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Abstract

Flowcharts are typically presented as images,
driving the trend of using vision-language mod-
els (VLMs) for end-to-end flowchart under-
standing. However, two key challenges arise:
(1) Limited controllability—users have minimal
influence over the downstream task, as they
can only modify input images, while the train-
ing of VLMs is often out of reach for most
researchers. (ii) Lack of explainability—it is
difficult to trace VLM errors to specific causes,
such as failures in visual encoding or reason-
ing. We propose TEXTFLOW, addressing afore-
mentioned issues with two stages: (i) VISION
TEXTUALIZER—which generates textual repre-
sentations from flowchart images; and (ii) TEX-
TUAL REASONER—which performs question-
answering based on the text representations.
TEXTFLOW offers three key advantages: (i)
users can select the type of text representations
(e.g., GRAPHVIZ, MERMAID, PLANTUML),
or further convert them into executable graph
object to call tools, enhancing performance and
controllability; (ii) it improves explainability
by helping to attribute errors more clearly to
visual or textual processing components; and
(>ii1) it promotes the modularization of the so-
lution, such as allowing advanced LLMs to be
used in the REASONER stage when VLMs un-
derperform in end-to-end fashion. Experiments
on the FlowVQA and FlowLearn benchmarks
demonstrate TEXTFLOW’s state-of-the-art per-
formance as well as its robustness. All code
and data are publicly available'.

1 Introduction

Flowcharts are extensively used to represent pro-
cesses, algorithms, and workflows across a range
of domains, including software engineering, busi-
ness process modeling, and education. Accurate
interpretation of flowcharts is essential for tasks
such as automation, decision-making, and analy-
sis. Given that flowcharts predominantly exist as

Thttps://github.com/NJIT- AI-Center/TextFlow

images, the rise of large language models (LLMs)
and large vision-language models (VLMs) has led
to the use of VLMs for flowchart understanding
in an end-to-end manner (Tannert et al., 2023; Pan
et al., 2024; Singh et al., 2024).

While end-to-end VLMs offer a straightfor-
ward approach to flowchart understanding, they
exhibit two key limitations: (i) Limited control-
lability—users have minimal capacity to improve
performance, as they can only manipulate input
images, while training VLMs is resource-intensive
and often inaccessible to most researchers. (ii) Lack
of explainability—it is difficult to trace errors in
VLM outputs to specific failures, whether in visual
encoding, reasoning, or other stages.

To overcome these challenges, we intro-
duce TEXTFLOW, a framework that decomposes
flowchart understanding into two stages: (i) VI-
SION TEXTUALIZER, which generates interme-
diate textual representations from flowchart im-
ages; and (ii) TEXTUAL REASONER, which per-
forms question-answering (QA) based on these
text representations. This dual-stage framework
provides three distinct advantages: (i) Controlla-
bility—users can flexibly choose the type of text
representation (e.g., GRAPHVIZ, MERMAID, or
PLANTUML) and convert them into executable
graph objects for enhanced performance; (ii) Ex-
plainability—it improves error attribution by clar-
ifying whether failures arise from visual or tex-
tual components; and (iii) Modularity—the frame-
work allows for the use of more advanced LLMs in
the REASONER stage if VLMs are inadequate for
end-to-end flowchart understanding, restricting the
VLM to the TEXTUALIZER stage only.

We evaluate TEXTFLOW on the FlowVQA
(Singh et al., 2024) and FlowLearn (Pan et al.,
2024) datasets, combining various open-source and
closed-source VLMs/LLMs for the VISION TEX-
TUALIZER and TEXTUAL REASONER stages, re-
spectively. Our experiments demonstrate that us-
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ing Claude-3.5 (Anthropic, 2024) as the TEXTU-
ALIZER, alongside either Claude-3.5 or GPT-40
(OpenAl, 2024) as the REASONER, significantly
outperforms end-to-end flowchart understanding
using Claude-3.5 or GPT-40 alone. Further anal-
ysis reveals that (i) GRAPHVIZ is generally the
most effective textual representation for flowcharts;
(i) TEXTFLOW exhibits robustness across different
task categories, flowchart sources, orientations, and
sizes; and (iii) the VISION TEXTUALIZER stage
is more often the source of errors than the REA-
SONER stage, particularly when using Claude-3.5
for both.

Our contributions are threefold:

e Our TEXTFLOW presents a novel and effective
approach to leverage VLMs/LLMs in flowchart
understanding: instead of treating the task end-to-
end, breaking it into subtasks appears to be easier.
It not only achieves new state-of-the-art (82.74 vs.
76.61) but also potentially provides inspiration for
other visual tasks.

* We take the lead in introducing three tex-
tual formats—GRAPHVIZ, MERMAID, and PLAN-
TUML—for transforming flowcharts into struc-
tured text representations, facilitating the reasoning
process.

* Our detailed analysis provides key insights
into solving the flowchart understanding problem,
including identifying GRAPHVIZ as the most ef-
fective representation, conducting a fine-grained
analysis across different flowchart sources and task
categories, and quantitatively comparing the roles
of VISION TEXTUALIZER and TEXTUAL REA-
SONER when using the same VLM.

2 Related Work

End-to-End VQA for Flowchart/Diagrams For
flowchart understanding, most prior work has fo-
cused on benchmark construction with different em-
phases. For example, FlowchartQA (Tannert et al.,
2023) emphasizes reasoning over geometric and
topological features, FlowLearn (Pan et al., 2024)
focuses on synthetic and scientific flowcharts,
IconQA (Lu et al., 2021) targets abstract diagrams
that are rich in semantics rather than natural im-
ages, and FlowVQA (Singh et al., 2024) focuses
on evaluating spatial reasoning, decision-making,
and logical progression tasks.

Most of these works adopt end-to-end systems.
For instance, Lu et al. (2021) proposed Patch-TRM,
which employs a pyramid cross-modal Transformer

with diagram embeddings pre-trained on the Icon
dataset, while Singh et al. (2024) and Pan et al.
(2024) explored various VLMs for their respective
tasks.

Decomposing VQA into Multiple Steps Previ-
ous work in this area falls into two main categories:
(i) Image preprocessing, where the decomposi-
tion involves processing flowchart images. For
example, Pan et al. (2024) first identified visual
components and applies OCR to the images. (ii)
Question decomposition, where the focus is on
breaking down questions into sub-reasoning steps.
For instance, Cao and Jiang (2023) decomposed
questions into sub-tasks and assigned them to suit-
able pre-trained models without adaptation. Khan
et al. (2024) compared human-written and model-
generated question decompositions, while (Barezi
and Kordjamshidi, 2024) decomposed multi-hop
questions by determining the modality required, us-
ing a captioner for visual sub-questions and LLMs
for textual ones. IdealGPT (You et al., 2023) em-
ployed LLMs to generate sub-questions, VLMs to
provide sub-answers, and another LLM to reason
and produce the final answer.

Our approach differs from these by focusing not
on preprocessing flowchart images or decomposing
questions, but on decomposing the process into
two distinct stages. The first stage generates a novel
textual representation, and the second transforms
the original visual QA task into a textual QA task.

3 Methodology

As illustrated in Figure 1, the approach
TEXTFLOW consists of two main stages:
(1) VISION TEXTUALIZER: A VLM converts
the visual components of the flowchart into a
high-quality text representation. (2) TEXTUAL
REASONER: An LLM or VLM based textural
reasoner can use tools and interpret the text
representations to answer questions related to the
flowchart’s logic and structure. By decoupling
these tasks, TEXTFLOW enables specialized mod-
els to focus on their respective strengths: VISION
TEXTUALIZER process the visual elements, while
TEXTUAL REASONER handle reasoning tasks,
thus improving accuracy and flexibility. Next,
we elaborate on VISION TEXTUALIZER (Section
3.1) and TEXTUAL REASONER (Section 3.2),
respectively.
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Figure 1: Our dual-stage TEXTFLOW vs. prior work.

3.1 VISION TEXTUALIZER

TEXTUALIZER aims at extracting a structured tex-
tual representation from the flowchart image. This
representation is critical because the accuracy and
completeness of the extracted text determine the
effectiveness of the reasoning stage.

We explore three flowchart textualization for-
mats (examples can be found in Figure 1):

MERMAID?. It uses a simple, link-based syntax,
where nodes are connected via arrows. It is de-
signed for ease of use, making it straightforward
to define basic relationships and linear flows, suit-
able for simpler diagrams. Shapes are defined with
different types of parentheses. Additionally, MER-
MAID often uses alphanumeric identifiers to label
nodes, which simplifies counting nodes and edges
and tracking direct connections.

GRAPHVIZ®. It defines nodes and edges sepa-
rately, with nodes assigned attributes like labels
and shapes, and edges specified using directional
arrows. Unlike MERMAID, which combines nodes
and links in a single step, GRAPHVIZ’s approach
is more structured and easier to follow. Due to
their similar nature, converting between the two
formats is straightforward. However, for more com-
plex structures like loops or nested conditions, both
MERMAID and GRAPHVIZ representations can be-
come less intuitive, as their simple syntax struggles
to fully capture the intricacies of multi-step pro-
cesses.

*https://mermaid.js.org/
3https://graphviz.org/

PLANTUML?. It takes a pseudocode-like ap-
proach, mimicking the structure of programming
logic. Unlike MERMAID and GRAPHVIZ, it sup-
ports complex flow structures such as conditions,
loops, and nesting, making it suitable for detailed
and intricate flowcharts. However, its more elabo-
rate syntax requires a deep understanding of pro-
cess logic, and writing or maintaining flowcharts
with complex topologies can be challenging. For
instance, handling multiple nested loops with con-
ditions may require significant restructuring of the
flowchart logic, which complicates both the code
writing and the accurate depiction of the topologi-
cal relationships between components.

3.2 TEXTUAL REASONER

At this stage, the text representation produced
by TEXTUALIZER is forwarded to the TEXTUAL
REASONER, which may consist of an LLM or
VLM, to perform reasoning tasks guided by the
flowchart’s underlying logic. This stage high-
lights the TEXTFLOW pipeline’s primary advan-
tage over traditional VQA systems: controllabil-
ity—allowing the use of the plain text representa-
tion as generated by TEXTUALIZER or the further
enhancement of its expressivity.

* Plain Text Representation: The generated
text representation (in formats such as GRAPHVIZ,
MERMAID, or PLANTUML) is presented to the
REASONER along with a question regarding the
flowchart. The LLM/VLM processes the structured
text to provide answers related to the flowchart’s

*https://plantuml.com/
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logic, decision paths, or conditional structures.

* Executable Graph Object: For improved rea-
soning, the user may opt to transform the text repre-
sentation, such as MERMAIDor GRAPHVIZ, into an
executable graph object to enhance reasoning. This
is particularly useful for structured graph analysis
tasks, such as counting nodes and edges, identify-
ing predecessors and successors, computing short-
est paths, and verifying graph structure.

By converting text-based representations into
executable graph objects, an LLM can determine
whether function calls are needed to enhance its
response. When invoked, these functions provide
precise answers or generate intermediate data to
support reasoning. This approach removes ambigu-
ities inherent in text-based interpretation, enabling
the model to execute structured queries with greater
accuracy and logical consistency. While the effec-
tiveness of this method depends on the precision
of the TEXTUALIZER, ensuring high-quality ex-
traction minimizes potential errors and enhances
overall performance.

By directly interacting with graph structures
instead of relying on text-based inference, this
method streamlines complex analytical tasks and
improves both computational efficiency and rea-
soning accuracy. For detailed definitions and sup-
ported functionalities, refer to the Appendix.

4 Experiments

Dataset. We utilize the FlowVQA dataset (Singh
et al., 2024) due to its extensive diversity in i)
Sflowchart sources, including: CODE, WIKI (step-
by-step guides for daily tasks), and INSTRUCT (in-
structions for DIY projects), and ii) task categories:

¢ Fact Retrieval (11): Focuses on extracting spe-
cific facts from flowchart nodes.

* Applied Scenarios (15): Assesses how mod-
els apply flowchart logic in practical, real-world
situations.

* Flow Referential (713): Requires reasoning
over flowchart subgraphs to perform forward or
backward logic.

* Topological (7}): Evaluates understanding of
structural metrics such as node count, edge count,
shortest path, maximum in/out degree, and prede-
cessor/successor relationships.

FlowVQA emphasizes spatial reasoning and
understanding of decision-making flows within
flowcharts, offering a robust resource to evaluate
multimodal models’ ability to interpret and process

|System |FlowVQA FlowLearn
Llama3.2-11B 8.33 -
VQA Llava-v1.6-110B | 42.69 -
Baseline Llama3.2-90B 43.09 -
(end-to-end)  |Qwen2-VL-7B 53.42 -
(Singh et al., 2024)|Qwen2-VL-72B 64.14 -
(Pan et al., 2024) |GPT-40 65.69 60.29
Claude3.5-Sonnet| 76.61 77.00
Ours GPT-40 80.10 72.83
(dual-stage) Claude3.5-Sonnet| 82.74 80.57

Table 1: Flowchart of QA evaluation on two bench-
marking datasets. The text representations used in the
TEXTFLOW pipeline are GRAPHVIZ.

structured, graph-based visual information—a de-
manding task for many VLMs. For our experiment,
we randomly sampled 200 flowcharts with a total
of 2,005 QA pairs from the test set.

We also use the FlowLearn (Pan et al.,
2024) dataset to benchmark different systems on
flowchart comprehension, focusing on the Simu-
lated Flowcharts Subset, which features flowcharts
generated with random words and links. Key tasks
include OCR, True/False statements, description
generation, and counting nodes/arrows, with em-
phasis on topological analysis as node labels lack
semantic meaning. We evaluated 7 tasks from the
test set, each with 100 flowchart/QA pairs. Besides
the main results in Table 1, further analysis pri-
marily focuses on FlowVQA, as it better reflects
real-world scenarios.

VLM&LLM Explored. Note that TEXTUAL-
IZER can only use VLMs, but both VLMs and
LLMs are applicable to REASONER .

* VLMs: Closed-source models: Claude 3.5
Sonnet and GPT-40; open-source models: Qwen2-
VL (7B and 72B) (Wang et al., 2024), Llama3.2
(11B and 90B) (AI, 2024), and Llava-v1.6-110B
(Liu et al., 2024).

* LLMs: Closed-source models: Claude 3.5
Sonnet and GPT-40; open-source models: Qwen2.5
(7B, 14B, 32B, and 72B) (Team, 2024b), Llama3.1
(8B and 70B) (Dubey et al., 2024), Mixtral 8x22B
(Team, 2024a), Phi3.5 (MoE, Mini) (Trufinescu,
2024).

We accessed GPT-40 and Claude3.5-Sonnet via
API, while all other open-source VLMs/LLMs
were used through Hugging Face with their offi-
cial default settings. Depending on the GPU mem-
ory requirements of each model, we utilized 1 to 4
Nvidia A100(80GB) GPUs. To ensure experimen-
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Model GRAPHVIZ MERMAID PLANTUML
Node Link Rendering Node Link Rendering Node Link Rendering
F1 F1 Success Rate F1 F1 Success Rate F1 F1 Success Rate

GPT-40 098 0.93 100 099 094 100 0.97 0.88 100
Claude3.5-Sonnet | 095  0.87 100 097 0.89 98 094 0.83 82
Qwen2-VL-72B 092 0.78 100 0.73 0.64 74 0.74  0.56 74
Llama3.2-90B 0.71 0.46 62 0.73 0.55 84 0.70  0.51 74
Llava-v1.6-110B 0.51 0.29 86 047 0.23 82 0.41 0.23 68
Qwen2-VL-7B 047 0.28 68 037 0.12 12 0.27 0.15 18
Llama3.2-11B 0.49 0.19 34 0.12  0.06 8 0.17  0.09 10

Table 2: VISION TEXTUALIZER evaluation.

tal accuracy and reproducibility, we employed a
greedy decoding strategy (with temperature = 0)
and fixed the maximum token length to 4096. In
addition, to avoid the impact of image resolution on
VQA performance, we used the highest resolution
mode supported by each VLM.

4.1 Main Results

As the main results, we evaluate our system for
the whole process of flowchart understanding (i.e.,
TEXTUALIZER+REASONER) as well as the quality
of the first stage (i.e., merely TEXTUALIZER).

TEXTFLOW (TEXTUALIZER+REASONER) eval-
uation. It checks whether TEXTFLOW can get
superior flowchart understanding performance.

* Baseline: Singh et al. (2024) and Pan et al.
(2024) presented the prior state-of-the-art results
by deploying VLMs end-to-end.

e Metric: We use accuracy as the primary eval-
uation metric, measuring the proportion of cor-
rect answers among all responses to assess the
model’s performance on QA tasks. Following
prior work that employs LL.Ms as evaluators (Singh
et al., 2024), we use LLMs to assess each response;
specifically, we employ GPT-40 in our setup for en-
hanced accuracy. A response is considered correct
if it matches the expected answer. Each answer is
evaluated three times, with the final determination
based on a majority vote. To minimize excessive
randomness and ensure reliable majority voting,
we set the model’s temperature to 0.2, keeping
responses stable yet varied enough for accurate
assessment.

Table 1 presents a comparison between
TEXTFLOW and previous end-to-end flowchart un-
derstanding systems on two benchmarking datasets.
The results clearly demonstrate that top perform-
ing models (i.e. Claude 3.5 and GPT-40) within
TEXTFLOW consistently outperform their perfor-
mance in prior approach by significant margins.

Notably, Claude-3.5-Sonnet emerges as the most
effective VLM, excelling in both end-to-end de-
ployment and our dual-stage framework.

TEXTUALIZER Evaluation. The experiment is
conducted on a randomly selected set of 50
flowcharts in the FlowVQA dataset.

* Generation of gold text representation: Dif-
ferent target text representations pose unique chal-
lenges in obtaining the ground truth. For MER-
MAID, we directly used the representations from
the dataset. For GRAPHVIZ, which has a similar
syntax, we generated the ground truth by parsing
it with a script. However, for PLANTUML, due
to the absence of conversion tools, we manually
created the ground truth representations.

* Metric: We evaluate node and link extraction
using the F1 score and assess the rendering success
rate (whether the flowchart renders without syntax
errors). For MERMAID and GRAPHVIZ, we convert
text representations into Python graph objects using
a parser, then add nodes and edges, and compute
the F1 score via a script. For PLANTUML, due
to its complex pseudocode-like syntax and lack of
automated conversion tools, we perform manual
annotation for accuracy assessment.

The performance in Table 2 illustrates that GPT-
4o leads across all representations, with Claude 3.5
close behind, while Qwen2-VL-72B performs best
among open-source models. Node extraction gener-
ally outperforms link extraction, with comparable
results for Graphviz and Mermaid, but lower for
PlantUML. Challenges include weaker edge extrac-
tion, where correctly identifying and connecting
nodes with high in/out-degrees often leads to miss-
ing or incorrect links. Open-source models struggle
with syntax errors, such as misuse of special char-
acters and improper loop handling, where loops are
mistakenly repeated indefinitely, highlighting their
limitations in flowchart extraction tasks.
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Input ‘ Model ‘ Total ‘ Data Source ‘ Tasks

| | | Code Instruct Wiki | 7v T, T3  Ti
Image | GPT-40 (VQA) | 65.69 | 7823 6937  59.96 | 73.83 68.16 69.80 5891
Claude3.5-Sonnet | 82.19 | 9148 8427 7832 | 90.12 8184 76.07 8Ll
GPT-40 80.10 | 87.07 8394 7592 | 88.15 81.34 7265 78.75
Qwen2.5-32B 7746 | 88.64  79.80 7288 | 8642 7512 7009 77.33

. | Llama3.1-70B 7471 | 8391 7715 7066 | 8741 7836 7179 68.12
2 | Qwen25-14B 7451 | 8738 7748  69.10 | 81.98 7239 68.09 74.62
S | Qwen25-72B 7272 | 8454 7715 6679 | 8346 7090 70.09 69.54
S | Mixtral-8x22B | 67.03 | 7603 6954 6301 | 86.17 73.13 6638 55.25
Llama3.1-8B 63.79 | 71.61 6672  59.87 | 8222 5920 4872 63.40
Qwen2.5-7B 6125 | 79.18 6126 5600 | 7877 6468 5413 5419
Phi3.5-MoE 5277 | 67.19 5397  47.88 | 67.16 5896 50.14 44.04
Phi3.5-Mini 4868 | 59.62 5215 4354 | 63.95 4502 37.89 47.58
Claude3.5-Sonnet | 80.00 | 90.85 ~ 81.62 7592 | 89.63 80.85 7493 77.10
GPT-40 77.81 | 88.33 8146  72.69 | 88.89 79.10 7493 73.08
Qwen2.5-32B 7476 | 8675  76.16 7048 | 8494 7214 7094 7273
Llama3.1-70B 7441 | 81.07 7699 7103 | 8840 8109 6952 6659

% | Qwen25-14B 7337 | 85.17 7401  69.56 | 8593 7289 7208 68.12
E | Qwen25-72B 7067 | 86.12 7252 65.13 | 84.69 6791 7009 6553
S | Llama3.1-8B 66.03 | 7476 6639 6328 | 86.67 6791 61.82 57.02
Mixtral-8x22B | 63.89 | 7445 6457 6042 | 8543 7637 6724 46.28
Qwen2.5-7B 6344 | 7445 6358  60.15 | 8420 6393 57.83 55.61
Phi3.5-MoE 5471 | 67.19 5298 5203 | 73.83 64.18 5442 41.20
Phi3.5-Mini 5451 | 6246 5447 5221 | 72.84 5970 51.85 44.39
Claude3.5-Sonnet | 70.17 | 7855 ~ 73.01  66.14 | 8469 79.10 6895 59.50
GPT-40 66.83 | 76.03 7003 6236 | 8593 7363 68.95 53.60
Qwen2.5-32B 64.59 | 74.13 6705 6042 | 8247 7313 6895 50.18

| Llama3.1-70B 61.85 | 67.19 6341 5941 | 8420 7836 69.23 40.26
= | Qwen25-72B 61.00 | 68.14 6242  58.12 | 8025 66.17 6895 46.04
2 | Qwen25-14B 60.70 | 6751 6159 5821 | 8296 69.65 6638 4345
£ | Mixtral-8x22B | 5741 | 6215  57.78 5581 | 8296 7587 63.82 33.77
Llama3.1-8B 53.57 | 5899 5563  50.83 | 8395 69.65 56.13 30.34
Qwen2.5-7B 5292 | 60.88 5381  50.09 | 8222 6144 5670 33.29
Phi3.5-MoE 5147 | 5741 5033 5037 | 7679 6642 5527 30.70
Phi3.5-Mini 4514 | 5205 4503 4317 | 7185 5771 4587 26.09

Table 3: Effectiveness of text representations. TEXTUALIZER: GPT-40; REASONER: various LLMs. The underlined
results indicate that the experiment outperforms the VQA baseline.

4.2 Analysis

In addition to presenting the main results, we fur-
ther answer the following four research questions.

Q1: Which text representation is the most effec-
tive? To address this question, we fix the TEX-
TUALIZER as GPT-4o to generate different text
representations and then evaluate the performance
of various LLMs on those representations.

As shown in Table 3, GRAPHVIZ proves to be the
most effective text representation for flowchart un-
derstanding overall. While PLANTUML performs
the worst, it still surpasses the end-to-end VQA

baseline when using Claude3.5-Sonnet and GPT-
40. This underscores the effectiveness of our ap-
proach’s core concept: generating intermediate text
representations improves performance on flowchart
understanding.

Qs: How robust our dual-stage pipeline is? We
study robustness from three dimensions: i) varying
VLM/LLM choices in the two stages; ii) flowchart
orientation; iii) flowchart size (i.e., #node).

* VLM/LLM choices in TEXTUALIZER and
REASONER. The upper half of Table 4 com-
pares the performance of different VLMs in
the TEXTFLOW pipeline and the VQA pipeline.
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TEXTUALIZER Varies

Model=VLM VOA . T=R=M(.)del T=.M0del; R=.GPT-40
Graphviz Mermaid PlantUML Graphviz Mermaid PlantUML

Claude3.5-Sonnet 76.61| 82.74 82.04 71.22 77.66 79.95 66.43
GPT-40 65.69| 80.10 77.81 66.83 80.10 77.81 66.83
Qwen2-VL-72B  64.14| 64.64 62.19 57.91 76.11 75.26 64.54
Qwen2-VL-7B 53.42| 4843 49.93 46.18 59.55 60.35 58.80
Llama3.2-90B 43.09| 53.97 62.29 49.93 56.96 64.09 52.22
Llava-v1.6-110B  42.69| 43.09 43.24 39.50 49.08 45.94 44.09
Llama3.2-11B 8.33 | 39.80 41.40 34.21 50.07 50.47 46.23

REASONER Varies

T=GPT-40; R=Model
Graphviz Mermaid PlantUML Graphviz Mermaid PlantUML

T=Gold; R=Model

Model=LLM VQA

Claude-3-5-Sonnet 70.00| 83.03 85.48
GPT-40 72.00( 80.98 82.21
Qwen2.5-32B 79.14 79.96
Llama-3.1-70B 79.55 76.89
Qwen2.5-14B 78.32 78.73
Qwen2.5-72B 74.03 74.23
Mixtral-8x22B 64.62 66.87
Llama-3.1-8B 70.96 65.64
Qwen2.5-7B 67.08 63.39
Phi-3.5-MoE 57.87 56.85
Phi-3.5-mini 56.03 50.92

71.57 90.59 92.64 74.64
71.37 87.12 86.09 70.35
69.53 85.48 84.46 66.26
64.01 85.89 80.98 66.26
64.01 84.46 81.39 65.03
65.24 78.73 78.94 64.62
59.51 66.26 68.71 58.49
56.24 73.21 71.17 53.78
54.19 69.33 66.87 56.65
56.03 57.67 58.08 53.99
46.42 57.87 51.74 44.79

Table 4: Framework robustness by choosing different VLMs/LLMs for TEXTUALIZER (T) and REASONER (R).
The underlined results indicate that the experiment outperforms the VQA baseline.

In most cases, TEXTFLOW outperforms VQA.
Notably, GPT-40 and Claude 3.5 emerge as
the top performers, showcasing strong vision-
textualization and reasoning capabilities. Addition-
ally, TEXTFLOW demonstrates strong robustness,
and when the reasoning ability of VLMs is insuffi-
cient, performance can be improved by utilizing a
stronger REASONER, such as GPT-40.

In the lower half of Table 4, we observe this
flexibility in action. When GPT-4o is fixed as
the TEXTUALIZER, a variety of LLMs can act
as high-performing REASONERS. Even smaller
models, such as Qwen2.5-14B and 32B, demon-
strate strong performance in this setup. Moreover,
when replacing the gold representation with text ex-
tracted by GPT-40, most REASONERS, particularly
in Graphviz and Mermaid formats, show significant
improvement.

* Impact of Flowchart Orientation. Figure 2
compares model accuracy between top-down (nor-
mal) and bottom-up (reversed) flowchart config-
urations. Across all representations (GRAPHVIZ,
MERMAID, and PLANTUML), the top-down con-
figuration consistently yields higher accuracy, with
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80.10 0 Mermaid
801 T 7781 1 PlantUML

0 VQA
74.86

|

72.82

~
o

66.83
65.69
64.34

Accuracy (%)
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o

59.25

; ||

Top-Down Bottom-Up
Configuration Type

o
o

Figure 2: Comparison of GPT-40’s performance on Top-
Down and Bottom-Up flowchart configurations.

differences ranging from 2.49% for PLANTUMLto
5.24% for GRAPHVIZ. The VQA baseline shows
the largest discrepancy, with a 6.44% drop in ac-
curacy in the bottom-up configuration. These
results indicate that while reversing the flow di-
rection affects performance across models, the
TEXTFLOW pipeline demonstrates better robust-
ness than VQA in maintaining accuracy under re-
versed conditions. This robustness suggests that
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Figure 3: Accuracy comparison by node count across
various models with a rolling average. VQA and the
top 5 performing REASONERS on TEXTFLOW using
extracted Mermaid in Table 3 are compared.

TEXTFLOW’s structured representation approach
enables more flexible adaptation to variations in
flowchart orientation.

* Effect of Flowchart Size (e.g., #Node). Fig-
ure 3 explores how node count affects model accu-
racy for VQA and TEXTFLOW. Accuracy generally
declines as node count increases, highlighting the
challenge of processing more complex flowcharts.
However, TEXTFLOW demonstrates superior re-
silience compared to VQA, maintaining higher ac-
curacy across increasing node counts. This sug-
gests that the structured extraction and reasoning
process in TEXTFLOW enables models to handle
complexity more effectively, whereas the VQA
baseline struggles as flowcharts become denser and
more intricate.

Together,  these findings show that
TEXTFLOW enhances robustness to both orienta-
tion changes and increasing complexity, making it
better suited for reliable flowchart reasoning across
varied and challenging conditions.

Q3: Given that our dual-stage framework of-
fers flexibility in controlling flowchart repre-
sentations, how effective is it to enhance these
representations using external tools? We ex-
plore the impact of tool-assisted methods on en-
hancing text representations for improved model
accuracy across various tasks, particularly topolog-
ical ones. By converting flowchart representations
from Mermaid and Graphviz code into Python-
executable graph objects, we enrich the text rep-
resentation with additional graph functions, such
as node and edge counts, retrieving successors
and predecessors, calculating shortest paths, and
identifying nodes with maximum in-degree and

Method Overall T T T3 Ty
GRAPHVIZ

Base 80.10  88.15 81.34 72.65 78.75

Tool 80.79  84.94 80.60 70.37 83.23

Base® 8539  90.12 7935 7635 89.73

Tool®¢  88.23 8691 79.35 72.08 99.76
MERMAID

Base 77.81  88.89 79.10 7493 73.08

Tool 78.89 8691 7935 69.52 7887

Base® 8549 9037 78.11 78.92 89.37

Tool®H  88.83 89.88 79.85 70.94 100.00

Table 5: GPT-40’ accuracy on Graphviz and Mermaid
representations, comparing base and tool-assisted set-
tings on extracted and Gold representations.

out-degree. These tools provide structured infor-
mation, enhancing the model’s ability to reason
more precisely in graph-based scenarios across the
FlowVQA dataset.

As shown in Table 5, tool-assisted methods sig-
nificantly boost GPT-40’s accuracy, particularly for
topological tasks (7}), where structured graph func-
tions lead to near-perfect accuracy with Gold rep-
resentation (99.76% for Graphviz, 100% for Mer-
maid). While these methods enhance overall per-
formance for both Graphviz and Mermaid represen-
tations—achieving the highest accuracy (88.23%
for Graphviz, 88.83% for Mermaid)—their impact
is most pronounced in topological tasks. For other
tasks (11-135), which may require multi-step rea-
soning or broader flowchart understanding, tool-
assisted methods provide more limited benefits.

Q4: If TEXTFLOW makes mistakes in the end,
it is more likely due to the failure of TEXTUAL-
IZER or REASONER? We explain the errors in
three sources: i) TEXTUALIZER is correct, REA-
SONER is incorrect; ii) TEXTUALIZER is incorrect,
REASONER is correct (i.e., correctly reflect the
facts in the text representations); iii) Both TEXTU-
ALIZER and REASONER are incorrect.

In our analysis of 50 randomly selected error
cases from Claude-3.5, as shown in Figure 4, the
majority of errors were attributed to TEXTUAL-
IZER issues. Specifically, errors frequently oc-
curred in decision nodes where multiple links en-
tered or exited, indicating that complex node struc-
tures pose challenges to accurate extraction. An-
other prevalent source of error was the misinter-
pretation of node labels due to unintended rewrites
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Figure 4: Error analysis for percentage of errors at-
tributed to each category in Claude 3.5 Sonnet.

by the TEXTUALIZER, leading to inaccuracies in
extraction. Conversely, the REASONER component
demonstrated a high degree of reliability, as evi-
denced by the lower error rate in reasoning tasks.
These findings suggest that improvements in ex-
traction quality, particularly in handling decision
nodes and preserving label integrity, could unlock
greater potential for our TEXTFLOW model’s over-
all performance.

5 Conclusion

This work introduces TEXTFLOW, a dual-
stage framework that leverages VLMs/LLMs for
flowchart understanding by breaking the process
down into VISION TEXTUALIZER and TEXTUAL
REASONER. Our experiments on the two bench-
marks demonstrate its state-of-the-art performance,
and detailed analysis reveals that GRAPHVIZ is the
most effective text representation for flowcharts.
Additionally, the system remains robust regard-
less of flowchart orientation and scale. Beyond
flowchart understanding, we believe that reason-
ing over intermediate text representations has the
potential to generalize to other multimodal tasks,
enhancing both usability and reasoning capabili-
ties.

Limitations

Despite the progress made with TEXTFLOW, sev-
eral limitations remain, particularly in extraction
accuracy, generalizability, and reasoning capabili-
ties.

1. Extraction Accuracy and Representation
Fidelity: TEXTFLOW depends on accurately
extracting nodes and edges from flowcharts.
In complex or noisy diagrams, errors in ex-
traction can reduce reasoning accuracy. While
current VISION TEXTUALIZER perform well,
they struggle with subtle layout and style vari-

ations, limiting TEXTFLOW’s adaptability to
diverse flowchart formats.

2. Lack of Diverse High-Quality Datasets:
TEXTFLOW’s evaluation is limited by the
scarcity of diverse, high-quality flowchart
datasets. Existing datasets, like FlowVQA,
mostly feature standard styles such as Mer-
maid.  This restricts the assessment of
TextFlow’s performance on complex, real-
world flowcharts. More varied datasets are
needed to fully test its generalization abilities.

3. Limited Generalizability to Complex or
Nested Diagrams: TEXTFLOW is designed
for structured flowcharts but struggles with
more complex diagrams, such as dependency
graphs, Gantt charts, or those with nested
structures or embedded images. These ele-
ments are challenging to extract and interpret
accurately, requiring more advanced extrac-
tion methods to handle such complexity.

4. Dependence on Domain Knowledge and Ex-
ternal Documents: Some flowcharts require
domain-specific knowledge or links to other
documents for correct interpretation. In these
cases, TEXTFLOW may need to be integrated
with retrieval-augmented generation (RAG)
techniques or external knowledge bases to en-
hance its reasoning capabilities.

5. Reliance on External Graph Processing
Tools: TEXTFLOW improves reasoning
through the use of external graph-processing
tools, but this increases system complexity
and may lead to compatibility issues with fu-
ture datasets. Reducing reliance on these tools
and improving the system’s self-sufficiency is
a key area for future work.
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A Prompt Details

This section provides the details of the prompts used in the experiments.

A.1 Prompt 1: Flowchart to Mermaid

Task: Convert the provided flowchart into a Mermaid representation.

Prompt template:

Generate the Mermaid code for the provided flowchart.

Here is an example:
T “mermaid
flowchart TD
A(["Start"]) --> B[/"Receive 'arr' and 'n'"/]
B --> C["Initialize loop index 'i' to 0"]
C --> D{"Check if arr[i] == i"
D -->|"Yes"| E[/"Return index 'i' as fixed point"/]
E --> F(["End"])
D -->|"No"| G["Increment 'i'"]
G --> H{"i < n"}
H -->|"Yes"| D
H -->|"No"| I[/"Return -1 as no fixed point found"/]
I -->F

{image}

A.2 Prompt 2: Flowchart to Graphviz

Task: Convert the provided flowchart into a Graphviz representation.

Prompt template:

Generate the Graphviz code for the provided flowchart.

Here is an example:
“*~dot
digraph G {
A [label="Start" shape=ellipse];

B [label="Receive 'arr' and 'n'" shape=parallelogram];

C [label="Initialize loop index 'i' to @" shape=box];

D [label="Check if arr[i] == i" shape=diamond];

E [label="Return index 'i' as fixed point"” shape=parallelogram];
F [label="End" shape=ellipse];

G [label="Increment 'i'" shape=box];

H [label="i < n" shape=diamond];

I [label="Return -1 as no fixed point found” shape=parallelogram];
A -> B;

B -> C;

C -> D;

D -> E [label="Yes"];

E->F;

D -> G [label="No"1;
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G -> H;

H -> D [label="Yes"];
H ->1I [label="No"];
I ->F;

{image}

A.3 Prompt 3: Flowchart to PlantUML

Task: Convert the provided flowchart into a PlantUML representation.

Prompt template:

Generate the PlantUML code for the provided flowchart.

Here is an example:
“*plantuml

@startuml

start

:Receive 'arr' and 'n';
:Initialize loop index 'i' to 0;

while (i < n?) is (Yes)
if (Check if arr[i] == i?) then (Yes)
:Return index 'i' as fixed point;
stop
else (No)
:Increment 'i';
endif
endwhile (No)
:Return -1 as no fixed point found;
stop
@enduml

{image}

A4 Prompt 4: Reasoning

Task: Answer question based on the flowchart text representation.

Prompt template:

{Mermaid_code/Graphviz_code/PlantUMl_code}

Question: {question}
Answer:

A.5 Prompt 5: Reasoning with Tools

Task: Answer question based on the flowchart text representation with tools.

Prompt template:
3545



{Mermaid_code/Graphviz_code/PlantUMl_code}
Question: {question}

Answer:
{tools}

A.6 Prompt 6: Evaluation

Task: Evaluate whether the model’s answer is correct.

Prompt template:

Task: Verify if the provided answer is correct based on the given ground truth.

You are given a question, an answer and the ground truth. Your task is to determine
whether the provided answer matches the ground truth. Output "Correct” if the answer
matches ground truth, otherwise output "Incorrect”.

Question: {question}

Answer: {answer}

Ground Truth: {ground_truth}
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B Implemented Tools in the TEXTFLOW Framework

This section presents the tools implemented in our framework, including function names, their input and
output parameters, and a brief definition.

B.1 Functions Overview
e get_number_of_nodes()

Input: None
Output: Returns the number of nodes in the flowchart.

* get_number_of_edges()

Input: None
Output: Returns the total number of edges in the flowchart.

» get_direct_successors(node_description)

Input: node_description - A string representing the description of a node.
Output: A list of descriptions for the direct successors of the given node.

* get_direct_predecessors(node_description)

Input: node_description - A string representing the description of a node.
Output: A list of descriptions for the direct predecessors of the given node.

» get_shortest_path_length(start_node_description, end_node_description)

Input: start_node_description, end_node_description - Strings representing the descriptions
of the start and end nodes.

Output: An integer representing the number of edges in the shortest path between the two nodes.
Returns -1 if no path is found.

e get_max_indegree()

Input: None
Output: Returns the maximum indegree (number of incoming edges) for any node in the flowchart.

e get_max_outdegree()

Input: None
Output: Returns the maximum outdegree (number of outgoing edges) for any node in the flowchart.
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C Manual Annotation Process

This section explains how manual annotation is conducted using PlantUML to represent ground truth
flowcharts. The process involves two annotators: one writes and the other verifies PlantUML code,
ensuring the resulting flowchart accurately reflects the ground truth.

C.1 Writing PlantUML Ground Truth Representation

The manual annotation of a flowchart using PlantUML follows these steps:

1. First Annotator: The first annotator manually writes the PlantUML code based on the ground truth
flowchart. This code must precisely capture the structure and relationships between nodes and links
as presented in the original flowchart.

* Nodes: The annotator writes PlantUML code that accurately reflects the text or description for
each node in the flowchart. The text must be an exact match to what is shown in the ground
truth flowchart.

* Links: The connections between nodes, including the direction of arrows and any attributes
such as dashed or solid lines, should be represented in the PlantUML code to mirror the original
flowchart.

2. Second Annotator: The second annotator verifies the accuracy of the PlantUML code by comparing
the generated flowchart with the ground truth. The review process includes:

* Node Verification: Ensuring that all node text in the generated flowchart matches the text in
the ground truth flowchart. The layout or shape of the nodes is not considered; only the textual
content matters.

* Link Verification: Checking that the links between nodes, along with their direction and any
attributes, match the original ground truth flowchart.

If any discrepancies are identified, both annotators collaborate to resolve them, ensuring that the final
PlantUML code is a faithful representation of the ground truth.

C.2 Evaluating Extraction Quality of PlantUML

Once the PlantUML code has been generated by the TEXTUALIZER, the quality of the generated flowchart
image is evaluated by comparing it to the ground truth. The evaluation focuses on two key metrics: the F1
score for node and link extraction, and the rendering success rate.

1. F1 Score for Node and Link Extraction:

* Node Extraction: The generated nodes are compared to those in the ground truth flowchart.
The comparison is based solely on the text of the nodes, without considering shape or layout.
The F1 score is calculated based on how accurately the node descriptions are extracted.

» Link Extraction: The links between nodes are verified, ensuring that both the connections and
arrow directions match the ground truth. Link attributes, such as arrow directions or labels,
must also be correctly represented. The F1 score reflects the precision and accuracy of this link
extraction.

2. Rendering Success Rate: The rendering success rate checks whether the PlantUML-generated
image contains any syntax errors. The annotators manually verify that the PlantUML code is free of
syntax errors. If any syntax issues arise, the flowchart fails to render.

C.3 Consistency with Script-Based Tools

The manual annotation process is designed to meet the same standards as automated tools for Mermaid
and Graphviz. This ensures that the criteria for node content, link direction, and rendering accuracy are
consistent across both manual and automated methods.
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