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Abstract

Recent research efforts have explored the po-
tential of leveraging natural language inference
(NLI) techniques to enhance relation extraction
(RE). In this vein, we introduce METAENTAIL-
RE, a novel adaptation method that harnesses
NLI principles to enhance RE performance.
Our approach follows past works by verbal-
izing relation classes into class-indicative hy-
potheses, aligning a traditionally multi-class
classification task to one of textual entailment.
We introduce three key enhancements: (1)
Meta-class analysis which, instead of labeling
non-entailed premise-hypothesis pairs with the
less informative “neutral” entailment label, pro-
vides additional context by analyzing overarch-
ing meta-relationships between classes; (2) Fea-
sible hypothesis filtering, which removes un-
likely hypotheses from consideration based on
domain knowledge derived from data; and (3)
Group-based prediction selection, which fur-
ther improves performance by selecting highly
confident predictions. METAENTAIL-RE is
conceptually simple and empirically powerful,
yielding significant improvements over conven-
tional relation extraction techniques and other
NLI formulations. We observe surprisingly
large F1 gains of 17.6 points on BioRED and
13.4 points on ReTACRED compared to con-
ventional methods, underscoring the versatility
of METAENTAIL-RE across both biomedical
and general domains.

1 Introduction

Relation extraction (RE) is an NLP task that dis-
tills factual information from text by identify-
ing relationships between entities in the form of
fact triplets (e.g.,〈head, relation, tail〉) (Califf and
Mooney, 1997; Mintz et al., 2009; Soares et al.,
2019; Wan et al., 2023). RE facilitates various
downstream applications such as knowledge graph
construction, question answering, and information
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retrieval (Yuan et al., 2022; He et al., 2023; Ya-
mada et al., 2023); however, creating datasets for
training RE models is costly and challenging, re-
quiring annotators to identify entities and relations
across large sections of text (Yao et al., 2019; Luo
et al., 2022).

Recent efforts have explored adapting the RE
task into a natural language inference (NLI) task,
where the goal is to determine whether a given hy-
pothesis logically follows from, contradicts, or is
neutral with respect to a premise. This adaptation
enables the use of relatively large NLI datasets to
improve performance on an RE-adapted task (Sainz
et al., 2021, 2022; Xu et al., 2023). RE-to-NLI
works transform relation instances into premises
paired with m class-indicative hypotheses where m
is the number of relation classes in a dataset. A lan-
guage model is trained to label premise-hypothesis
pairs as entailed, contradicted, or neutral. We build
on this work by introducing METAENTAIL-RE, a
novel NLI adaptation method that improves RE per-
formance by leveraging three key enhancements:
automatic feasible hypothesis filtering, meta-class
analysis, and group-based prediction selection.

Feasible hypothesis filter: We first introduce
a feasible hypothesis filter that automatically re-
moves infeasible hypotheses based on domain
knowledge derived from data. To develop this filter
automatically, we approximate valid sets of entity-
type pairs corresponding to each relation class by
aggregating all relations in the training data. These
approximated sets of valid type-pairs are then used
to remove hypotheses that verbalize infeasible rela-
tionships. For instance, in the BioRED dataset (Luo
et al., 2022), it is impossible for a gene to “bind”
to a disease (i.e., the “bind” label is not applicable
to gene-disease entity-type pairs). We therefore
remove the “bind” hypothesis from all instances
with gene-disease entity types. This filter improves
training efficiency by reducing the number of NLI
instances.
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Meta-class analysis: In past RE-to-NLI works,
if a premise does not entail a hypothesis, the cor-
responding NLI label assigned is “neutral” (Sainz
et al., 2021; Xu et al., 2023). However, this misses
an implicit training signal we can gain by analyzing
the semantics of a dataset’s relation classes. When
assigning NLI labels to adapted RE instances, we
distinguish between task-based mutual exclusiv-
ity and definition-based mutual exclusivity. Task-
based mutual exclusivity is an artifact of the single-
class classification task inherent to a dataset. Each
input instance is annotated with a single relation
class, thereby arbitrarily making all classes mutu-
ally exclusive. In contrast, definition-based mutual
exclusivity is derived from definitions of relation
classes. For example, within the BioRED dataset
(Luo et al., 2022), the “positive correlation” class
is definitionally mutually exclusive and contradic-
tory to the “negative correlation” class (Luo et al.,
2022).

If two classes are definitionally mutually exclu-
sive, we apply the “contradict” label to the appro-
priate premise-hypothesis pair, thereby injecting
additional information about the meta-relationship
between relation classes which the model can ex-
ploit while learning relationship representations.
Leveraging this insight, we can glean multiple in-
formative training signals from a single relation
instance when adapting the relation extraction task
into the natural language inference task. We call
this method meta-class analysis (MCA) and use it
to determine the appropriate NLI labels for each
premise-hypothesis pair. We show through ablation
experiments that MCA leads to significant gains on
an RE-adapted task.

Group-based prediction selection: Group-
based prediction selection exploits the feature of
RE-to-NLI adaptation in that each relation instance
is converted into a group of premise-hypothesis
pairs where each hypothesis verbalizes a relation
class in the dataset. When evaluating cases where
the model predicts multiple “entail” labels within a
single group, we can select the most confident “en-
tail” prediction and ignore other predictions. Our
results demonstrate that this group-based predic-
tion selection method leads to additional gains.

METAENTAIL-RE as an RE-to-NLI adaptation
method is technically domain agnostic; however, it
is particularly well-suited for biomedical RE where
associations often have opposing classes such as
“positively correlated” and “negatively correlated”
(Luo et al., 2022) or “agonist” and “antagonist”

(Taboureau et al., 2010) enabling a rich MCA. We
also find that associations in biomedical RE are
often type-dependent compared to general domain
RE, making the feasible hypothesis filter more ef-
fective at trimming infeasible hypotheses. Still, we
extend our evaluations beyond the biomedical do-
main to determine how METAENTAIL-RE fares on
general domain RE datasets. Notably, we observe
improvements in both domains, reinforcing the ef-
fectiveness and versatility of METAENTAIL-RE.
We summarize the main contributions of this work
as the following:
• We introduce a novel RE-to-NLI adaptation

method, METAENTAIL-RE, and showcase its
robustness and versatility in RE datasets from
general and biomedical domains.

• We illustrate through ablation experiments the
effectiveness of components of METAENTAIL-
RE.

• We openly provide all code, experimental set-
tings, and datasets used to substantiate the claims
made in this paper.1

2 Related Work

Traditionally, RE has been approached as a classifi-
cation task, where input instances are classified as
belonging to a relational class (Califf and Mooney,
1997; Mintz et al., 2009; Soares et al., 2019; Wan
et al., 2023). These methods have several draw-
backs: they tend to generalize poorly (Peng et al.,
2020; Xu et al., 2023), and they heavily rely on rel-
atively small and disjoint RE datasets. To account
for these drawbacks, recent works have proposed
clever adaptation methods to recast RE into ad-
jacent NLP tasks, such as a question-answering
(Levy et al., 2017) and NLI (Obamuyide and Vla-
chos, 2018; Sainz et al., 2021, 2022; Xu et al.,
2023). Task adaptation presents an opportunity to
leverage the relatively large datasets available for
other tasks (e.g., SQuAD (Rajpurkar et al., 2016),
MultiNLI (Williams et al., 2018), SNLI (Bowman
et al., 2015), etc.), which can be particularly ad-
vantageous in the context of biomedical RE where
datasets are often limited.

Levy et al. (2017) recast RE into a question-
answering task by associating relation instances
with one or more natural-language questions, re-
sulting in predicted spans denoting class indicative
text. Obamuyide and Vlachos (2018) adapts gen-
eral domain RE into an NLI task by using relation

1https://github.com/wphogan/metaentail-re
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Figure 1: Data flow used for METAENTAIL-RE. The original RE input instance (A) is converted into a premise
where surface forms are masked with corresponding entity types (B). Each relation class is verbalized into a
hypothesis (C), and a feasible hypothesis filter (D) removes infeasible hypotheses based on the pair of entity types.
NLI labels are generated via meta-class analysis (E), which are the labels used to fine-tune an LLM via cross-entropy
(F). Finally, we use softmax probabilities as a proxy for the model’s confidence and select the most confident “entail”
prediction among the group of predictions (G). Note that the model makes three predictions in this example—one
for each feasible hypothesis. The second “entail” prediction is incorrect but the group-based prediction module
selects the first and correct “entail” prediction by assessing the model’s confidence.

instances as premises where each premise is paired
with a hypothesis generated by verbalizing a re-
lation class. In doing so, they formulate a binary
entailment task where they predict whether or not
a premise entails the corresponding hypothesis.

Sainz et al. (2021) expands on Obamuyide and
Vlachos (2018) by incorporating a three-label clas-
sification objective where a model can predict
entail, contradict, and neutral depending on the
premise-hypothesis pair, bringing the task in line
with a standard NLI formulation (Dagan et al.,
2005). They manually generate hypothesis tem-
plates corresponding to each relation class in a
dataset, and NLI labels are assigned based on the
alignment of the premise-hypothesis pair. If the
corresponding hypothesis is the verbalized version
of the ground truth relation label, then “entail” is
assigned as the NLI label for the instance. The
“neutral” label is applied to positive class hypothe-
ses which do not align with a given premise. The
“contradict” label is applied in two cases: (1) if the
premise is a positive relation instance (e.g., any
class other than “no relation”), the “no-relation”
hypothesis is labeled as “contradict,” and (2) if
the premise is a negative instance (e.g., “no rela-
tion”), then all other positive class hypotheses are
labeled as “contradict.” Sainz et al. (2021) fine-
tune a language model pre-trained on the MultiNLI
(Williams et al., 2018) dataset to predict generated
NLI labels. They observe impressive results in
zero- and few-shot scenarios on TACRED (Zhang
et al., 2017), a general domain, sentence-level RE
dataset.

Xu et al. (2023) explores cross-domain trans-
fer learning, leveraging indirect supervision from
general domain NLI datasets to improve biomed-
ical RE-to-NLI adapted methods. Our work can
be considered an extension of their proposed NBR
method. However, we introduce a few key improve-
ments: meta-class analysis, a feasible hypothesis
filter, and group-based prediction selection. We
also expand evaluations beyond sentence-level RE
to include more challenging document-level RE (Li
et al., 2016; Luo et al., 2022).

3 Problem Statement

Our problem is a hybridization of RE and NLI; as
such, we describe both tasks, as well as the adapted
RE-to-NLI task.

Relation Extraction (RE): RE takes inputs
{x1, x2, . . . , xn} ∈ XRE where XRE is a corpus of
sentences, paragraphs, or documents of size n and
xi is a singular instance containing an entity pair ei1
and ei2 . Each input xi has a corresponding label yi.
Labels {y1, y2, . . . , yn} = YRE belong to a set of
m relation classes R = {r1, r2, . . . , rm}. RE seeks
to identify which class links the co-mentioned enti-
ties to form a fact triplet ⟨ei1 , yi, ei2⟩, or, semanti-
cally, 〈head, relation, tail〉.

Natural Language Inference (NLI): NLI takes
a premise pi ∈ P and a hypothesis hi ∈ H ,
where P and H are the set of premises and hy-
potheses in a corpus, respectively, and seeks to
determine whether the premise entails, contradicts,
or is neutral to the respective hypothesis (Dagan
et al., 2005; Bowman et al., 2015). Using ŷi to
represent an NLI label applied to the ith instance,
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ŷi ∈ {entail, contradict, neutral}, and a single
NLI example can be expressed as ⟨pi, ŷi, hi⟩.

RE-to-NLI Adaptation: RE-to-NLI adapta-
tion converts RE inputs and labels into premise-
hypothesis pairs such that each input instance
maps to |R| premise-hypotheses pairs: (xi, yi) →
{(pi, ŷj , hj)}|R|

j=1. We decompose RE-to-NLI adap-
tation into the following sub-steps:
(a) Premise generation, xi → pi: Input in-

stances xi ∈ XRE directly become premises
pi ∈ P |XRE| where P is the collection of all
premises generated from XRE.

(b) Hypothesis generation, Hi = {hj}|R|
j=1: In the

hypothesis generation step, a set of hypothe-
ses Hi paired with each premise pi. This is
achieved by first verbalizing relation classes
in R into a set of m hypothesis templates
T = {t1, t2, . . . , tm}. Each hypothesis tem-
plate contains head and tail entity placehold-
ers, which are replaced by the head and tail
entities found in the corresponding premise
pi. The verbalizer function fverbalizer(·) takes
each hypothesis template and entity pair in
premise pi to produce the set of hypotheses
Hi = {fverbalizer(tj , ei1 , ei2)}

|R|
j=1.

(c) NLI label generation, Ŷ = {ŷi}|XRE|×|R|
i=1 :

The set of NLI labels Ŷ is generated via a
function which takes the original instance
label yi and the premise-hypothesis pair
ftarget(yi, pi, hj) → ŷj where NLI label ŷj =
entail iff verbalized class-indicative hypoth-
esis hj aligns with the ground truth label yi,
and, depending on the adaptation method, ŷj
is assigned neutral or contradict for non-
aligned hypotheses.

The RE-to-NLI task is to correctly predict en-
tailed premise-hypothesis pairs where each entailed
pair has a 1-to-1 mapping to the original RE label.

4 Methods

This section sequentially discusses the modules
used in METAENTAIL-RE (see Figure 1).

Premise Construction: Following Xu et al.
(2023), a relation instance xi is transformed into a
premise by replacing surface forms of the subject
and object entities, e1 and e2, respectively, with
their corresponding entity types, e1type and e2type .
Abstracting entity surface forms into entity types
helps alleviate the long-tail nature of biomedical
entities and encourages language models to learn
from context instead of shallow heuristics (Peng

et al., 2020). The start and end spans of entity types
are denoted with “@” and “$,” respectively.

Hypothesis Verbalizer: Past works have manu-
ally generated hypothesis templates for each rela-
tion class in a dataset which are then used, in turn,
to generate hypotheses to pair with a given premise.
A secondary contribution of METAENTAIL-RE is
that we reduce this human effort by leveraging
LLMs to automatically generate the set of hypoth-
esis templates {t1, t2, . . . , tm} ∈ T , where m cor-
responds to the number of relation classes in a
dataset. We prompt an LLM2 to verbalize each
relation class using natural language and placehold-
ers for subject and object entities (see Appendix
A.1 for more details). The placeholders within
the hypothesis templates are replaced by the entity
types, e1type and e2type , found in the premise.

Feasible Hypothesis Filter: There is an implicit
multiplicative effect of adapting RE into an NLI
task where each relationship instance produces m
class-indicative hypotheses resulting in |XRE| ×m
premise-hypothesis pairs. To mitigate this effect,
we develop a feasible hypothesis filter which au-
tomatically filters out improbable hypotheses by
aggregating valid sets of entity-type pairs by rela-
tionship classes across all training data: Evalid =
{r1 7→ S1, r2 7→ S2, . . . , rm 7→ Sm} where rj ∈
R for j = 1, 2, . . . ,m and each Sj is the set of
tuples of entity-type pairs associated with all in-
stances of relationship class rj .

Using this filter, we assess the feasibility of
hypotheses given a pair of entity types: Ĥi =

{hj |(e1type , e2type) ∈ Evalid(rj)}|R|
j=1 where Ĥi is

a set of feasible hypotheses given the entity-type
pair found in instance i, and Ĥi ⊂ H where H is
the set of all possible hypotheses.

Since sets of feasible hypotheses are approxi-
mated using the training data’s relationships and
entity-type pairs, the filter may remove valid hy-
potheses based on an entity-type pair and corre-
sponding relation that exists only in the test set. For
these instances, the entailed premise-hypothesis
pair will not be presented to the model, leading to
false negatives. However, in practice, we observe
that this does not occur with the datasets we use for
evaluation and should not occur as long as training
data is sufficiently representative of the test data
(i.e., the training data contains at least one rela-
tionship with a specific entity-type pair for every
relation and entity-type pair found in the test set).

2We use ChatGPT (GPT 3.5) via OpenAI’s web interface.
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Meta-class Analysis (MCA): After apply-
ing the aforementioned feasible hypothesis filter,
we leverage MCA to assign NLI labels, namely
entail, neutral, and contradict, to the resultant
premise-hypothesis pairs. To do this, we first con-
struct definition-based mutually exclusive meta-
relationships between relation classes. For exam-
ple, in the ChemProt dataset, the “up regulator”
class is, by definition, mutually exclusive to the
“down regulator” class. For datasets with a nega-
tive class (e.g., “no relation”), the negative class is
mutually exclusive to all positive classes and vice-
versa. With this analysis, we construct NLI labels
in the following way:
(a) Entail: Premise-hypothesis pairs are labeled

“entail” when the hypothesis hj aligns with the
verbalized ground truth label yi.

(b) Neutral: If the original instance expresses a
positive class (i.e., any class other than the “no
relation” class), then all non-exclusive class
hypotheses are labeled as “neutral.”

(c) Contradict: The “contradict” label is assigned
to hypotheses that verbalize definitionally ex-
clusive classes.

See Appendix A.4 for tables showing how relation
labels map to NLI labels using MCA.

LLM Fine-tuning: With generated premise-
hypothesis pairs, we train a discriminative lan-
guage model, namely BioLinkBERTlarge (Yasunaga
et al., 2022), to predict NLI labels. We concatenate
premise-hypothesis pairs as the input to the lan-
guage model and send the resultant representation
of the special [CLS] token through a fully connected
layer, which is trained using cross-entropy loss:

LCE = −
m∑

i=1

yo,i · log (p (yo,i)) (1)

where y is a binary indicator that is 1 if and only
if i is the correct classification for observation o,
p(yo,i) is the softmax probability that observation
o is of class i, and m is the number of classes.

Group-based Prediction Selection: Given the
multiplicative effect of adapting RE-to-NLI where
one relation instance results in a group of up to
m premise-hypothesis pairs, we can employ a
group selection method to select the most confi-
dent entail prediction. If the model predicts two or
more entailed instances within a group of premise-
hypothesis pairs, we use the softmax probabil-
ity from Equation 1 as a proxy for model confi-
dence (Hendrycks and Gimpel, 2017) and select
the prediction with the highest confidence. We al-
low the model to naturally abstain from making a

prediction by predicting “neutral” for all premise-
hypothesis pairs in a group.

5 Experiments

5.1 Datasets

We include a spread of experiments on various
biomedical RE datasets. BioRED is a document-
level RE dataset featuring eight relation classes
(Luo et al., 2022). BioRED also provides an or-
thogonal and binary “Novel” class, which anno-
tates whether an instance expresses a novel find-
ing. BC5CDR is a document-level RE dataset
featuring binary relations between chemical and
disease entities (Li et al., 2016). DDI13 is a
drug-drug interaction dataset with four relation
classes (Herrero-Zazo et al., 2013), and ChemProt
is a chemical-protein dataset featuring five rela-
tion classes (Taboureau et al., 2010). GAD is a
gene-disease dataset with binary relations (Bravo
et al., 2014). We only include GAD in our main
experiment for comparative purposes to past works.
We believe that the GAD dataset should be retired
from future works due to significant label accuracy
issues, which the authors acknowledge.3

ChemProt and BioRED, unlike the other datasets
in our experiments, do not annotate negative in-
stances, leading to ambiguity in handling unanno-
tated data. These unannotated instances can be
addressed in three ways: (1) by treating them uni-
formly as a negative class, (2) by considering them
as potential members of novel, unannotated classes,
or (3) by using a generalized approach that consid-
ers unannotated instances as a mix of negative and
novel classes. To avoid this subjectivity, we focus
only on annotated instances for training and eval-
uation, applying this approach consistently across
all datasets to ensure a fair comparison of methods.

As mentioned in Section 1, our method is de-
signed to leverage features of biomedical domain
RE, namely the prevalence of definitionally ex-
clusive classes and the importance of entity types
vis-à-vis feasible relationships. However, we also
seek to assess our method beyond the biomedi-
cal domain and extend our experiments to gen-
eral domain datasets ReTACRED (Stoica et al.,
2021) and SemEval-2010 Task 8 (Hendrickx et al.,
2010). ReTACRED is a re-annotated version of TA-
CRED (Zhang et al., 2017) and features 40 relation
classes—significantly more classes than any of the

3https://github.com/dmis-lab/biobert/issues/
162
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biomedical datasets we tested. SemEval-2010 is a
sentence-level RE dataset with ten relation classes.

5.2 Baselines
5.2.1 Traditional Multi-Class Classification
We select leading biomedical language models
and train them using a traditional RE multi-
class approach where models directly predict re-
lation classes. BioM-ALBERTxxlarge and BioM-
BERTlarge (Alrowili and Shanker, 2021) are trans-
former architectures adapted into the biomedical
domain by using a custom biomedical vocabulary
and pre-training on PubMed abstracts (National
Library of Medicine (US), 1946) and PubMed Cen-
tral articles (National Library of Medicine (US),
National Center for Biotechnology Information,
2000). BioMed RoBERTabase (Gururangan et al.,
2020) features the RoBERTa architecture (Liu et al.,
2019) adapted to the biomedical domain via contin-
ued pre-training on papers from the S2OR Corpus
(Lo et al., 2020). PubMedBERTbase (Gu et al.,
2020) and BioLinkBERTlarge (Yasunaga et al.,
2022) are BERT (Devlin et al., 2019) variants. The
former is trained on PubMed abstracts with a cus-
tom biomedical vocabulary. The latter is trained
with two self-supervised objectives: masked lan-
guage modeling and document relation prediction.

5.2.2 NLI Adapted Models
NBR is a biomedical domain RE-to-NLI method
that leverages BioLinkBERTlarge as a backbone
language model. Like our method, NBR con-
verts relation instances and labels into premise-
hypothesis pairs. Key differences between NBR
and our method are that NBR does not use MCA
or feasible hypothesis filtering, and they leverage
a ranking loss training objective to rank entailed
premise-hypothesis pairs over non-entailed pairs.

The RE-to-NLI adaptation method used in
METAENTAIL-RE is architecture-agnostic, so we
also experiment with auto-regressive architectures.
We conduct the following experiment using identi-
cal data and methods to those discussed in Section
4; the only difference is the final training step.

We fine-tune Phi-2 (2.7B) and Phi-3 (3.8B).4

For Phi-2 and Phi-3, we construct a seq-to-seq task
and fine-tune the models to generate an NLI la-
bel for each premise-hypothesis pair. For more
information about training Phi-2 and Phi-3, see
Appendix A.2.2.

4We use the microsoft/phi-2 and microsoft/Phi-3-mini-4k-
instruct checkpoints from Hugging Face.

We also seek to assess the performance of large,
frontier auto-regressive language models, GPT 3.5
(OpenAI, 2024) and GPT 4 (OpenAI et al., 2024),5

leveraging few-shot, in-context learning. For more
on the prompts we use to solicit predictions from
GPT 3.5 and GPT 4, see Appendix A.2.3.

For all NLI-adapted models, only entailed
premise-hypothesis pairs map directly to the origi-
nal RE training instance. Thus, we only keep NLI
instances labeled or predicted as entailed when
mapping instances back into the original RE la-
bels for evaluation. This ensures a fair comparison
across adapted and non-adapted methods.

5.3 General Domain Experiments
For our general domain experiments, we use
DeBERTaV3large (He et al., 2021) and RoBERTa-
MNLIlarge (Liu et al., 2019). DeBERTaV3
is an improved version of BERT that uses re-
placed token detection, a more sample-efficient
pre-training objective. RoBERTa-MNLIlarge is the
RoBERTa architecture fine-tuned on the MNLI cor-
pus (Williams et al., 2018).6

We make slight modifications to the general
domain version of METAENTAIL-RE. We use
RoBERTa-MNLIlarge as the backbone language
model, and we do not leverage surface-form ab-
straction for entity types (i.e., we leave the original
entities as they appear in the text and do not replace
them with their corresponding types). Entity sur-
face form abstraction is a method developed for the
long-tail nature of biomedical entities (Peng et al.,
2020). Also, some general domain RE datasets,
such as SemEval-2010 Task 8, do not provide an-
notated entity type information.

6 Results

We observe an interesting comparison between
the BioLinkBERTlarge model and METAENTAIL-
RE. Both experiments share the same backbone
language model, yet the performance of our
METAENTAIL-RE method is significantly higher
providing evidence of the effectiveness of adapt-
ing the RE task into one of textual entailment. We
hypothesize that the boost in performance primar-
ily comes from the additional data abstraction RE-
to-NLI introduces by training the model to recog-
nize entailed premise-hypothesis pairs instead of di-

5Specifically, we use gpt-3.5-turbo-0125 and gpt-4-turbo-
2024-04-09 via OpenAI’s API.

6We use the FacebookAI/roberta-large-mnli checkpoint
from Hugging Face.
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Model BC5CDR BioRED BioRED (novel) ChemProt DDI13 GAD
TRADITIONAL MULTI-CLASS CLASSIFICATION

BioM-ALBERTxxlarge (Alrowili and Shanker, 2021) 0.679 0.668 0.863 0.940 0.911 0.815
BioM-BERTlarge (Alrowili and Shanker, 2021) 0.681 0.709 0.904 0.934 0.917 0.795
BioMed RoBERTabase (Gururangan et al., 2020) 0.664 0.714 0.897 0.919 0.911 0.803
PubMedBERTbase (Gu et al., 2020) 0.651 0.715 0.891 0.923 0.916 0.803
BioLinkBERTlarge (Yasunaga et al., 2022) 0.682 0.699 0.899 0.931 0.917 0.806

NLI ADAPTED MODELS

NBR (Xu et al., 2023) 0.679 0.543 0.664 0.883 0.846 0.831
Phi-2 (Li et al., 2023) 0.653 0.715 0.824 0.852 0.873 0.729
Phi-3 (Abdin et al., 2024) 0.749 0.688 0.840 0.930 0.915 0.721
GPT 3.5† (OpenAI, 2024) 0.282 0.470 0.594 0.494 0.386 0.548
GPT 4† (OpenAI et al., 2024) 0.418 0.532 0.680 0.626 0.492 0.660
METAENTAIL-RE 0.757 0.891 0.917 0.968 0.957 0.878

Table 1: Micro F1 scores for traditional RE and NLI adapted methods. †Results from GPT 3.5 and GPT 4 are via
in-context learning (see Appendix A.2.3 for details), whereas other models were fine-tuned directly on the task from
our own implementations. Results show averages over five runs.

rectly predicting suppositional classes. By combin-
ing RE-to-NLI adaptation with surface-form entity
abstraction, the model is less prone to memorizing
entities and shallow heuristics of relation classes;
instead, it must understand the context and the nat-
ural language interplay between a premise and hy-
pothesis. Furthermore, the boost in performance
between the NBR model and METAENTAIL-RE
highlights the effectiveness of leveraging MCA,
feasible hypothesis filtering, and group-based pre-
diction selection.

Within the biomedical domain experiments, the
NLI-adapted auto-regressive models generally un-
derperform compared to the discriminative models.
Predictably, the larger Phi-3 outperforms Phi-2 and
fine-tuning smaller auto-regressive models outper-
forms larger models, GPT 3.5 and GPT 4, lever-
aging few-shot in-context learning. This aligns
with findings from Peng et al. (2024) that LLMs
using in-context learning underperform relative to
smaller, fine-tuned language models on informa-
tion extraction tasks.

We observe better performance from auto-
regressive architectures in the general domain.
The performance from Phi-3 approaches that
of METAENTAIL-RE on both ReTACRED and
SemEval-2010 Task 8 datasets which is promis-
ing for auto-regressive models, in general. We
leave fine-tuning larger auto-regressive models to
future work but expect additional gains to be made,
potentially overtaking the discriminative models.

6.1 Ablation Experiments

We conduct ablations to better understand
METAENTAIL-RE’s performance gains by remov-

Model ReTACRED SemEval
TRADITIONAL MULTI-CLASS CLASSIFICATION

DeBERTaV3large (He et al., 2021) 0.809 0.807
RoBERTa-MNLIlarge (Liu et al., 2019) 0.800 0.828

NLI ADAPTED MODELS

NBR (Xu et al., 2023) 0.875 0.826
Phi-2 (Li et al., 2023) 0.862 0.855
Phi-3 (Abdin et al., 2024) 0.880 0.871
GPT 3.5† (OpenAI, 2024) 0.306 0.340
GPT 4† (OpenAI et al., 2024) 0.565 0.616
METAENTAIL-RE 0.943 0.902

Table 2: Micro F1 scores from general domain RE ex-
periments.

Model BioRED ChemProt ReTACRED
METAENTAIL-RE 0.891 0.968 0.943

(w/o Feasible Hypothesis Filter) 0.876 N/A DNC
(w/o Meta-class Analysis) 0.853 0.911 0.916
(w/o Grouped Selection) 0.805 0.950 0.875

Table 3: Micro F1 scores from ablation experi-
ments which remove each proposed module within
METAENTAIL-RE. Each module has a significant im-
pact on performance. ChemProt is monolithic in its
entity types (chemicals and diseases), which prevents
the use of the feasible hypothesis filter. On ReTACRED,
we observe that without applying the feasible hypothesis
filter, the model does not converge (DNC).

ing modules and reporting the performance. Note
that the performance of BioLinkBERTlarge in Table
1 can be considered an ablation of METAENTAIL-
RE that does not leverage NLI adaptation or any ad-
ditional modules since METAENTAIL-RE uses the
same backbone language model. For our ablations,
we choose to examine the BioRED, ChemProt, and
ReTACRED datasets because they feature more
than two relation classes and contain one or more
definition-based mutually exclusive relations as de-
termined by MCA.
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Figure 2: ∆F1 per relation class when leveraging meta-class analysis to assign NLI labels.

(a) w/o Feasible Hypothesis Filter: We remove
the feasible hypothesis filter, and, in doing
so, each relation instance is converted into m
premise-hypothesis pairs, with m being the
number of classes in a dataset. This produced
a moderate drop in performance on BioRED
(m = 8). Since the feasible hypothesis filter
is based on entity type pairs, it is not available
(N/A) for datasets such as ChemProt, which
only feature a single entity type pair (namely,
chemical and gene) associated with every re-
lation class. However, the feasible hypothesis
filter is essential in model convergence when a
dataset consists of many relation classes, such
as ReTACRED (m = 40). The model did
not converge on ReTACRED without the fea-
sible hypothesis filter, likely due to the over-
whelming number of non-informative “neutral”
premise-hypothesis pairs used in training.

(b) w/o Meta-class Analysis: Removing MCA and
using “neutral” as the NLI label for all non-
entailed premise-hypothesis pairs led to a con-
siderable drop in performance, indicating the
benefit of training the model with the addi-
tional training signal obtained via MCA. Note
that in this ablation experiment, we maintain
mutual exclusive NLI labels between positive
and negative (i.e., “no relation”) classes.

(c) w/o Group Prediction Selection: Without this
module, we select all entailed predictions re-
gardless of how many entail predictions are
made within a group of premise-hypothesis
pairs. Doing this allows the model to predict
multiple classes for a single relation instance.
This ablation experiment led to a drop in per-
formance across all datasets but most signifi-
cantly on BioRED, which we suspect results

from the closeness in BioRED’s “positively
correlated” and “associated” relation classes,
as “associated” can sometimes be considered
a hypernym of “positively correlated,” lead-
ing the model to predict entail for both of the
corresponding hypotheses.

6.2 Meta-class Analysis Case Study

To further explore the impacts of leveraging MCA,
we decompose results from ReTACRED, BioRED,
and ChemProt by evaluating the change in Micro
F1 scores (∆F1) for each class. We isolate the
effect of MCA by training identical models with
and without MCA-informed NLI labels and report
the results in Figure 2.

MCA results in a net benefit in performance
across classes and datasets, but the specific nature
of these benefits varies. In ReTACRED, we ob-
serve notable improvements in the “member of”
and “members” classes, which are definitionally
exclusive. Conversely, some classes experience mi-
nor decreases in performance. For BioRED, we ob-
serve a slight drop in predictive performance for the
“negative correlation” class, while all other classes
get a significant boost. The largest performance
gains are seen in classes that are not mutually exclu-
sive, suggesting that the additional training signal
from MCA aids the model in disentangling adja-
cent relation class representations. In ChemProt,
we observe near-uniform, albeit relatively small,
boosts in performance across all classes. This indi-
cates that MCA has varied effects across disparate
datasets. There is a net benefit but, interestingly, the
exact nature of the benefit varies across datasets.
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6.3 Additional Experiments
Given that RE-to-NLI adaptation leads to models
predicting the same entail, neutral, contradict la-
bels across disparate datasets, we naturally sought
to investigate the potential of combining the rela-
tively small and disjoint biomedical RE datasets
into a single, unified task. Unfortunately, these ex-
periments failed to produce significant performance
gains, indicating that these biomedical datasets
have limited synergistic effects when adapted to
the NLI task (see Appendix A.3).

7 Conclusion

The exploration of NLI techniques to enhance
relation extraction has opened new avenues in
natural language processing, and our study in-
troduces METAENTAIL-RE as an advancement
in this area. By adapting the RE task into an
NLI framework and incorporating innovative strate-
gies such as meta-class analysis, feasible hypothe-
sis filtering, and group-based prediction selection,
METAENTAIL-RE demonstrates remarkable im-
provements in RE performance. Our experiments,
conducted across biomedical and general domain
datasets, highlight the robustness and versatility of
METAENTAIL-RE. By openly sharing our code,
experimental settings, and datasets, we aim to fa-
cilitate further research and development in this
promising intersection of NLI and RE, paving the
way for more sophisticated and accurate informa-
tion extraction systems in diverse domains.

Limitations

METAENTAIL-RE is not without its limitations.
By verbalizing a hypothesis for each relation class,
the training data is multiplied by the number of
relation classes in the dataset, necessitating addi-
tional training resources. Our introduced module,
the feasible hypothesis filter, relies heavily on ac-
curate entity-type information. This information
is crucial for the success of the adaptation process.
However, the filtering process becomes ineffective
if this information is unavailable or if numerous
feasible hypotheses (e.g., 40+) exist for a given re-
lation class and entity type pair. In these scenarios,
the “entail” class becomes a minority class in a sea
of “neutral” NLI instances, potentially causing the
model to collapse to a trivial state of simply pre-
dicting “neutral” for every premise-hypothesis pair.
Such a scenario would require the design of manu-
ally tuned sampling strategies or bespoke learning

objectives to handle the overwhelming number of
“neutral” premise-hypothesis pairs. We defer the
exploration of such challenging settings to future
research.

Additionally, in our study, meta-class analysis
is performed manually, which introduces an extra
layer of human effort. This manual effort involves
reading annotation guidelines for a specific dataset
to determine which relation classes are mutually
exclusive based on their definitions. While this
task is relatively quick and straightforward, it does
require additional human involvement.

Ethics Statement

We do not anticipate any major ethical concerns;
relation extraction is a fundamental problem in nat-
ural language processing. A minor consideration is
the potential for introducing certain hidden biases
into our results (i.e., performance regressions for
some subset of the data despite overall performance
gains). However, we did not observe any such
issues in our experiments, and indeed these con-
siderations seem low-risk for the specific datasets
studied here because they are all published.
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A Appendix

A.1 Automatic Generation of Hypothesis
Templates

To reduce human effort in our methods, we turn to
LLMs, specifically GPT 3.5 (OpenAI, 2024), to au-
tomatically generate hypothesis templates. Some
datasets, such as BC5CDR, GAD, and BioRED
Novel, feature two classes, making the template
generation process relatively trivial. The benefits
of automating the generation of hypothesis tem-
plates are more significant for datasets such as Re-
TACRED, which feature 40 relation classes.

We use the following prompt where the ellipsis
is replaced with the list of natural language rela-
tion classes (e.g., relation classes with underscores
removed and spaces inserted) used in each dataset:

Verbalize the following relation classes in
the form “subj [verbalized relation] obj":
[. . . ].

A special case arose for the DDI13 dataset where
each relation instance describes a relation between
two drugs. We referenced the verbalized hypothe-
ses proposed by Xu et al. (2023) and included in-
structions about describing two drug entities:

Verbalize the following relation classes us-
ing the form "[verbalized relation] two drugs
is described": [. . . ].

Table 4 contains the generated hypothesis tem-
plates for each dataset.

A.2 Baselines

A.2.1 GPU Resources
All baselines were trained on a single NVIDIA
A100, and training times ranged from 1 to 12 hours,
changing based on the size of the dataset and the
number of parameters in the model.
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Dataset Relation Classes Hypothesis Templates
BC5CDR Associated “subj is associated with obj.”

Not Associated “subj is not associated with obj.”
BioRED Positive Correlation “subj positively correlates with obj.”

Negative Correlation “subj negatively correlates with obj.”
Association “subj is associated with obj.”
Comparison “subj is compared with obj.”
Conversion “subj converts to obj.”
Cotreatment “subj is co-treated with obj.”
Drug Interaction “subj interacts with obj (as drugs).”
Bind “subj binds to obj.”

BioRED Novel Novel “subj introduces a novel relationship to obj.”
Not novel “subj does not introduce a novel relation to obj.”

ChemProt Upregulator “subj upregulates obj.”
Downregulator “subj downregulates obj.”
Agonist “subj acts as an agonist for obj.”
Antagonist “subj acts as an antagonist for obj.”
Substrate “subj is a substrate for obj.”

DDI13 Advise "Advice regarding two drugs is described.”
Effect "An effect between two drugs is described.”
Interaction "An interaction between two drugs is described.”
Mechanism "The mechanism involving two drugs is described.”

GAD Associated “subj is associated with obj.”
Not Associated “subj is not associated with obj.”

ReTACRED No relation “subj has no relation with obj.”
Org:alternate names “subj has alternate names as obj.”
Org:city of branch “subj’s branch is located in the city of obj.”
Org:country of branch “subj’s branch is located in the country of obj.”
Org:dissolved “subj has been dissolved.”
Org:founded “subj was founded on the date obj.”
Org:founded by “subj was founded by obj.”
Org:member of “subj is a member of obj.”
Org:members “subj has members including obj.”
Org:number of employees/members “subj has obj number of employees/members.”
Org:political/religious affiliation “subj has political/religious affiliation with obj.”
Org:shareholders “subj has shareholders including obj.”
Org:state or province of branch “subj’s branch is located in the state or province of obj.”
Org:top members/employees “subj’s top members/employees include obj.”
Org:website “subj’s website is obj.”
Per:age “subj’s age is obj.”
Per:cause of death “subj’s cause of death is obj.”
Per:charges “subj is charged with obj.”
Per:children “subj has obj as children.”
Per:cities of residence “subj resides in cities including obj.”
Per:city of birth “subj was born in the city of obj.”
Per:city of death “subj died in the city of obj.”
Per:countries of residence “subj resides in countries including obj.”
Per:country of birth “subj was born in the country of obj.”
Per:country of death “subj died in the country of obj.”
Per:date of birth “subj was born on the date obj.”
Per:date of death “subj died on the date obj.”
Per:employee of “subj is an employee of obj.”
Per:identity “subj’s identity is obj.”
Per:origin “subj’s origin is obj.”
Per:other family “subj has obj as other family members.”
Per:parents “subj’s parents include obj.”
Per:religion “subj’s religion is obj.”
Per:schools attended “subj attended schools including obj.”
Per:siblings “subj’s siblings include obj.”
Per:spouse “subj’s spouse is obj.”
Per:state or province of birth “subj was born in the state or province of obj.”
Per:state or province of death “subj died in the state or province of obj.”
Per:state or provinces of residence “subj resides in states or provinces including obj.”
Per:title “subj’s title is obj.”

SemEval 2010 Other “subj and obj are related in some other way.”
Component-Whole “subj is a component of obj.”
Instrument-Agency “subj is used by obj.”
Member-Collection “subj is a member of obj.”
Cause-Effect “subj causes obj.”
Entity-Destination “subj is taken to obj.”
Message-Topic “subj is about obj.”
Entity-Origin “subj comes from obj.”
Product-Producer “subj is produced by obj.”
Content-Container “subj contains obj.”

Table 4: Auto-generated hypothesis templates for each relation class in each dataset. Hypotheses are generated
using GPT 3.5 and the prompt described in Appendix A.1.
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A.2.2 Phi-2 and Phi-3
Since responses from auto-regressive models may
sometimes include additional text, all responses are
aligned to ground truth labels using partial string
matching. We do this by searching for the matches
of the first three letters in each NLI label (e.g., “ent”
→ entail, “con” → contradict, “neu” → neutral).
When a class cannot be matched, we assign “none,”
which, during evaluation, is equivalent to the NLI
label neutral.

For Phi-2, we use the following prompt to fine-
tune the model on our task:

[INST]You are given a premise and a
hypothesis below. If the premise entails
the hypothesis, return “entail.” If the
premise contradicts the hypothesis, return
“contradict.” Otherwise, if the premise does
neither, return “neutral.”[/INST]

### Premise: [premise]
### Hypothesis: [hypothesis]
### Label: [nli_target]

Phi-3 uses a similar prompt that differs only in
format:

<|system|>
You are given a premise and a hypothesis
below. If the premise entails the hypothesis,
return “entail.” If the premise contradicts the
hypothesis, return “contradict.” Otherwise,
if the premise does neither, return “neutral.”
<|end|>

<|user|>
Premise: [premise]
Hypothesis: [hypothesis]
Label:
<|end|>

<|assistant|>
[nli_target]
<|end|>

Both Phi-2 and Phi-3 were fine-tuned using the
hyperparameters in Table 5.

A.2.3 GPT 3.5 and GPT 4
GPT 3.5 and GPT 4 often perform better on tasks
with the help of in-context learning (Wei et al.,
2023; Wang et al., 2023). We construct a prompt
that lists the NLI labels and offers four examples

Parameter Value
Epochs 3
Max seq. length 1,024
Batch size 3
Grad. accumulation steps 2
Max gradient norm 0.3
Learning rate 2e-4
Lr scheduler type cosine
Weight decay 0.001
Warm-up ratio 0.03

Table 5: Hyperparameters used to fine-tune Phi-2 and
Phi-3.

of premise-hypothesis pairs expressing each NLI
label.

The following is the prompt we used for solicit-
ing predictions for our tests:

You are given a premise and a hypothesis
below. If the premise entails the hypothesis,
return “entail.” If the premise contradicts the
hypothesis, return “contradict.” Otherwise,
if the premise does neither, return “neutral.”
The following are some examples:

### Premise: [premise]
### Hypothesis: [hypothesis]
### Label: [nli_target]
...
{4x examples of each NLI class are pro-
vided}
...

For responses from GPT 3.5 and GPT 4, we use
the same partial string matching used for Phi-2 and
Phi-3 (Appendix A.2.2) for evaluation.

A.2.4 Hyperparameters for
METAENTAIL-RE

Table 6 contains the hyperparameters used to train
METAENTAIL-RE.

A.3 Task Unification Results

We explore unifying biomedical relation extraction
datasets in hopes of boosting performance on a
target dataset. We investigate two task-unification
training methodologies: single-stage training and
double-stage training. Single-stage training can
be viewed as multi-task learning, where the model
is trained simultaneously on multiple datasets and
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Parameter Value
Epochs 3
Batch size 32
Grad. accumulation steps 1
Max seq. length 1,024
Learning rate 2e-5
Seeds {41, 42, 43, 44, 45}
Optimizer AdamW
LR Scheduler warm-up steps 0
LR Scheduler training steps 1,000

Table 6: Hyperparameters used to fine-tune
BioLinkBERTlarge for the METAENTAIL-RE method.

tested on a target dataset. Double-stage training can
be viewed as an initial pre-training stage on all data
except the target dataset, followed by fine-tuning
and evaluation on the target dataset.

Unfortunately, we did not observe a significant
performance boost across our task-unification ex-
periments (see Table 7), potentially indicating that
these biomedical datasets do not provide comple-
mentary information when adapted into an NLI
task. Generally, the two-stage training is more
effective than the single-stage training, but both
fail to realize significant performance gains on the
target datasets. We leave investigating other task-
unification methods for future works.

A.4 Meta-class analysis
We conduct a meta-class analysis for each dataset
used in Section 5. We leverage class definitions to
determine sets of mutually exclusive classes. The
following tables show how meta-class analysis con-
verts original RE labels (row headers) into NLI
labels. The h(class) column headers denote ver-
balized hypotheses using the corresponding class.
For each table, we use the following denote NLI
labels:

• 0 → contradict
• 1 → neutral
• 2 → entail
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MULTI-TASK LEARNING (SINGLE-STAGE)
ENSEMBLE TRAINING DATA → TEST SET ∆ F1
BC5CDR + BioRED + ChemProt + DDI13 BC5CDR -0.049
BioRED + ChemProt + DDI13 + BC5CDR BioRED -0.031
ChemProt + BioRED + DDI13 + BC5CDR ChemProt +0.012
DDI13 + BioRED + ChemProt + BC5CDR DDI13 -0.007

CONTINUED PRE-TRAINING WITH SUPERVISED FINE-TUNING (DOUBLE-STAGE)
PRE-TRAINING CORPUS → FINE-TUNING → TEST SET ∆F1
BioRED + ChemProt + DDI13 BC5CDR BC5CDR -0.005
ChemProt + DDI13 + BC5CDR BioRED BioRED -0.014
BioRED + DDI13 + BC5CDR ChemProt ChemProt -0.008
BioRED + ChemProt + BC5CDR DDI13 DDI13 -0.011

Table 7: Results from single-stage and double-stage task unification experiments. ∆F1 scores are relative to
METAENTAIL-RE scores from Table 1. We do not observe signification performance improvements from our task
unification experiments and leave further experimentation to future work.

h(Associated) h(Not Associated)
Associated 2 0
Not Associated 0 2

Table 8: Meta-class analysis for BC5CDR. The “Asso-
ciated” class is definitionally mutually exclusive to the
“Not Associated” class.
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Negative Correlation 0 2 1 1 1 1 1 1
Association 1 1 2 1 1 1 1 1
Comparison 1 1 1 2 1 1 1 1
Conversion 1 1 1 1 2 1 1 1
Co-treatment 1 1 1 1 1 2 1 1
Drug Interaction 1 1 1 1 1 1 2 1
Bind 1 1 1 1 1 1 1 2

Table 9: Meta-class analysis for BioRED. The “Positive
Correlation” class is mutually exclusive to the “Negative
Correlation” class.

h(Novel) h(Not Novel)
Novel 2 0
Not Novel 0 2

Table 10: Meta-class analysis for BioRED Novel. The
“Novel” class is mutually exclusive to the “Not Novel”
class.
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Agonist 1 1 2 0 1
Antagonist 1 1 0 2 1
Substrate 1 1 1 1 2

Table 11: Meta-class analysis for ChemProt. “Up reg-
ulator” is mutually exclusive to “down regulator” and
“agonist” is mutually exclusive to “antagonist.”
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Effect 1 2 1 1
Interact 1 1 2 1
Mechanism 1 1 1 2

Table 12: Meta-class analysis for DDI13. No classes in
DDI13 are mutually exclusive based on class definitions.
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org:members 0 1 1 1 1 1 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:number of employees/members 0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:political/religious affiliation 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:shareholders 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:state or province of branch 0 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:top members/employees 0 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:website 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:age 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:cause of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:charges 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:children 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1
per:cities of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:city of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:city of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:countries of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:country of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:country of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:date of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:date of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
per:employee of 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
per:identity 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2 1 0 0 1 1 0 0 1 1 1 1
per:origin 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
per:other family 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 2 0 1 1 0 0 1 1 1 1
per:parents 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 2 1 1 0 0 1 1 1 1
per:religion 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
per:schools attended 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
per:siblings 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 2 0 1 1 1 1
per:spouse 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 2 1 1 1 1
per:state or province of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
per:state or province of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
per:state or provinces of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
per:title 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Table 13: Meta-class analysis for ReTACRED. Classes involving familial relations are all mutually exclusive to each
other (e.g., “per:spouse,” “per:parents,” “per:other family,” “per:siblings,” “per:identity,” “per:children”). Classes
“org:members” and “org:member of” are mutually exclusive since each denotes an opposing directional relationship
between a subject and an object.
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Other 2 1 1 1 1 1 1 1 1 1
Component-Whole 1 2 1 1 1 1 1 1 1 1
Instrument-Agency 1 1 2 1 1 1 1 1 1 1
Member-Collection 1 1 1 2 1 1 1 1 1 1
Cause-Effect 1 1 1 1 2 1 1 1 1 1
Entity-Destination 1 1 1 1 1 2 1 1 1 1
Message-Topic 1 1 1 1 1 1 2 1 1 1
Entity-Origin 1 1 1 1 1 1 1 2 1 1
Product-Producer 1 1 1 1 1 1 1 1 2 1
Content-Container 1 1 1 1 1 1 1 1 1 2

Table 14: Meta-class analysis for SemEval-2010 Task
8. No classes in SemEval-2010 Task 8 are mutually
exclusive based on class definitions.

h(Associated) h(Not Associated)
Associated 2 0
Not Associated 0 2

Table 15: Meta-class analysis for GAD. The “Associ-
ated” class is definitionally mutually exclusive to the
“Not Associated” class.
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