: All values are averages per 1 question.
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Table 15: Comparison of RACS and AC Methods on Correctness

Reasoning Type Mean Difference P-value 95% CI Significant

Common Sense -0.0075 0.6697 [-0.0565, 0.0414] No
Mathematical -0.004 0.745 [-0.0384, 0.0383] No
Symbolic 0.0033 0.9044 [-0.0738, 0.0805] No

Table 16: Comparison of RACS and AC Methods on Steps

Reasoning Type Mean Difference P-value 95% CI Significant

Common Sense -3.4301 <0.0001 [-4.2164, -2.6439] Yes
Mathematical -7.4156 <0.0001 [-8.0905, -6.7408] Yes
Symbolic -7.7112 <0.0001 [-9.4171, -6.0052] Yes

translate to significant cost savings in scenarios
where API calls are charged based on usage time.

B.4 Comparison with Existing NLG Metrics:

To evaluate the effectiveness of our sufficiency
scoring method, we compared it against three pop-
ular automated metrics for natural language gen-
eration: BARTScore (Yuan et al., 2021), BLURT
(Sellam et al., 2020), and CTC (Deng et al., 2021).
Using the same 100 samples from the faithfulness
analysis, we calculated the Pearson correlation be-
tween these scores and human-annotated quality
ratings.

As shown in Table 13, RASC’s sufficiency
scores demonstrate a higher correlation with hu-
man ratings (0.68) compared to BARTScore (0.52),
BLURT (0.58), and CTC (0.65). This suggests that
our scoring method more closely aligns with hu-
man judgments of CoT quality in reasoning tasks,
validating its effectiveness in assessing the qual-
ity of generated reasoning paths. The substantial
improvement over BARTScore and the slight edge
over BLURT and CTC underscore RASC’s capa-
bility to capture nuances in reasoning quality that
align more closely with human evaluations.

B.5 Test Data Results

To evaluate RASC’s generalizability, Fig. 6
presents the performance comparison between
RASC and other methods on this dataset.

C Theoretical Analysis of
Reasoning-Aware Self-Consistency

In this section, we provide a formal theoretical jus-
tification for the design of the Reasoning-Aware
Self-Consistency (RASC) framework. Our analy-

sis is grounded in information theory and demon-
strates how RASC optimizes inference-time rea-
soning through a dual information gain framework
that incorporates both answer consistency and rea-
soning path quality.

C.1 Preliminaries and Notation

Let A denote the set of possible answers and let
p(a) be the probability mass function over A. The
entropy of the answer distribution is given by:

H(A) = −
∑

a∈A
p(a) log p(a).

A higher entropy H(A) implies greater uncer-
tainty in the answer distribution, which corre-
sponds to lower consistency. The goal of self-
consistency-based inference methods is to itera-
tively refine the answer distribution such that H(A)
decreases over successive samples.

Now, let R denote the set of all possible reason-
ing paths. Given an answer a ∈ A, we define the
conditional entropy of reasoning paths given an
answer as:

H(R|A) = −
∑

a∈A
p(a)

∑

r∈R
p(r|a) log p(r|a).

This quantity measures the uncertainty in the
reasoning paths that lead to a particular answer.
Since RASC is designed to enhance the coherence
and quality of reasoning paths, it aligns with the
objective of reducing H(R|A) after an answer has
been proposed.
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Table 17: Comparison of RACS and AC Methods on Steps

Reasoning Type Mean Difference P-value 95% CI Significant

Common Sense -3.4301 <0.0001 [-4.2164, -2.6439] Yes
Mathematical -7.4156 <0.0001 [-8.0905, -6.7408] Yes
Symbolic -7.7112 <0.0001 [-9.4171, -6.0052] Yes

Table 18: Comparison of RASC and SC Methods on Correctness

Reasoning Type Mean Difference P-value 95% CI Significant

Common Sense -0.0075 0.6697 [-0.0565, 0.0414] No
Mathematical -0.0068 0.5819 [-0.0412, 0.0275] No
Symbolic 0.0067 0.8104 [-0.0705, 0.0839] No

C.2 Information Gain and Sampling
Efficiency

The information gain from each sample is defined
as the reduction in uncertainty of the answer distri-
bution:

IG = H(Aprior)−H(Aposterior).

For classical self-consistency methods (e.g.,
Self-Consistency (SC), Early Stopping Self-
Consistency (ESC), Adaptive Consistency (AC)),
the information gain is driven solely by answer
consistency. That is, we define:

IGans = f(ci),

where ci is a consistency metric for the i-th sam-
ple, and f : R → R is a function characterizing
how consistency influences information gain. The
specific form of f varies across methods: for in-
stance, ESC applies a sliding window to assess
convergence, whereas AC employs an adaptive se-
quence check.

In contrast, RASC incorporates reasoning path
quality into the information gain model. Specifi-
cally, the information gain is given by:

IGans-RP = f(ci) + g(ri),

where ri represents the quality of the reason-
ing path associated with the i-th sample, and
g : R → R is a function capturing the contri-
bution of reasoning coherence and correctness to
overall information gain. The augmentation by
g(ri) ensures that the refinement of both answer
consistency and reasoning quality contributes to
entropy reduction.

C.3 Stopping Condition and Convergence
The sampling process in RASC is governed by an
optimization criterion where sampling terminates
when the cumulative information gain exceeds a
predefined threshold T :

n∑

i=1

IGi ≥ T.

Given the dual contribution of answer consis-
tency and reasoning coherence in RASC, the total
entropy H(A)+H(R|A) decreases at a faster rate
compared to answer-only self-consistency meth-
ods. That is, for a given number of samples n, we
have:

HRASC(A,R|n) < HSC(A|n),
where HRASC(A,R|n) and HSC(A|n) denote

the total entropy under RASC and SC, respectively,
after n samples. This inequality formalizes the effi-
ciency of RASC, demonstrating that fewer samples
are required to reach the stopping criterion.

C.4 Implications and Conclusion
The theoretical analysis yields the following key
conclusions:

1. Reduction in Entropy: Answer-level fea-
tures contribute to minimizing H(A), while
reasoning-level features contribute to mini-
mizing H(R|A). The combination ensures a
more rapid decrease in overall uncertainty.

2. Enhanced Information Gain: The presence
of g(ri) in RASC ensures that each sample
contributes more effectively to uncertainty re-
duction, thereby accelerating convergence.
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Table 19: Comparison of RASC and SC Methods on Steps

Reasoning Type Mean Difference P-value 95% CI Significant

Common Sense -34.7975 <0.0001 [-35.0068, -34.5882] Yes
Mathematical -32.5354 <0.0001 [-32.7298, -32.3409] Yes
Symbolic -32.4240 <0.0001 [-32.9474, -31.9007] Yes

Figure 6: Performance of models on out-of-distribution datasets using GPT-3.5 Turbo, assessing method’s robustness
across diverse reasoning tasks.

Table 20: Answer-Level and Reasoning-Level Feature Extraction Example.

Feature Example

Answer-Level Features

Local-Consistency
(at ↔ at−1)

Ans1 = 3, Ans2 = 2 → Local-Consistency = 0; Ans1 = 3, Ans2 = 3 → Local-Consistency
= 1

Global-Consistency
(at ↔ a1, ..., at−1)

Prev_ans = [A,B], Cur_ans = A → Global-Consistency = 1; Prev_ans = [A,B], Cur_ans =
C → Global-Consistency = 0

Parsing-Error (at) Ans: error → Parsing-Error = 1; Ans: 2 → Parsing-Error = 0

Reasoning-Level Features

RP-Length RP: "I love LLM" → RP-Length = 3
Num-of-Steps (rt) RP: "Step1:xxx, Step2:xxx" → Num-of-Steps = 2
Step-Relevance (rt) Step1: Paper reviewer loves LLMs; Step2: They use LLM to review my paper →

Step-Relevance = 3/7
Question-Relevance
(rt ↔ Q)

Question: John loves lego, RP: Bob has 2 legos → Question-Relevance = 0.33; Question:
John loves lego, RP: John has 2 legos → Question-Relevance = 0.66

Error-Admitting (rt) RP: It seems that I made a mistake in the previous steps → Error-Admitting = 1
Local-Relevance
(rt ↔ rt−1)

RP1: I love LLM, RP2: I love LLM → Local-Relevance = 1; RP1: I love LLM, RP2:
Bob hates LLM → Local-Relevance = 0.33

Global-Relevance
(rt ↔ r1, ..., rt−1)

RP1-2: [I love LLM, LLM is good], RP3: I love LLM → Global-Relevance = 0.67;
RP1-2: [I love LLM, LLM is good], RP3: Life is good → Global-Relevance = 0.33

3. Empirical Consistency: Our results confirm
that RASC requires fewer samples than ESC
and AC while maintaining accuracy, imply-
ing that the expected information gain from
reasoning evaluation g(ri) satisfies:

E[g(ri)] > 0.

4. Sufficiency Function Validity: The suffi-
ciency function used in RASC effectively cap-
tures reasoning quality, ensuring that the deci-
sion to stop sampling is based on a meaning-
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ful reduction in uncertainty.

While the current formulation of g(ri) has
demonstrated empirical success, future research
could explore optimizing its structure via feature
selection or more sophisticated scoring functions.
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