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Abstract

Motivated by in-context learning (ICL) capabil-
ities of Large Language Models (LLMs), mul-
timodal LLMs with additional visual modal-
ity exhibit similar ICL abilities when multi-
ple image-text pairs are provided as demon-
strations. However, relatively less work has
been done to investigate the principles behind
how and why multimodal ICL works. We
conduct a systematic and principled evalua-
tion of multimodal ICL for models of different
scales on a broad spectrum of new yet criti-
cal tasks. Through perturbations over different
modality information, we show that modalities
matter differently across tasks in multimodal
ICL. Guided by task-specific modality impact,
we recommend modality-driven demonstration
strategies to boost ICL performance. We also
find that models may follow inductive biases
from multimodal ICL even if they are rarely
seen in or contradict semantic priors from pre-
training data. Our principled analysis provides
a comprehensive way of understanding the role
of demonstrations in multimodal in-context
learning, and sheds light on effectively improv-
ing multimodal ICL on a wide range of tasks. 1

1 Introduction

Motivated by in-context learning (ICL) capabili-
ties of Large Language Models (LLMs) for NLP
tasks (Brown et al., 2020; Garg et al., 2022;
Akyürek et al., 2022), multimodal LLMs with addi-
tional visual modality are also exhibited with simi-
lar ICL abilities when multiple image-text pairs are
provided as demonstrations (Alayrac et al., 2022;
Bai et al., 2023; Sun et al., 2023; McKinzie et al.,
2024). In recent studies, the Retrieval-based In-
Context Example Selection (RICES, Yang et al.
(2022)) approach, which retrieves similar images
in the support set by comparing their visual fea-
tures with testing images, has become a default

1Codes and datasets are available at https://
github.com/luka-group/MultimodalICLBestPractice.

BenchLMM Application Style

Q: What is the intended behavior or action for the 
main vehicle in an autonomous driving scenario?
A (GT): Go straight.

OCRBench KIE 
(Key Information Extraction)

Q: What is the total amount of 
this receipt?
A (GT): 203.00

(a) Questions and ground-truth answers from two of the in-
vestigated benchmarks: cross-style (left) and text-rich under-
standing (right).
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(b) ICL performance against visual and textual perturbations.
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(c) ICL performance given demonstrations selected by differ-
ent modality-driven strategies.

Figure 1: (b) Modality matters differently on ICL across
tasks: visual information matters little on Application
but a lot on KIE, textual answers are more important
to ICL on KIE than that on Application. (c) Demon-
strations selected by text-driven strategy BERTScore
benefit more on Application, while those selected by
visual similarity (CLIP) bring higher accuracy on KIE.

approach to selecting demonstrations for multi-
modal ICL (Alayrac et al., 2022; Sun et al., 2023;
Yang et al., 2024). However, relatively less work
has been done to investigate the principles behind
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Flipped Labels

Q: What color is the writing on the spare tire?
GT: I am not sure about the color of the writing 
on the spare tire.
GPT-4o: The writing on the spare tire is white.

Q: How many r’s in this image?
GT: 3
GPT-4o: The word "strawberry" in 
the image contains two "r"s.

Q: Are there two cats in the image?
GT: No.
Flipped: Yes.

Visual Hallucination Counting Characters

Figure 2: Benchmarks with inductive bias contracting the semantic priors (left) or rarely seen in pretraining data
(middle and right). We list ground-truth (GT), zero-shot responses from GPT-4o and provide ICL analysis in §6.

how and why multimodal ICL works, nor has there
been enough justification for the necessity of select-
ing demonstrations according to visual modality
and analyzing its advantages over other modalities.
Yang et al. (2024) only explored better in-context
configurations for image captioning, while Chen
et al. (2023) argued that multimodal ICL is pre-
dominantly driven by the textual information in the
demonstrations. However, their observations are
limited to image captioning (Young et al., 2014;
Chen et al., 2015) and general-purpose visual ques-
tion answering tasks (Goyal et al., 2017; Gurari
et al., 2018; Marino et al., 2019; Sidorov et al.,
2020), which leaves a comprehensive exploration
of the strengths of ICL and its limitations (Zong
et al., 2024) largely open for multimodal LLMs.

In this paper, we conduct a systematic and prin-
cipled evaluation of multimodal ICL for models
of different scales (ranging from OpenFlamingo
4B, Awadalla et al. (2023) to IDEFICS1 80B, Lau-
rençon et al. (2023)) on a broad spectrum of new
yet critical tasks as shown in Fig. 1a. These tasks
require different types of capabilities, including
hallucination mitigation (Wang et al., 2023), text-
rich image understanding (Liu et al., 2023; Li et al.,
2024), medical information comprehension (He
et al., 2020; Pacheco et al., 2020; Liu et al., 2021),
and cross-style transfer (Cai et al., 2023), etc.

With diverse ICL capabilities examination, we
show that the dependency of performance gain
from ICL on demonstration modalities differs
among tasks (§4). For example, perturbing visual
information in demonstrations (e.g., removing or
replacing with random, noised or permuted images)
does not cause significant performance drop on ICL

for Application task (Fig. 1b left), while resulting
in decreased accuracy than that provided by correct
demonstrations on tasks such as key information
extraction (KIE) from text-rich images (Fig. 1b
right). On the other hand, textual perturbations
(e.g., replacing the question/answer with random or
one from other candidates in the same demonstra-
tion set) hurt ICL performance to different extents
across tasks. These observations strongly suggest
the necessity of understanding modality impact on
ICL prior to collecting demonstrations for specific
tasks.

We conduct further investigation on how to se-
lect effective demonstrations to boost multimodal
ICL performance (§5). Based on empirical ex-
periments, we recommend the following practices
to elicit better ICL performance from multimodal
models: 1) Utilizing demonstrations selected by
visual similarity (e.g., vision encoder of CLIP) for
tasks observed with vital impact from visual modal-
ity on ICL performance, e.g., KIE task shown on
the right of Fig. 1c. 2) Selecting demonstrations
with high textual similarity (e.g., text encoder of
CLIP (Radford et al., 2021) or BERTScore (Zhang
et al., 2019)) for tasks if the textual modality plays
an important role in ICL performance, e.g., Ap-
plication task shown on the left of Fig. 1c. 3)
Choosing demonstrations with both visual and
textual similarity considered (e.g., ALBEF (Li
et al., 2021) with a multimodal encoder that explic-
itly models interactions between image and text
features) if dual modalities matter similarly to ICL
performance.

Lastly, we illustrate that models may have the
capability to capture task inductive biases from
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multimodal ICL (§6). We investigate two kinds of
inductive bias: 1) contradicting semantic priors,
and 2) rarely seen in pretraining. By deliberately
flipping annotations of demonstrations to override
strong semantic priors learned during pretraining
( Fig. 2 left), small-scale models fail to comprehend
or follow practices provided by randomly sampled
demonstrations, while they learn to follow induc-
tive biases given demonstrations selected according
to textual similarities, an emergent ability unlocked
by scaling studied in literature (Wei et al., 2022b;
Zhou et al., 2022). Although multimodal LLMs are
typically pretrained on true positives only but rarely
on hallucination-inducing scenarios with unanswer-
able questions ( Fig. 2 middle, Cha et al. (2024)),
multimodal ICL greatly reduces hallucination over
zero-shot inference. We also observe effective-
ness of multimodal ICL in addressing the failure
mode (Ball et al., 2024; Shin and Kaneko, 2024;
Yehudai et al., 2024) of models on tasks humans
find trivial (e.g., counting r’s in the image plotting
“strawberry” as shown in Fig. 2 right). Such ca-
pability to capture inductive bias of demonstra-
tions without scaling up models is more attractive
than using semantic priors, since the model would
be able to perform a wide range of tasks without
further tuning, even if those tasks are not seen in or
even contradict pretraining data.

In summary, our principled analysis provides a
comprehensive way of understanding the role of
demonstrations in multimodal ICL. We empirically
show that (1) modalities matter differently in mul-
timodal ICL across tasks (§4), (2) demonstration
strategies considering modality impact are able to
boost ICL performance (§5), (3) models are capa-
ble of capturing task inductive biases from multi-
modal ICL (§6). Overall, our work aims to shed
light on effectively improving multimodal ICL on
a wide range of tasks even if those tasks are not
seen in or even contradict pretraining data.

2 Related Work

Textual ICL LLMs have been recognized
as strong few-shot learners since their emer-
gence (Brown et al., 2020). With ICL, LLMs are
empowered to generalize to a wide range of tasks at
inference even if those tasks are not seen in pretrain-
ing data (Garg et al., 2022; Akyürek et al., 2022).
To understand why ICL works, Min et al. (2022)
empirically showed that the performance gain of
ICL over zero-shot inference is mainly driven by

the label space, distribution of input text, output
labels, and overall format of the sequence, while
the represented mapping from inputs to the outputs
in demonstrations matters little. However, some
recent work (Zhou et al., 2022; Wei et al., 2023)
suggested that when scaling up to some extent,
larger models can actually learn input-output map-
pings, which allows them to perform a variety of
challenging tasks even if they contradict pretraining
data.

Considering the additional visual information in
multimodal ICL, we study the importance of differ-
ent modalities and guide demonstration selection
for better ICL performance accordingly.

Multimodal ICL After pretraining on inter-
leaved image-text data or fine-tuning on multi-
turn conversations, multimodal LLMs have exhib-
ited ICL abilities in tasks such as image caption-
ing and general-purpose visual question answer-
ing (Alayrac et al., 2022; Bai et al., 2023; Sun
et al., 2023; McKinzie et al., 2024). Considering
these studies may not sufficiently reveal strengths
and weaknesses of ICL, Zong et al. (2024) recently
introduced VL-ICL Bench which encompasses a
broad spectrum of tasks for multimodal ICL eval-
uation. However, there is not much work that
conducts principled analysis on emergent ICL ca-
pabilities and provides insightful suggestions for
future ICL practices. Yang et al. (2024) only ex-
plored better in-context configurations for image
captioning. Qin et al. (2024) recognized three
factors–demonstration retrieval, ordering and in-
structions, that contribute to multimodal ICL per-
formance, without providing task-specific sugges-
tions for demonstration selection to boost multi-
modal ICL capabilities.

One work that is closely connected to ours
is Chen et al. (2023). Chen et al. (2023) argued
that multimodal ICL is predominantly driven by
the textual information in the demonstrations and
proposed Mixed Modality In-Context Example Se-
lection (MMICES), which first pre-filters samples
based on visual feature similarity and then selects
most similar ones based on textual similarity. How-
ever, their observations are limited to image cap-
tioning and general-purpose visual question an-
swering tasks, which leaves a comprehensive ex-
ploration for the strengths of ICL and its limita-
tions (Zong et al., 2024) largely open for multi-
modal LLMs. We conduct more comprehensive
study on the impact of modality on ICL and find
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that modalities matter differently across tasks. Fur-
thermore, we investigate how models of different
scales capture task inductive biases from multi-
modal ICL.

3 Experimental Setup

In this section, we describe the experimental setup
used in our analysis (§4-§6). We list evaluation
benchmarks and corresponding metrics in Tab. 2,
as well as studied model information in Tab. 3.

Evaluation Benchmarks After pretraining mul-
timodal LLMs on interleaved image-text data or
fine-tuning on multi-turn conversations, existing
work (Alayrac et al., 2022; Bai et al., 2023; Sun
et al., 2023; McKinzie et al., 2024) mainly fo-
cuses on evaluating their ICL abilities on image
captioning such as COCO (Chen et al., 2015) and
Flickr30K (Young et al., 2014), as well as general-
purpose visual question answering tasks such as
OKVQA (Marino et al., 2019), VQAv2 (Goyal
et al., 2017), TextVQA (Sidorov et al., 2020)
and VizWiz (Gurari et al., 2018). Besides these
classic vision-language tasks, we also consider
one recently released benchmark, namely VL-ICL
Bench (Zong et al., 2024), which encompasses a
broad spectrum of challenging new tasks to investi-
gate strengths and limitations of ICL capabilities.

Benefits of utilizing demonstrations as contexts
for more critical and practical applications, though
imperfect zero-shot performance is observed from
state-of-the-art models, are not yet explored. There-
fore, we further study ICL capabilities of multi-
modal LLMs on the following tasks. 1) Math Rea-
soning: MATH-Vision (Wang et al., 2024) is a
large math reasoning benchmark that collects ques-
tions from real math competitions and tests the gen-
eral visual perception and mathematical reasoning
abilities; 2) Hallucination: AMBER (Wang et al.,
2023) provides a discriminative way to evaluate
various types of hallucination including existence,
attribute and relation; 3) Text-rich Tasks: both
OCRBench (Liu et al., 2023) and SEED-Bench-
2-Plus (Li et al., 2024) assess text-rich visual com-
prehension of models, while the former focus on
Optical Character Recognition (OCR) capabilities
and the latter covers text-rich scenarios in the real
world such as Charts, Maps, and Webs; 4) Medi-
cal Tasks: three datasets consider different medical
modalities, i.e., Path-VQA (He et al., 2020) for
pathology, Slake-VQA (Liu et al., 2021) for radiol-
ogy and PAD-UFES-20 (Pacheco et al., 2020) for

skin lesion images. 5) Multi-image Tasks: Seed-
Bench-2 (Li et al., 2024) evaluates the ability to
comprehend multimodal inputs containing multiple
images. 6) Cross-style Transfer: BenchLMM (Cai
et al., 2023) assesses the robustness of models
against three different styles including artistic im-
age, imaging sensor, and application styles.

Multimodal LLMs We evaluate pretrained mul-
timodal LLMs without further instruction tuning,
so that factors, such as seeing similar data or acquir-
ing tested capabilities from the instruction dataset
rather than through ICL, could be fairly reduced.
Specifically, we consider the following pretrained
models that scale from 4B to 80B and have previ-
ously demonstrated ICL abilities through limited
analysis: OpenFlamingo (Awadalla et al., 2023)
of two sizes (4B and 9B), IDEFICS of two scales
from different versions (9B and 80B from the 1st
version (Laurençon et al., 2023) and 8B from the
2nd version (Laurençon et al., 2024)), together with
the 14B Emu1 (Sun et al., 2023).

Moreover, we evaluate the proprietary model,
GPT-4o 2 (OpenAI, 2024), to exhibit challenge lev-
els of evaluated tasks on the one hand, and compare
ICL capabilities between pretrained and instruction-
tuned models on the other hand.

Evaluation Metrics For image captioning, we
report CIDEr (Vedantam et al., 2015) scores. For
general-purpose VQA tasks, we adopt the com-
mon VQA evaluation metric (Antol et al., 2015),
where 10 annotations are provided and the model
prediction is deemed 100% accurate if at least three
annotators provide that exact answer. To evaluate
performance on two medical VQA task-slake-VQA
and Path-VQA, we use the token-level F1 score
following Tu et al. (2024). We follow the evalu-
ation practices in BenchLMM where ChatGPT is
employed to gauge the proximity of answers pre-
dicted by the LMMs to ground-truth answers. For
remaining datasets, we utilize their original evalua-
tion strategy–soft string matching, to eliminate the
impact of answer formats.

Implementation Details We prompt multimodal
LLMs with an instruction “Describe the image:”
for caption generation, while employing open-
ended answer generation for other tasks with a
prompt in the form of “Question: the <question>
Answer:”, without any constraint on model’s output

2We use the version gpt-4o-2024-05-13 in this paper.
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Figure 3: Multimodal ICL performance of IDEFICS1-80b reacts differently across tasks of different difficulty
levels against perturbations on visual (top) and textual (bottom) information. For easy (i.e., BenchLMM Sensor and
Application) and two moderate (i.e., Path-VQA and Slake-VQA) tasks, performance after various visual perturbations
is very close to that given original correct demonstrations, while drops obviously when either textual question or
answer is perturbed. For the moderate PAD-UFES-20, neither of the two modalities matters too much. For the hard
KIE, we observe degraded performance when the image is removed or replaced. Similar observations from other 5
models can be found from Fig. 14 to Fig. 18.

space. 3 We adopt the default decoding strategy and
configurations (e.g., beam search with 5 as the num-
ber of beams for Emu1) suggested by each model
vendor respectively. In contrast to the zero-shot
setting, we consider 4- and 8-shot for in-context
learning analysis 4, where the demonstrations are
randomly sampled from candidates for each testing
example unless otherwise stated. 5

4 Modalities Matter Differently in
Multimodal ICL

As shown in Fig. 6 and Fig. 7, pretrained models
and GPT-4o generally achieve better performance
given demonstrations as context in existing ICL
tasks. As demonstrated in Fig. 8, on more com-
plex and reasoning-focused tasks, pretrained mod-
els generally benefit more from demonstrations

3For short answer generation, we modify the prompt
slightly to “Question: <question> Short answer:”.

4Considering limited amounts of images per example
used for pretraining, we evaluate 1- and 2-shot performance
on tasks from SEED-Bench-2 where each example contains at
least 8 images.

5For each testing example, the demonstrations are ran-
domly sampled from the train set while shared among all
studied models.

while performance of GPT-4o is barely influenced.
In this section, we examine which modality of

the demonstrations takes more effect in multimodal
in-context learning. For a comprehensive evalua-
tion, we focus on three tasks of different difficulty
levels: easy cross-style tasks (i.e., BenchLMM Sen-
sor and Application in Fig. 8), moderate medical
tasks (i.e., Path-VQA, Slake-VQA and PAD-UFES-
20 in Fig. 8), and hard text-rich key information ex-
traction task (i.e., KIE from OCRBench in Fig. 11).
We visualize 4-shot performance of IDEFICS-80b
within this section while leaving results of other
models in Appendix (from Fig. 14 to Fig. 18.).
The dependency of performance gain from ICL on
demonstration modalities differs among tasks.

4.1 Impact of Visual Modality

In recent studies, the Retrieval-based In-Context
Example Selection (RICES (Yang et al., 2022))
approach, which retrieves similar images in the
support set by comparing their visual features with
testing images, has become a default approach to
select demonstrations for multimodal in-context
learning (Alayrac et al., 2022; Sun et al., 2023;
Yang et al., 2024). However, the necessity of select-
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ing demonstrations according to visual modality
and its advantages over others is not yet explored.

By fixing the textual modality (i.e., question and
answer pairs) of demonstrations, we experiment
with demonstrations containing different perturba-
tions of visual modality: 1) no images where only
textual question and answer pairs are provided; 2)
zero/one images that all zero (black)/255(white)
pixel values are used instead; 3) noised images that
apply Gaussian noises to the original images; 4)
random images sampled from the train set; 5) per-
muted images reorganize the order of demonstra-
tion images to misalign visual/textual modalities.

Results We compare ICL performance of
IDEFICS1-80B 6 before and after visual pertur-
bations in Fig. 3 and other models from Fig. 14a
to Fig. 18a. For easy cross-style and moderate
medical tasks, we find that perturbing visual in-
formation in demonstrations does not cause sig-
nificant performance drop on ICL, which is con-
sistent with observations from prior work (Chen
et al., 2023). However, for the hard KIE task, vi-
sual perturbations that remove or change content
of images result in decreased accuracy than that
provided with correct demonstrations, sometimes
much worse performance than the zero-shot infer-
ence. This indicates that visual information plays
an important role in improving ICL performance
over zero-shot one, which is reasonable since this
dataset requires extracting key-value pairs in the
image (Liu et al., 2023). Meanwhile, the perfor-
mance after applying Gaussian noises to images
is very close to performance with correct images,
which implies that multimodal LLMs are agnos-
tic to image noises and able to extract key visual
information for question answering.

4.2 Impact of Textual Modality

Previous studies have identified excessive de-
pendence of multimodal LLMs on the language
model’s linguistic priors (Han et al., 2022; Li et al.,
2023). Accordingly, the role of textual modal-
ity for multimodal ICL should be similarly im-
portant. Therefore, we keep the visual modality
of demonstrations while performing the follow-

6We show performance of IDEFICS1-80B in Fig. 3 on all
tasks except KIE, which is too challenging for IDEFICS1-80B
to handle in both zero- and few-shot settings (at most 3 of 200
testing examples are answered correctly). Only IDEFICS2-
8b can solve considerable amounts of cases (30 out of 200
in 4-shot setting), hence we perturb modality information on
IDEFICS2-8b instead.

ing perturbations upon textual question and an-
swer pairs: 1) no questions/answers remove the
question/answer component directly; 2) random
questions/answers employ questions/answers sam-
pled from the train set instead; 3) permuted ques-
tions/answers exchange question or answer compo-
nent of demonstration examples while keeping the
other two components unchanged.

Results In Fig. 3b, we visualize ICL performance
in response to perturbations upon questions or an-
swers of demonstrations independently. We find
that textual perturbations hurt ICL performance to
different extents. On tasks such as BenchLMM
Sensor, Slake-VQA and KIE, perturbations on ei-
ther questions or answers lead to greatly reduced ac-
curacy even below zero-shot inference. By replac-
ing correct answers from demonstrations with ran-
dom ones or those misaligned with image-question
pairs, we observe extremely bad performance on
Slake-VQA and KIE. On other tasks, questions and
answers are almost equally important to ICL.

5 How to Select Effective Demonstrations
for Multimodal ICL

Motivated by variational roles of different modal-
ities across different tasks, we further explore in-
fluence of modality-driven demonstration selection
strategies on ICL performance in this section.

Vision-driven Demonstration Selection To re-
trieve demonstrations containing images similar to
those in testing examples, we follow prior stud-
ies (Alayrac et al., 2022; Sun et al., 2023; Yang
et al., 2024) by adopting the RICES strategy (Yang
et al., 2022), which compares visual similarity ac-
cording to features extracted from the pretrained
visual encoder of CLIP (Radford et al., 2021).

Text-driven Demonstration Selection For fair
comparison with RICES, we employ the textual
encoder of CLIP as well for selecting demonstra-
tions with similar textual features to testing exam-
ples. We also adopt the BERTScore (Zhang et al.,
2019) metric 7, which considers token-level similar-
ity between candidate and reference sentences and
shows a strong correlation with human judgements
on multiple common benchmarks.

7We adopt the DeBERTa large model fine-tuned
with MNLI task, which is accessible at https://
huggingface.co/microsoft/deberta-large-mnli.
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Figure 4: Influence of modality-driven demonstration selection strategies on ICL performance of IDEFICS1-80B.
Text-driven demonstration (e.g., textual CLIP, BERT, and BERTScore) selection strategies always bring
performance improvement over zero-shot inference and random strategy. Strategies considering visual modality
(e.g., visual CLIP, MMICES, and ALBEF) enhance performance significantly on KIE, where visual modality
proves to be critical for ICL performance as illustrated in Fig. 3a. We visualize similar observations of other five
models from Fig. 14 to Fig. 18.

Dual-modality driven Demonstration Selection
We first consider Mixed Modality In-Context Ex-
ample Selection (MMICES) proposed by Chen
et al. (2023), which first pre-filters K samples
(K=32) based on visual feature similarity and then
selects the most similar ones based on textual sim-
ilarity. To represent vision-language features, we
utilize ALBEF (Li et al., 2021), a multimodal en-
coder that explicitly models the interactions be-
tween image and text features and achieves state-
of-the-art performance on image-text retrieval tasks.
Since its multimodal encoder is built upon an image
encoder (i.e., visual transformer ViT-B/16) and a
text encoder (i.e., BERTbase), we also select demon-
strations according to the embedding of the [CLS]
token from BERTbase as another textual-driven ap-
proach for contrast. For fair comparison, the vision-
driven CLIP approach, the visual feature extractor
of MMICES, and the visual encoder of ALBEF
share the same visual transformer (i.e., ViT-B/16).

Considering the sensitivity of LLMs to the or-
dering in the prompt (Lu et al., 2022; Wu et al.,
2023), we follow prior work (Alayrac et al., 2022;
Gupta et al., 2023) with demonstrations ordered
by an increasing order of similarity, such that the
most similar demonstration appears right before
the testing example.

Results We illustrate influence of demonstration
selection strategies on ICL performance in Fig. 4.
Providing demonstrations selected by textual simi-
larity benefits ICL performance consistently across
models and tasks. This is consistent with litera-
ture (Chen et al., 2023) and our observations in §4.2
that the textual modality plays an important role in
ICL performance. In general, the larger text embed-

ding model–BERTScore (124M parameters) leads
to better ICL performance compared with smaller
models like textual CLIP (63M parameters) and
BERT (124M parameters).

As analyzed in §4.1, visual information of
demonstrations is of vital importance to ICL per-
formance for the task KIE that requires key-value
pair extraction from images. Accordingly, we wit-
ness drastically improved ICL performance when
demonstrations containing more similar images to
testing images are provided by visual CLIP.

Strategies that consider dual modalities for
demonstration selection (e.g., MMICES and AL-
BEF) are similarly more advantageous compared
with text-driven methods on KIE. We also find
that they achieve trade-off performance regardless
of various modality importance to specific tasks.
Meanwhile, ALBEF which explicitly models the in-
teractions between image and text features obtains
better ICL performance than MMICES, which is
constrained by the vision-driven pre-filter process.

6 Models May Capture Task Inductive
Biases from Multimodal ICL

Prior work on NLP tasks shows that small language
models like GPT-J-6B (Wang and Komatsuzaki,
2021) and PaLM-8B (Chowdhery et al., 2023) rely
primarily on semantic priors from pretraining (Min
et al., 2022), while large models such as PaLM-
540B and InstructGPT (Ouyang et al., 2022) can
capture and follow inductive biases from in-context
exemplars, performing a wide range of tasks even if
those tasks are not seen (Garg et al., 2022; Akyürek
et al., 2022) in or even contradict (Wei et al., 2023)
pretraining data. However, it is unknown whether
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Figure 5: The ability to capture inductive biases that contradict semantic priors when presented with flipped
in-context exemplar annotations of AMBER Attribution emerges when demonstrations are selected according to
textual modality (i.e., textual CLIP, BERT and BERTScore). Ground truth annotations for testing examples
are not flipped, so if a model learns to follow flipped labels in demonstrations, its accuracy should be below 50%.
Given random demonstrations or those selected considering visual modality , models cannot flip predictions to
follow flipped annotations, while models can do so provided with demonstrations selected by text-driven strategies
(performance decreases to well below 50%). We show similar observations on Existence and Relation in Fig. 19.

capturing inductive biases is still an emergent abil-
ity of model scale for multimodal ICL. We exper-
iment with three benchmarks where the inductive
bias contradicts semantic priors ( Fig. 2 left) or are
rarely seen ( Fig. 2 middle & right) in pretraining.

6.1 Benchmarks

Flipped Labels We flip original labels from the
hallucination benchmark AMBER (Wang et al.,
2023). The selected demonstration is labeled as
“Yes” if the description in the question is WRONG
according to the image, “No” otherwise.

Visual Hallucination We adopt the VQAv2-
IDK benchmark (Cha et al., 2024). It contains
hallucination-inducing scenarios, where providing
definitive answers is challenging and responses
such as “I Don’t Know” are desired. Multimodal
LLMs are typically pretrained on true positives
only but rarely on such hallucination-inducing sce-
narios, hence striving to answer with hallucination.

Counting Characters Recent state-of-the-
art LLMs are capable of performing com-
plex reasoning (LlamaWebsite, 2024), math
problem-solving (QwenLM, 2024), code gen-
eration (CodeGemmaTeam, 2024) and even
challenging Mathematical Olympiad (IMO)
tasks (DeepMind, 2024), but fail to handle
problems that humans find trivial, e.g., counting
the number of r’s in the word “strawberry” or
“barrier” (Ball et al., 2024; Shin and Kaneko, 2024;
Yehudai et al., 2024). Interestingly, we find it

similarly challenging for multimodal LLMs to
count the occurrence of characters when the word
is displayed as an image (i.e., individual black
word plotted on white background). We investigate
whether multimodal LLMs can discover and follow
the inductive bias of character counting from
demonstrations, which is probably rarely seen
during model pretraining.

6.2 Implementation Details
We evaluate 500 testing instances in the 8-shot set-
ting for all benchmarks, where demonstrations per
testing instance are randomly sampled from 5, 000
candidates 8. For Flipped Labels where inductive
bias conflicts with semantic priors, we compare
8-shot performance with the random guess (i.e.,
50% accuracy for the yes/no questions). For the
other two benchmarks where inductive bias from
demonstrations is rarely seen during pretraining
and expected to help models better perceive and
address tasks, we compare few-shot with zero-shot
results to learn whether inductive bias is captured.

6.3 Induct Bias Contradicting Semantic
Priors

We show the abilities of different models for captur-
ing inductive biases from demonstrations in Fig. 5.
We flip annotations of demonstrations while keep-
ing the ground-true answers of testing examples un-
flipped, hence the lower the accuracy, the stronger

8On VQAv2-IDK, we test on 500 unanswerable questions
with demonstrations selected from a set of 5, 000 answerable
and 5, 000 unanswerable questions to ensure models are not
guided to reject to answer no matter what question is pre-
sented.
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Setting OpenFlamingo-4B IDEFICS2-8b OpenFlamingo-9B IDEFICS1-9b Emu1-14B IDEFICS1-80b GPT-4o

Visual Hallucination
0-shot 12.0 0.6 17.4 0.6 0.4 2.0 28.2
Random 76.2 37.4 73.2 61.4 37.6 59.6 33.4
visual: CLIP 79.2 38.8 71.6 68.6 49.4 64.4 40.0
textual: CLIP 79.2 49.0 70.4 66.0 53.2 62.0 41.2
textual: BERT 85.6 63.2 75.0 74.8 60.2 74.4 46.6
textual: BERTScore 84.2 62.2 74.6 74.4 57.8 75.8 44.2
dual: MMICES 78.8 43.6 70.4 69.4 49.8 64.6 39.8
dual: ALBEF 83.4 55.8 71 72.6 57.0 70.0 43.4

Counting Characters
0-shot 19.6 68.8 9.4 60.6 24.6 36.4 77.4
Random 70.2 78.6 60.4 75.0 79.4 76.6 91.4
visual: CLIP 70.6 79.0 57.4 76.6 78.8 76.2 90.6
textual: CLIP 68.0 79.0 48.8 75.6 79.4 78.0 88.0
textual: BERT 56.4 77.4 38.2 75.4 79.4 70.0 85.8
textual: BERTScore 58.8 75.4 39.6 76.0 79.0 73.6 88.0
dual: MMICES 56.8 75.8 41.4 70.6 77.8 69.8 91.8
dual: ALBEF 66.2 78.0 40.4 73.6 77.8 74.0 84.6

Table 1: The capability to capture inductive biases that are rarely seen in pretraining emerges in multimodal ICL.
Multimodal LLMs are able to capture and follow inductive bias, hence reducing hallucination in responses to
unanswerable questions (top) and more accurately counting characters within queried words (bottom).

the capabilities of multimodal LLMs to capture in-
ductive biases and further override semantic priors
learned during pretraining. When provided with
demonstrations randomly sampled or selected ac-
cording to similarities of visual features (i.e., visual
CLIP), all evaluated models fail to comprehend or
follow practices against prior knowledge. This is
consistent with existing studies showing that small
language models ignore flipped labels presented in-
context and thus rely primarily on semantic priors
from pretraining (Wei et al., 2023). Surprisingly,
all studied small-scale models tend to follow in-
ductive biases from demonstrations with accuracy
well below 50% when we switch demonstrations to
those selected according to textual similarities (e.g.,
textual CLIP, BERT, BERTScore). We suspect that
flipped annotations mainly convey inductive biases
through texts, which makes text-driven selection
strategies effective in guiding the behavior of small
models to override semantic priors.

Notably, GPT-4o always follows the strong se-
mantic priors and provides factual responses even
when the demonstration annotations are flipped,
which is quite opposite to the emergent ability
unlocked of model scale discovered in the liter-
ature (Wei et al., 2022a, 2023). However, GPT-4o’s
failure to provide flipped answers following demon-
strations does not indicate such a large model is
unable to capture those inductive biases. We specu-
late that GPT-4o may be able to perceive provided
biases that are against semantic priors, but reject to
give non-factual responses due to its built-in safety

mechanisms across modalities (OpenAI, 2024).

6.4 Inductive Bias Rarely Seen in Pretraining
In Tab. 1, we study whether models can capture
inductive bias rarely seen in pretraining in multi-
modal ICL. In zero-shot setting, we observe quite
poor performance consistently across studied mod-
els on two datasets. Although current models rarely
see unanswerable questions during pretraining, we
observe emergent abilities to answer unanswerable
questions without hallucination in multimodal ICL
(top in Tab. 1), especially with demonstrations se-
lected by text-driven strategies. As shown at the
bottom of Tab. 1, the accuracy of character count-
ing improves greatly in ICL compared with zero-
shot. Vision-driven demonstration selection strat-
egy CLIP is more effective than others. Text-driven
strategies do not achieve top performance, which is
reasonable since key information to answer ques-
tions comes from letters in the image, rather than
the text part.

7 Conclusion

We conduct a systematic and principled evaluation
of multimodal ICL for models of different scales on
a broad spectrum of new yet critical tasks. We find
that modalities matter differently in multimodal
ICL across tasks. Hence we utilize modality-driven
demonstration strategies to boost ICL performance.
Moreover, we find that demonstrations selected
according to textual similarity help models capture
inductive biases from multimodal ICL.
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Limitations

We conduct a systematic and principled evaluation
of multimodal ICL for pretrained models of differ-
ent scales on a broad spectrum of new yet critical
tasks. One limitation of our study is lack of dis-
cussion over instruction-tuned models, which may
present differently than pretrained ones.
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This paper presents comprehensive study of multi-
modal ICL on multiple existing benchmarks that
have gone through ethical reviews in prior works.
Therefore, we believe our work does not pose addi-
tional ethical issues.
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Capabilities Tested Dataset #Train #Test Metric References

Captioning Image
COCO 2,815,816 500 CIDEr Chen et al. (2015)
Flickr30K 29,000 500 CIDEr Young et al. (2014)

General visual perception
and textual understanding

OKVQA 9,009 500 Accuracy Marino et al. (2019)
VQAv2 443,757 500 Accuracy Goyal et al. (2017)
TextVQA 34,602 500 Accuracy Sidorov et al. (2020)
VizWiz 20,523 500 Accuracy Gurari et al. (2018)

In-context Learning VL-ICL∗ 9,960 1,120 Accuracy Zong et al. (2024)

Mathematical Reasoning MATH-Vision 2,540 500 Accuracy Wang et al. (2024)

Hallucination
AMBER Existence 8,763 500 Accuracy

Wang et al. (2023)AMBER Attribute 7,124 500 Accuracy
AMBER Relation 1,163 500 Accuracy

Text-rich Visual
Comprehension

OCRBench∗ 53,991 900 Accuracy Liu et al. (2023)
SEED-Bench-2-Plus∗ 1,174 1,103 Accuracy Li et al. (2024)

Medical
Path-VQA 19,755 500 Token F1 He et al. (2020)
Slake-VQA 9,835 500 Token F1 Liu et al. (2021)
PAD-UFES-20 994 500 Accuracy Pacheco et al. (2020)

Multiple Images Seed-Bench-2 3,751 2,260 Accuracy Li et al. (2024)

Cross-style
BenchLMM Artistic 100 400 Accuracy

Cai et al. (2023)BenchLMM Sensor 300 400 Accuracy
BenchLMM Application 367 400 Accuracy

Table 2: Evaluation benchmark statistics. We adopt the default train and test split as the demonstration candidates
and testing examples if the testing annotations are provided, otherwise the validation split is used instead. We
randomly sample at most 500 instances for testing. The three datasets marked by ∗ are composed of multiple subsets
and we consider average performance for analysis, leaving detailed results in Appendix.

Multimodal LLMs Visual Encoders LLMs #Params

openai CLIP ViT-L/14 togethercomputer/RedPajama-INCITE-Base-3B-v1 4B
OpenFlamingo-4B

https://huggingface.co/openflamingo/OpenFlamingo-4B-vitl-rpj3b

openai CLIP ViT-L/14 anas-awadalla/mpt-7b 9B
OpenFlamingo-9B

https://huggingface.co/openflamingo/OpenFlamingo-9B-vitl-mpt7b

laion/CLIP-ViT-H-14-laion2B-s32B-b79K huggyllama/llama-7b 9B
IDEFICS1-9B

https://huggingface.co/HuggingFaceM4/idefics-9b

laion/CLIP-ViT-H-14-laion2B-s32B-b79K huggyllama/llama-65b 80B
IDEFICS1-80B

https://huggingface.co/huggyllama/llama-65b

IDEFICS2-8B google/siglip-so400m-patch14-384 mistralai/Mistral-7B-v0.1 8B
https://huggingface.co/HuggingFaceM4/idefics2-8b-base

EVA-CLIP LLaMA 14B
Emu1

https://huggingface.co/BAAI/Emu/blob/main/Emu-pretrain.pt

Table 3: Information of tested multimodal LLMs, their visual encoder, text models, number of parameters and the
download links on Hugging face.

3312

https://huggingface.co/openflamingo/OpenFlamingo-4B-vitl-rpj3b
https://huggingface.co/openflamingo/OpenFlamingo-9B-vitl-mpt7b
https://huggingface.co/HuggingFaceM4/idefics-9b
https://huggingface.co/huggyllama/llama-65b
https://huggingface.co/HuggingFaceM4/idefics2-8b-base
https://huggingface.co/BAAI/Emu/blob/main/Emu-pretrain.pt


0 4 8
25

50

75

100

125

CI
DE

r

COCO

0 4 8
20

40

60

80

CI
DE

r

Flickr30K

0 4 8

20

30

40

VQ
A 

Ac
cu

ra
cy

OKVQA

0 4 8
30

40

50

60

VQ
A 

Ac
cu

ra
cy

VQAv2

0 4 8

20
25
30
35
40

VQ
A 

Ac
cu

ra
cy

TextVQA

0 4 8

20

40

60

VQ
A 

Ac
cu

ra
cy

VizWiz

0 4 8
10

15

20

25

30

VQ
A 

Ac
cu

ra
cy

VL-ICL
OpenFlamingo-4B
IDEFICS2-8b
OpenFlamingo-9B
IDEFICS1-9b
Emu1-14B
IDEFICS1-80b

Figure 6: Evaluation on existing ICL tasks including image captioning (COCO and Flickr30K), general-purpose
VQA (OKVQA, VQAv2, TextVQA and VizWiz) and recently released VL-ICL benchmark. We observe ICL
abilities in general, with different levels across tasks, models and demonstration amounts: Emu1 benefits less from
provided demonstrations compared with others, while two OpenFlamingo models exhibit worse performance when
8 demonstrations are provided. Refer to Fig. 7 for GPT-4o performance and Fig. 9 for detailed results on each
subset of the VL-ICL benchmark.
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Figure 7: Performance of GPT-4o on existing ICL
benchmarks. GPT-4o obtains much better performance
when more demonstrations are given as the context.9
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Figure 8: More comprehensive ICL capability evaluation of pretrained models (top 3 row) and GPT-4o (bottom
row) on recently proposed benchmarks. Pretrained models exhibit ICL abilities across different tasks, while GPT-4o
achieves much higher zero-shot performance but benefits merely from provided demonstrations.
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Figure 9: Detailed evaluation on VL-ICL Bench for multimodal in-context learning.
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Figure 10: Detailed performance of GPT-4o on VL-ICL
Bench for multimodal in-context learning.
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Figure 11: Detailed evaluation on OCRBench (top) and SEED-Bench-2-Plus (bottom) for accessing Optical
Character Recognition (OCR) capabilities.
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Figure 12: Detailed evaluation on SEED-Bench-2 for the ability to comprehend multiple images and texts.
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Figure 13: Detailed evaluation of GPT-4o on OCRBench (top), SEED-Bench-2-Plus (middle) and SEED-Bench-2
(bottom).
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Figure 14: ICL performance of OpenFlamingo2-4B against perturbations over visual (top) and textual (middle)
modalities and different demonstration selection strategies (bottom).
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Figure 15: ICL performance of IDEFICS2-8b against perturbations over visual (top) and textual (middle) modalities
and different demonstration selection strategies (bottom).
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Figure 16: ICL performance of OpenFlamingo-9B against perturbations over visual (top) and textual (middle)
modalities and different demonstration selection strategies (bottom).
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Figure 17: ICL performance of IDEFICS1-9b against perturbations over visual (top) and textual (middle) modalities
and different demonstration selection strategies (bottom).
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Figure 18: ICL performance of Emu1-14B against perturbations over visual (top) and textual (middle) modalities
and different demonstration selection strategies (bottom).
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Figure 19: The abilities to capture inductive biases with flipped in-context annotations on AMBER Existence and
Relation dataset.
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