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Abstract

Autoregressive transformer language models
(LMs) possess strong syntactic abilities, often
successfully handling phenomena from agree-
ment to NPI licensing. However, the features
they use to incrementally process language in-
puts are not well understood. In this paper, we
fill this gap by studying the mechanisms under-
lying garden path sentence processing in LMs.
We ask: (1) Do LMs use syntactic features
or shallow heuristics to perform incremental
sentence processing? (2) Do LMs represent
only one potential interpretation, or multiple?
and (3) Do LMs reanalyze or repair their ini-
tial incorrect representations? To address these
questions, we use sparse autoencoders to iden-
tify interpretable features that determine which
continuation—and thus which reading—of a
garden path sentence the LM prefers. We find
that while many important features relate to
syntactic structure, some reflect syntactically
irrelevant heuristics. Moreover, while most ac-
tive features correspond to one reading of the
sentence, some features correspond to the other,
suggesting that LMs assign weight to both pos-
sibilities simultaneously. Finally, LMs do not
re-use features from garden path sentence pro-
cessing to answer follow-up questions.1

1 Introduction

Syntactic ambiguities abound in natural language.
For example, given the fragment “After the woman
drank the water. . . ”, the water could be either the
object of drank (in which case one could end the
sentence here), or the subject of the main clause (in
which case “was all gone” would be a valid con-
tinuation). Despite LMs’ impressive performance
on syntactic tasks (Hu et al., 2020), the mecha-
nisms that underlie their processing of syntactic
structure—and temporary ambiguities therein—are

∗Equal contribution.
1Code and data are available at https://github.com/

hannamw/GP-mechanisms/.

not well understood. Past work has found LM atten-
tion heads dedicated to processing certain syntactic
relations (Vig and Belinkov, 2019) and used LMs’
representational structure to predict dependency re-
lations (Hewitt and Manning, 2019); nonetheless,
these results only show that structural information
can be extracted from LM representations—and not
that these representations are causally implicated
in LM processing. It thus remains unclear whether
LMs rely on structure-related features, represent
the multiple possible completions to an incomplete
ambiguous utterance, or revise representations in
light of new disambiguating evidence.

In the psycholinguistics literature, similar ques-
tions have been studied in humans using garden
path sentences, which initially appear to have one
structure, but which are later revealed to have an-
other. When humans encounter the unexpected res-
olution of these sentences, their reading is delayed.
Different theories of human sentence processing
predict different delays; by recording reading times
on carefully designed test materials, one can thus
empirically test such theories (Lewis, 2000; Gib-
son and Pearlmutter, 2000). While prior work on
LMs has used garden path sentences as a testbed
for the psychometric fit of LM surprisals to predict
human reading times (Van Schijndel and Linzen,
2021; Arehalli et al., 2022; Huang et al., 2024),
we propose to instead use them to understand how
LMs incrementally process sentences.

In this study, we present a mechanistic investiga-
tion of how LMs incrementally process sentences
and how they handle temporary ambiguities using
garden path (GP) sentences as a case study. Us-
ing sparse autoencoders and causal interpretability
methods, we uncover the causally relevant features
(and mechanisms composed thereof) that explain
why LMs assign higher probabilities to particular
completions. With these methods, we investigate 3
research questions (RQs), and find the following:

RQ1: Do LMs use syntactic features or spuri-

3181

https://github.com/hannamw/GP-mechanisms/
https://github.com/hannamw/GP-mechanisms/


SAE featureSubmodule After the woman moved the mail𝐱 =

Ablate

Upweight

321 Locate causally influential features. 
Observe LM behavior. Annotate features by observing activations. Causally verify.

mail

: Subject noun detector𝑓1,1

: Object noun detector𝑓0,2

𝑝(,) 𝑝(was) 𝑝(,) 𝑝(was)
Feature scores:

m

mail

m = p(,) − p(was)

f1,1: 0.52
f0,2: -0.39

…
f0,0 : 0.0002

f1,1

f0,2

f1,1

f0,2

Figure 1: Overview. We use sparse autoencoders to decompose model activations into a discrete set of human-
interpretable components (features). We score each feature by its causal contribution to continuations associated
with each reading of a garden path sentence. We manually interpret the top-scoring features and causally verify their
functional role in the network by targetedly up- or downweighting them to change the model’s preferred reading.

ous heuristics to incrementally process sentences?
Many of the most important features LMs use are
interpretable and syntax-related; however, some
uninterpretable or spurious features exist.

RQ2: Do LMs hold on to multiple interpreta-
tions of the sentence simultaneously, or commit to
the most likely one? LMs’ representations encode
multiple interpretations simultaneously.

RQ3: Given disambiguating evidence, do LMs
repair or reanalyze their initial structural predic-
tions? LMs do not repair or rely on their prior
structural predictions; however, they also do not
generate new structural features via reanalysis.

2 Background

2.1 Incremental Sentence Processing
Many linguistic theories posit that humans parse
their linguistic input, mapping from sentences to a
representation with information about its structure
(van Gompel and Pickering, 2007). We do so incre-
mentally, building up representations prior to the
end of the sentence (Marslen-Wilson, 1975).

How humans perform incremental parsing is
hotly debated. Of particular interest is how we
handle the fact that partial sentences often have
multiple valid parses (Fodor et al., 1974). Do we
parse sentences serially, considering one parse at
a time (Frazier, 1979; Fodor and Ferreira, 1998),
or in parallel, considering many at once (Gorrell,
1987; Gibson, 1991; Jurafsky, 1996)? And upon
encountering evidence that rules out specific parses,
do we repair our representations (Lewis, 1998), or
reanalyze the input entirely (Grodner et al., 2003)?

Psycholinguists often test theories of incremen-
tal parsing with garden path sentences, which sug-
gest one parse, but ultimately have another. Con-
sider the incomplete sentence “The guitarist knew

the song...”. A reader could either interpret song
as an object of the verb knew, or the subject of a
sentential clause (i.e., “The guitarist knew (that)
the song...”). A period would be a valid comple-
tion in the former case but not the latter, where a
verb phrase like “...was too long” would be more
fitting. Most readers find the first reading more
likely, so observing a completion consistent with
the second typically results in significant spikes in
reading times (Frazier, 1987).

2.2 Sentence Processing in LMs

How LMs process and represent sentences is simi-
larly well-studied. Work on structural probes has
attempted to reconstruct parses from LM represen-
tations using learned similarity functions or probes
(Hewitt and Manning, 2019; Maudslay et al., 2020;
White et al., 2021; Arps et al., 2022). Others have
found attention heads whose attention corresponds
to syntactic relations, though no general parsing
head exists (Vig and Belinkov, 2019; Clark et al.,
2019b; Htut et al., 2019). Researchers have also
trained probes to extract features like coreference
relations or part of speech from LM representations
(Tenney et al., 2019; Jawahar et al., 2019).

However, these analyses can yield only limited
insights into LMs’ incremental processing mech-
anisms. Most study LMs with bidirectional atten-
tion, which do not perform incremental sentence
processing. Moreover, few causally verify their
mechanisms’ relevance to model processing, even
though probes often capture functionally irrele-
vant information (Ravichander et al., 2021; Elazar
et al., 2021). While causal techniques have been
used in other settings (Vig et al., 2020; Finlayson
et al., 2021; Lasri et al., 2022), they have rarely
been applied to questions of ambiguity in syntac-
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tic structure and incremental processing; Eisape
et al. (2022) do so, but use a probe that assumes a
specific mechanism unlikely to be used by the LM.

With this in mind, we use garden path sentences
as a case study in LMs’ incremental sentence pro-
cessing mechanisms. Prior work using LM be-
havior on such sentences to model human reading
times (Van Schijndel and Linzen, 2018; Wilcox
et al., 2021; Arehalli et al., 2022; Oh and Schuler,
2023) finds that LMs do exhibit garden-path effects,
though they underpredict human effects. Less work
has used garden path sentences to observe how LMs
arrive at these probabilities and surprisals. Li et al.
(2024) attempt this, but study masked LMs, which
do not perform incremental processing. Other work
studies more plausible models, such as RNNs (Ul-
mer et al., 2019) or transformers with a restart-
incremental interface (Madureira et al., 2024), but
neither of these study standard transformer LMs
or use causal methods. We ask: how can we find
and causally verify the mechanisms that LMs use
to incrementally process garden path sentences?

2.3 Locating Interpretable Mechanisms with
Sparse Feature Circuits

To understand how LMs incrementally process sen-
tences, we must understand the features that they
use to represent their inputs. Earlier work did so
by studying individual LM neurons (Sajjad et al.,
2022) and searching for the inputs that cause them
to activate most strongly. For example, a neuron
that activates on the subjects of sentences might be
inferred to implement subjecthood detection.

However, feature representations in neural net-
works are often distributed (Hinton et al., 1986;
Smolensky, 1986). Neurons are thus often polyse-
mantic, representing multiple unrelated features at
once, which makes them challenging to interpret
(Olah et al., 2017; Elhage et al., 2022); for example,
Bolukbasi et al. (2021) find a neuron that activates
on sentences about song meanings, objects in con-
tainers, and historical dates.

We therefore opt to interpret the features of
sparse autoencoders (SAEs; Bricken et al., 2023),
autoencoders trained on the output activations of
LM submodules. Let x be the submodule’s output
activation; the SAE computes

f = ReLU(We(x− bd) + be) (1)

x̂ = Wdf + bd, (2)

where f is the feature vector, and x̂ is the recon-
structed activations. Henceforth, we refer to a sin-

gle dimension of f as a feature. SAEs are trained
to reconstruct x with sparse regularization on f ;
the regularizer and bias terms lead a feature’s acti-
vation to be non-0 only when it causes parts of x
to differ from their mean value. This makes SAE
features more monosemantic than LM neurons, and
therefore more interpretable.

To assemble SAE features into model mecha-
nisms, we use circuit analysis (Olah et al., 2020).
A circuit is the minimal subset of the language
model’s computation graph that recovers the whole
LM’s behavior on a given task (Wang et al., 2023;
Conmy et al., 2023; Hanna et al., 2023). In this
case, each node in the graph is an SAE feature,
and each edge represents a cause-effect relation-
ship. The first node in the graph is the embeddings,
the final node is the model’s output logits, and all
intermediate nodes are features from SAEs trained
on neurons from the model’s residual stream or
attention head / MLP outputs.

Circuits can be conceptualized as a causal ab-
straction of the language model. If a node is in the
graph, it is causally relevant to the LM’s task abili-
ties. If a node has an edge to another, this implies
that the activation of the second crucially depends
on the activation of the first.

We follow Marks et al.’s (2024) approach to find-
ing such sparse feature circuits. We say a feature
f is causally relevant if, given a metric m that mea-
sures the language model’s behavior, setting f ’s
value to 0 causes a large change in m;2 the magni-
tude of this change is f ’s indirect effect (IE; Pearl,
2001) on m. We aim to find features with high IE.

Computing each feature’s IE is expensive, so we
compute a linear approximation, ÎE, using attribu-
tion patching (AtP; Nanda, 2023). AtP estimates
the IE of a feature with activation a on input x as

ÎE = a · ∂m
∂a

∣∣∣
x
. (3)

∂m
∂a is computed by backpropagation from m. Con-
ceptually, the slope of the metric m with respect
to the feature’s activation a is multiplied by the
change in the feature’s activation upon being ze-
roed (a−0, which simplifies to a). In practice, AtP
is often inaccurate, so we use Marks et al., 2024’s
(2024) improvement: attribution patching with in-
tegrated gradients (AtP-IG). Inspired by integrated
gradients for input attribution (Sundararajan et al.,

2While setting neurons to 0 is unprincipled, zero-ablating
sparse features is not, as feature activations are non-0 only
when they cause parts of x to differ from their mean value.
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2017), AtP-IG computes an average ∂m
∂a across sev-

eral intermediate activations of f between a and 0,
improving IE estimates; see App. A for details.

After estimating each feature’s ÎE, we select
those whose ÎE is over a chosen threshold; this
yields a circuit. We then verify that m’s value
remains the same when the features outside our cir-
cuit are ablated, ensuring the mechanism captured
by the circuit is faithful to that of the full model.

3 Models

To analyze incremental parsing in LMs, we must
study autoregressive LMs.3 We analyze Pythia-
70m-deduped (Biderman et al., 2023), and Gemma-
2-2b (Gemma Team et al., 2024), as these have
publicly available SAEs. We focus primarily on
Pythia-70m in the main text due to its smaller size;
results for Gemma-2-2b are in App. E.

4 Do LMs use syntactic features to
process garden path sentences?

We use garden path sentences to investigate incre-
mental processing in LMs because they contain
temporary structural ambiguities that are eventu-
ally resolved. The sentences we study must be am-
biguous such that we may determine if one or many
possible readings are represented (RQ2). Moreover,
this ambiguity must eventually be resolved such
that we may study how incorrect representations
might be handled (RQ3). Thus, garden path sen-
tences are ideal stimuli with which to answer our
RQs; indeed, they are often used for these purposes
in psycholinguistics (§2.1).

4.1 Behavioral Analysis
Before finding the features that underlie LM garden
path sentence processing, we first verify that the
LMs we study exhibit garden path effects.

Dataset We probe LMs’ readings of garden path
sentences using an adaptation of Arehalli et al.’s
(2022) dataset of 72 garden path sentences. This
contains 3 structures (NP/Z, NP/S, and MV/RR)
with 24 sentences each. Each structure name refers
to the garden path/actual interpretations of the sen-
tence’s ambiguous material. For example, in Ta-
ble 1 NP/Z, “signed” could take either an NP com-
plement (“the bill”) or a zero complement. In Ta-
ble 1 NP/S, “the song” could act as the NP comple-

3Masked LMs often have strong syntactic abilities (Gold-
berg, 2019) but receive the left and right context of each token,
invalidating them as models of incremental processing.

Structure Example Sentence GP Non-GP

NP/Z After the politician
signed/rejected/arrived the bill

, was

NP/S The guitarist knew/wrote/said the song . was
MV/RR The woman brought/moved/shown

the mail
. was

Table 1: Examples from our dataset, adapted from Are-
halli et al. (2022). For each sentence, inserting the
yellow word makes it compatible with only garden path
(GP) continuations; the blue word permits only non-
garden-path (Non-GP) continuations. The red words
leave it ambiguous, compatible with either.

0.2

0.1

0.0

0.1

0.2

p(
GP

)-p
(n

on
-G

P)
NP/Z NP/S

Input Sentence Type
Ambiguous GP Non-GP

GP
non-GP

MV/RR

Garden Path Continuation Probabilities (Pythia-70m)

Figure 2: Mean difference in probability of tokens cor-
responding to garden path (“,”/“.”) and non-garden-path
(“was”) readings of the input for Pythia-70m, grouped
by garden path structure. Error bars indicate the stan-
dard error of the mean. Inputs are either ambiguous,
or compatible with only a garden-path or non-garden-
path reading. GP tokens are most likely given GP in-
puts; non-GP inputs increase non-GP token probability.
Given ambiguous NP/Z and MV/RR inputs, Pythia-70m
prefers the GP reading, but prefers non-GP for NP/S.

ment of “knew” or start a sentential complement.
In Table 1 MV/RR, “brought” could be the main
verb or part of a reduced relative clause.

For each ambiguous sentence, we craft two un-
ambiguous versions, which permit only one read-
ing. For example, in Table 1 NP/Z, we replace the
ambitransitive “signed”, with the strictly transitive
“rejected” (forcing the garden-path reading) or the
intransitive “arrived” (forcing the opposite).

Experiment For each sentence, we record the
probability given by the LM to next tokens con-
sistent with the garden path or non-garden-path
reading; we denote these p(GP) and p(non-GP),
respectively. For NP/Z sentences, we define p(GP)
as p(,); for NP/S and MV/RR, we define p(GP) as
p(.). For all sentence structures, we define p(non-
GP) as the probability of “ was”. This roughly
measures the LM’s reading of the sentence: con-
tinuing “After the politician signed the bill” with a
comma implies that “signed” took “the bill” as a
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complement, as in the GP reading. Continuing it
with “ was” implies that “signed” took no comple-
ment, as in the non-GP reading.

Results Our results (Figure 2) show that Pythia-
70m correctly up- and downweights garden path
tokens in contexts that do and do not license them.
Given GP inputs, the model gives more probability
to GP tokens, and less to non-GP tokens, compared
to when it receives ambiguous inputs; this trend
holds across garden path structures. For non-GP
inputs, this trend is reversed.

For ambiguous inputs, the model prefers garden-
path continuations in the NP/Z and MV/RR cases,
but non-garden-path in the NP/S case. This agrees
with prior evidence from both humans and LMs
showing lower reading times and surprisals for non-
garden-path continuations to inputs with NP/S am-
biguities, compared to NP/Z (Grodner et al., 2003;
Sturt et al., 1999; Van Schijndel and Linzen, 2018).

Discussion In the NP/Z and MV/RR cases, non-
GP inputs only manage to reduce the model’s bias
for GP continuations to near 0, not eliminate it.
We hypothesize that this has two causes. First,
although NP/Z sentences are common objects of
study in the psycholinguistics literature (Christian-
son et al., 2001, 2006), their non-GP readings are
somewhat unnatural; this also applies to our non-
GP versions. In normal text, these sentences would
include a comma after the verb if the non-GP read-
ing were intended (and models do prefer the non-
GP reading given a comma).

Second, our operationalization of p(GP) and
p(non-GP) has limitations. For non-GP MV/RR
sentences, p(,) and p(was) are both low; the model
gives the most probability to to, which does not
definitively distinguish between the two readings.
For non-GP NP/Z sentences, p(,) and p(was) are
higher, but measuring p(was) alone may miss much
of the probability assigned to non-GP continuations
in general. Ideally, we would measure the proba-
bility of all full GP and non-GP-implying continu-
ations (which might span multiple tokens), rather
than measuring the probability of two single next
tokens. Unfortunately, this is computationally in-
feasible, but see App. B for more discussion and
§5.2 for another way to determine an LM’s read-
ing of ambiguous input, with similar results. As
MV/RR sentences have low p(GP) and p(non-GP),
we exclude them from all following analyses.4

4See Appendix G.3 for a non-behavioral way to measure

After the politician signed the bill

“the” in
subordinate

clauses

past tense
transitive 

verbs

“the” 
before
objects

“the” 
before

subjects

object 
nouns

subordinate 
clause end 
detectors

2 3 4 13

91 2 7

7 9

6 3
subject 
nouns

3

Figure 3: Pythia-70m’s feature circuit for processing
NP/Z garden path sentences. We group features by their
functional role in the circuit and display the number
of features in each group. Red features have negative
scores and promote the garden path reading; blue fea-
tures, with positive scores, do the opposite. Unlabeled
early-layer features are word detectors. Many late-layer
features encode syntactic features, whereas early-layer
features largely consist of word detectors and heuristics.

4.2 Feature Circuit Analysis
Now, we identify and analyze the feature circuits
responsible for Pythia-70m’s garden path effects.

Experiment We investigate circuits composed
of causally relevant features from the Pythia-70m
SAEs of Marks et al. (2024); these SAEs have
32,768 features each. We use AtP-IG (§2.3) to
find the features that most influence the difference
in probabilities assigned to garden-path and non-
garden-path continuations of ambiguous sentences,
m = p(GP) - p(non-GP). We keep features with
ÎE > 0.1, and edges with ÎE > 0.001. We then
manually annotate each feature in the circuit, using
Neuronpedia (Lin and Bloom, 2023) to visualize
feature activations on text from The Pile (Gao et al.,
2020) on which each feature activates strongest.5

Results Running AtP-IG yielded circuits contain-
ing 155 (NP/S) and 65 (NP/Z) sparse features; we
manually annotate all of these.6 To measure how
well these features capture the behavior of the full
model, we measure faithfulness, following the defi-
nition in Marks et al. (2024). These circuits have
faithfulness 0.20 (NP/S) and 3.48 (NP/Z).7 Signif-
icant deviations from 1.0 imply that there are im-
portant features we have not captured; thus, while
we cannot claim to have annotated the full mech-
anism, we can nonetheless still analyze the most
highly influential features, which provide sufficient
evidence to address our RQs. See App. C for the

models’ readings of these sentences.
5Features can be viewed online via Neuronpedia at https:

//www.neuronpedia.org/pythia-70m-deduped/
6Past work has used LMs as annotators (Bills et al., 2023),

but we find them to be poor annotators of syntactic features.
7Approaching a faithfulness of 1 requires including many

hundreds of features for Pythia, and over 1000 for Gemma.
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Feature Activates on Examples

0/8234 the word the
Since 2001, the variant commonly in use is the Category 5e specification
On September 26, 2006 the University of Phoenix acquired the naming

4/14907
ends of

sub. clauses
Finally, after years of watching youtube videos on that topic, I made
When it released alongside Fire Emblem Fates in June of 2015, Fire

3/835
subjects of

sent. clauses
A hearing officer would determine if a complaint has merit, requiring
. . . to learn how the United States and key players around the world

4/8505
object nouns,
nouns in PPs

Justin Trudeau used the Canada Day celebrations in Ottawa to name
. . . than for Alan Shepard. He left the hotel shortly after midnight

Table 2: Interpretable residual stream features implicated in Pythia-70m’s garden path sentence processing. We list
each feature’s layer and feature-index, as well as a description of what the feature activates highly on. Each example
shows how strongly the feature activated on each token; darker highlighting indicates larger activations.

metric definition, implementation details, and a
deeper discussion of these faithfulness values.

Figure 3 displays a simplified circuit for NP/Z,
where we manually group similar features together.
The simplified NP/S circuit and the oversized full
circuits are in App. F. We present selected features’
activations on highly-activating sentences in Ta-
ble 2 to support our annotations.

Features in lower layers often encode inter-
pretable low-level features. Many lower-layer
features detect word-level attributes, rather than
high-level syntactic information. The vast majority
of our circuit’s features are word detectors, located
in the model’s embeddings or first two layers, that
activate only on one specific word. For example,
Feature 0/8234 activates only on the word the (Ta-
ble 2). Slightly higher-level features activate on
nouns or past tense verbs. While most such fea-
tures have no obvious relation with either reading
(e.g. the presence of the word “the” should be neu-
tral with respect to which reading it suggests), they
have a non-zero impact on the preferred reading.

Higher layer features encode syntactic at-
tributes relevant to garden path sentence pro-
cessing. The features in Pythia-70m’s upper layers
often encode sentence-level syntactic information
that distinguishes between different readings of gar-
den path sentences. For example, the final layers of
the model’s circuit for NP/Z sentences (Figure 3)
include features that detect subjects, objects, and
ends of subordinate clauses. Reading the final noun
as an object and part of the subordinate clause cor-
responds to the GP reading; reading the final noun
as a subject outside of the subordinate clause cor-
responds to the opposite. The scores assigned to
features match their semantics: non-GP feature
scores are positive; pro-GP are negative.

Table 2 shows each feature’s activations. Feature
4/14907, for example, detects ends of subordinate
clauses; every position at which it activates could
be a valid end to the subordinate clause containing
it, given no information about the following tokens.
It precisely distinguishes the two readings of NP/Z
sentences: in the garden path reading of “After the
politician signed the bill”, the clause might end at
bill, while in the non-GP reading, it ends at signed.

Feature 3/835 distinguishes the readings of NP/S
sentences, activating on subjects of sentential com-
plements. In an NP/S sentence such as “The gui-
tarist knew the song”, the song can either be the
object of knew (the GP reading) or the subject of
a new phrase (non-GP); this feature clearly corre-
sponds to the latter reading. Finally, Feature 4/8505
activates primarily on object nouns and nouns in
prepositional phrases. This corresponds not only
to the GP reading in NP/Z and NP/S sentences, but
also to the accusative case, hinting that the model
may have learned a general linguistic concept.

Some features are uninterpretable. Although
many SAE features are interpretable, some activate
seemingly at random, or across almost all text. The
latter could be interpreted as a prior, which always
influences the model’s prediction, but most have no
clear interpretation. These features have a non-zero
effect on model predictions, though their effect di-
rection is inconsistent. We omit these features from
our analysis, but we hope they will be interpretable
as SAEs or interpretability methods improve.

4.3 Causal Analysis
Though many high-importance features encode syn-
tactic attributes, this is no guarantee that the model
relies on them. To confirm this, we causally inter-
vene on the discovered interpretable features, and
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Figure 4: Mean difference in probability of GP and
non-GP continuations under interventions for Pythia-
70m. Error bars indicate the standard error of the mean.
Interventions on interpretable features reverse model
behavior, as expected; random interventions do nothing.

verify that model output changes as we expect. See
App. D for a large-scale version of this experiment.

Experiment We focus on three groups of model
features, which detect: 1) subjects, 2) objects, and
3) either ends of clauses (NP/Z) or sentential-clause
verbs (NP/S). For NP/Z sentences, we attempt to in-
duce the dispreferred non-GP reading by setting the
subject detectors’ activation to a high value (2.0)
at the final noun of each sentence, while clamping
object detectors off (to 0). End-of-clause detectors
are set to 2.0 at the verb position, and 0 on the
final noun. For NP/S sentences, we induce the GP
reading: at the final noun, we set the subject and
object detectors to 0 and 2.0 respectively; we also
turn the sentential-clause-verb detectors off. As a
control, we choose 3 groups of random features
(equal in number to the original groups) to clamp
on or off. In all settings, we intervene during the
forward pass, and compute p(GP) and p(non-GP).

Results Our results (Figure 4) suggest that the
features we find are causally relevant. Turning the
subject and object features on and off respectively,
and altering the end-of-clause features, reverses the
model’s typical preference for the GP reading in
the NP/Z scenario; ablating the same number of
randomly chosen features does nothing. The analo-
gous NP/S intervention causes the model to prefer
the GP reading, while performing no interventions
or random ones yields the opposite.

5 Do LMs consider one or multiple
readings of garden path sentences?

Here, we investigate whether LMs consider mul-
tiple readings of garden path sentences simultane-
ously. We reason that, although p(GP) and p(non-
GP) are non-zero in all cases, the model may not
explicitly represent both alternatives. We thus say

that a model considers just one reading if, given an
ambiguous input, it activates only features corre-
sponding to one reading of the input, as opposed to
multiple. A model considers multiple if it activates
features that correspond to multiple readings of the
input—e.g., if both subject and object detectors fire
on the final noun of an NP/Z or NP/S sentence.

5.1 Evidence from model feature analysis
Experiment We can test if LMs consider one
or multiple readings of garden path sentences by
checking if ambiguous inputs cause features cor-
responding to both readings to activate. We thus
run the model on our ambiguous data and record
the activations of the interpretable pro-GP and anti-
GP features that we identified in layers 3-5 of the
model, in §4.2. If the model only considers one
reading, only features corresponding to one reading
should activate; if features corresponding to both
activate, we conclude that the model considers mul-
tiple. Recall that as features are inactive on almost
all inputs, non-zero activations are meaningful.

Results We find that in both the NP/Z and NP/S
cases, pro- and non-GP features have non-zero av-
erage activations, ranging from 0.27 to 0.41. Simi-
larly, the percent of features active is above 50% for
both categories, and both NP/Z and NP/S sentences.
This suggests that models explicitly represent both
readings of a garden path sentence.

5.2 Evidence from structural probes
We can also directly assess if the model considers
both readings using structural probes (§2.2), which
map from LM representations to a distribution over
parses of the LM’s input. The two readings of NP/Z
and NP/S sentences have distinct parses, so parse
probes can measure the probability of each.

Experiment We base our structural probes on
Eisape et al.’s (2022) MLP action probes, as these
are compatible with autoregressive models and in-
complete inputs; most such probes are not. These
probes take in the residual-stream representations
of two words (from a fixed layer) and use a MLP to
map them to one of three possible dependency rela-
tions: 1) the first word is a dependent of the second
(LEFT-ARC); 2) vice-versa (RIGHT-ARC); or 3) no
relation (GEN). Following Eisape et al. (2022), we
train probes to predict parser actions using parse-
annotated data from the Penn TreeBank (Taylor
et al., 2003). As in Eisape et al. (2022), our trained
probes achieve high performance; see App. G.
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Figure 5: Mean probe action probability across layers.
GEN corresponds to the non-GP reading, and LEFT-ARC
to the GP reading (RIGHT-ARC is implausible). NP/Z
sentences elicit primarily LEFT-ARC; NP/S elicits GEN.
Both valid readings always receive non-zero probability.

With these probes, we evaluate our model’s read-
ing of ambiguous garden path sentences.8 Crucial
here is the dependency relation between each sen-
tence’s verb and final noun. The garden path read-
ing of the sentence “After the politician signed the
bill” would leave the bill as a dependent (object) of
signed; in the non-GP case, there is no dependency
relation. We record the probability of each relation,
averaged across all NP/Z and NP/S sentences.

Results Our results (Figure 5) show that while
probes favor LEFT-ARC for NP/Z sentences, and
GEN for NP/S, they assign moderate probability to
both readings. This trend holds for all layers but the
last, where probe performance is poor. This further
supports the hypothesis that LMs consider both
readings of garden-path sentences, as found in the
feature analysis; in App. G.4 we run AtP-IG on the
probe and find the same features are responsible.

6 Do LMs reanalyze, repair, or neither?

In humans, garden-path readings can linger even
after the sentence is complete (Christianson et al.,
2001): given “The boy fed the chicken smiled.”,
people often respond yes to “Did the boy feed the
chicken?”. “The boy” is the recipient of fed, but the
garden-path reading suggests that it is the agent.

What happens to LM representations after receiv-
ing such disambiguating information? If the LM
relies on its original syntactic features, we might
observe features at later token positions that adju-
dicate between different readings, analogous to a
repair-based strategy. The later features could also

8We verify that the structural probes’ predictions on non-
ambiguous sentences are sensible in App. G.

Yes/No QA GPRC

Model BoolQ MCQA NPS NPZ

Pythia 42.8 50.0 50.0 50.0
Gemma 2 70.7 90.0 83.3 70.9

Table 3: Accuracy on two QA datasets and garden-path
reading comprehension (GPRC) questions (all zero-shot
binary questions). Pythia performs poorly as it often
outputs the same answer for all inputs, regardless of the
question. Gemma 2 performs well on all tasks.

upweight the correct reading independently of the
original representations, analogous to reanalysis.

We concretely operationalize these hypotheses
as follows. We say a model engages in repair if,
at positions at or after the disambiguating token, it
relies on previously-computed reading-specific syn-
tactic features (e.g. subject or object detectors) to
compute its output; it may select or ignore some of
these features as part of the repair process. In con-
trast, a model engages in reanalysis if, at positions
at or after the disambiguating token, it relies only
on reading-agnostic previously-computed features
(e.g. word or part-of-speech detectors). The model
might, however, compute new reading-specific fea-
tures at positions after the disambiguating token.

6.1 Behavioral Analysis

We evaluate how models respond to garden path
reading comprehension (GPRC) questions; past
work suggests fine-tuned masked LMs exhibit lin-
gering garden path effects (Irwin et al., 2023). Cor-
rect answers to GPRC questions indicate a correct
(non-garden-path) reading of the sentence. For ex-
ample, given “The boy fed the chicken smiled.”,
we ask “Did the boy smile?” (Yes) or “Did the boy
feed the chicken?”(No). We craft Yes and No ques-
tions for each sentence, so models whose answers
are random or constant will obtain 50% accuracy.

Experiment We first verify whether our models
can do question answering (QA) on less tricky bi-
nary QA datasets. Good performance here is a
prerequisite for the following analyses to be valid.
We evaluate on a binary version of multiple choice
question answering (MCQA) from Wiegreffe et al.
(2024), where questions are of the form “Ques-
tion: Boxes are brown. What color are boxes?\nA.
green\nB. brown\nAnswer:”, and the model must
answer “ A” or “ B”. We also evaluate on BoolQ
(Clark et al., 2019a), a naturalistic QA dataset con-
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sisting of context passages followed by a yes/no
question. For all tasks, we use a zero-shot setup:
the model is prompted only with the question, con-
text, and answer options. We measure accuracy
as the frequency with which the model prefers the
correct answer token to the incorrect one.

Results Our results (Table 3) indicate that only
Gemma-2-2b performs well on all tasks;9 it also
answers GPRC questions with above-chance accu-
racy, so we focus the rest of our analysis on it.

6.2 Feature and Causal Analysis

Intuitively, a model answering GPRC questions
should rely on features indicative of the input’s
parse. To verify this, we measure the overlap be-
tween the features from §4.2 and those obtained
via AtP-IG on the GPRC questions. We also ablate
the features from §4.2 and measure the change in
model performance on GPRC questions.

Experiment We discover sparse feature circuits
for GPRC questions using AtP-IG, as in §4.2. The
prompts consist of complete sentences and ques-
tions, m = p(Yes)− p(No), and our score thresh-
old is 0.05. We measure the overlap between the
circuits from §4.2 (denoted C1) and the GPRC cir-
cuits (denoted C2) as the intersection-over-union
(IoU) of C1 and C2’s features.

We also check if C1’s features causally influ-
ence the GPRC task. As in §4.3, we annotate C1

features and place them in groups, like subject or
object detectors (we causally verify these groups’
relevance in App. E.2). Then, we manipulate these
features as in prior experiments, and record model
accuracy: we upweight subject detectors and zero
ablate object detectors to promote the non-garden-
path reading, aiming to increase model accuracy;
we do the reverse to decrease it.

Results There is little feature overlap across cir-
cuits: the IoU is 0% for NP/S, and 0.2% for NP/Z.
Accordingly, Gemma 2 does not rely extensively
on features from C1 to answer follow-up questions:
performance changes little when intervening on
these features. The top GPRC features are unre-
lated to either parse; many are not syntax-sensitive,
but instead spurious features that promote Yes or No.
Yes-promoting features often activate on phrases

9We note that BoolQ is challenging: even otherwise well-
performing models obtain close to 70–80% performance, even
with demonstrations. We thus take 70% as positive evidence
of the model’s binary QA ability.

related to agreement, such as “Certainly” or “Of
course”. Though the effect of C1’s syntax-sensitive
features is not exactly 0, they explain little of the
model’s GPRC behavior.

This suggests that Gemma 2 does not repair
older representations when answering follow-up
questions; however, it does not appear to generate
new syntactic features via reanalysis, either. While
this behavior is more akin to reanalysis than repair,
as features are not reused, we hypothesize that it
reflects a process fundamentally different from re-
analysis in humans. Namely, reanalysis in humans
assumes we construct new syntactic representations
to answer follow-up questions; in contrast, the new
features that Gemma 2 constructs are not syntactic.
Thus, while both models and humans rely on syn-
tactic features when predicting the disambiguating
word in garden path sentences, the same may not
be true for answering follow-up questions.

7 General Discussion and Conclusions

When conducting behavioral analyses, one must
be cautious in (but not entirely averse to) imposing
human-like cognitive abstractions onto LMs. We
observed that, despite high performance on syntac-
tic evaluations, LMs rely on both human-like syn-
tactic abstractions and spurious features. Indeed,
many influential features activated on tokens before
relevant syntactic information for either reading of
the sentence had appeared. This underscores the
importance of mechanistic study of LM behaviors:
even when models perform well, it may not always
be for the reasons that one might anticipate.

We have seen that LMs represent multiple inter-
pretations of partial sentences. However, it remains
unclear if LMs deploy mechanisms that recognize
or adjudicate between mutually exclusive possibili-
ties. The representation–recognition distinction is
crucial: ambiguity has many functions (e.g., humor
and politeness), but to detect these, one must rec-
ognize ambiguity as a meaningful signal. We leave
the question of recognition to future work.

LMs did not rely on prior features when answer-
ing garden path follow-up questions, indicating a
lack of repair, but also did not generate any new
syntactic features via reanalysis. While we cannot
definitively rule out the existence of syntactic re-
analysis circuits, such features appear uninfluential
in the GPRC circuits. We hope future advances in
SAEs and automated interpretability will enable us
to better understand sparse feature circuits at scale.
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Limitations

Our study has focused primarily on individual fea-
tures. While we do make use of edges between
features in our qualitative analysis, we have not
causally verified what these edges signify. For
example, are these AND or OR relations, NOT re-
lations, or some more sophisticated type of feature
combination? A deeper investigation could yield
greater insights into how repair/reanalysis happens,
and how past features remain relevant at later posi-
tions (or are made irrelevant).

We have analyzed two language models of signif-
icantly differing scales and slightly differing archi-
tectures/training setups. While we are confident in
concluding that transformer-based autoregressive
language models are generally likely to encode
the mechanisms we have discovered, the results
could still be strengthened by extending the analy-
sis to a models with more diverse training setups,
scales, and architectures. It would be particularly
interesting—and helpful in linking our results to the
learnability literature—to observe whether these re-
sults hold for more cognitively plausible language
models, such as those trained on more human-sized
datasets (e.g., Warstadt et al., 2023).

While this study was motivated by the study of
incremental sentence processing in LMs, we study
only garden path sentences to facilitate answering
RQ2 and RQ3. Further work could investigate in-
cremental sentence processing in more typical par-
tial sentences; this would clarify whether different
mechanisms are used for unambiguous sentences.
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Gradients (AtP-IG)

As described in §2.3, computing the indirect ef-
fect of all features in exact form is computation-
ally expensive, as the number of required forward
passes scales linearly with respect to the number
of features in the model. Thus, we employ a linear
approximation, ÎE, where the number of required
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is defined in Eq. 3. Here, we describe how this is
extended to AtP-IG for more accurate estimations.

The primary difference between AtP and AtP-IG
is that we average the gradient across K intermedi-
ate values of f between a and a baseline value a′.
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In our experiments, the baseline is always 0.10 We
use K = 10 in our experiments. The procedure is
defined as follows:

ÎE = (a− a′) · 1

K

K∑

k=0

∂m(a′ + k
K · (a− a′))
∂a

∣∣∣
x
.

(4)
That is, given input x and a pre-computed baseline
value a′, we compute ∂d

∂a at K intermediate points.
At each intermediate point, we intervene on a, re-
placing its activation with what it would have been
at that intermediate point. Using this new activa-
tion, we recompute m, and backpropagate from
that to obtain a new gradient value. We take the
mean over these gradient values to obtain a more
accurate estimate of the slope of m w.r.t. a. This
average slope is then multiplied by the change in a
as before.

B Notes on Behavioral Experiments

In this paper, we measure the probability assigned
by the model to the garden-path and non-garden-
path readings via p(GP) and p(non-GP), the prob-
ability of two individual tokens. Using this sort
of naturalistic setup, instead of e.g. prompting
the model to explicitly choose one of the garden
path sentence’s readings is a way to reduce task
demands and more accurately judge pre-trained
models’ performance (Hu and Levy, 2023; Hu and
Frank, 2024). However, past work also indicates
that setups that pit two alternatives against each
other can yield inconsistent results if alternatives
are chosen poorly (Newman et al., 2021).

Our reasons for choosing this setup are twofold.
First, the most robust setup, which would involve
summing the probabilities of all garden-path and
non-garden-path continuations, is very both com-
putationally and technically infeasible. Second,
while we could instead measure GP and non-GP
via sets of tokens, rather than individual tokens,
doing so did not change our experimental results
in early trial runs. This is due to the fact that our
pre-defined GP and non-GP tokens are already the
most probable tokens. While there are some tokens
that could be used to expand the non-GP token
set, e.g. is, does, should, could, defining precisely
which tokens should be included is challenging:
tokens must be third-person verbs that cannot be

10Note that a′ need not be 0. It could also be taken from
a counterfactual input x′ where the output behavior of the
model differs.

interpreted as past participles. With all of this in
mind, we stick with a simpler setup.

C Faithfulness

Faithfulness is a metric commonly employed in
circuit analysis studies (e.g., Wang et al., 2023;
Conmy et al., 2023; Hanna et al., 2023; Miller et al.,
2024; Marks et al., 2024; Hanna et al., 2024). The
metric aims to capture the proportion of model be-
havior on dataset D explained by the circuit. More
concretely, given target metric m, full model M,
and circuit C, we follow Marks et al. (2024) in
defining faithfulness F as the average normalized
ratio of m given C over m given the full model:

F = Ex∈D

[
m(C, x)−m(∅, x)

m(M, x)−m(∅, x)

]
(5)

We define m as the logit difference between the
garden-path completion and the non-garden-path
completion given x. m(∅) refers to the logit differ-
ence when ablating all features. Here, an ablation
entails setting a feature’s activation to 0 before re-
constructing the activations. The intuition is that
the circuit should capture the same proportion of
m above its prior (i.e., in the absence of any input-
specific information) than the full model captures
for as many examples as possible.

Note that when computing faithfulness, we in-
clude all nodes whose absolute ÎE values surpass
the threshold. This means that we include positive-
ÎE components that increase the difference in favor
of non-garden-path continuations, and negativeÎE
components that increase the difference in favor
of garden-path continuations. This is because, in
ambiguous settings, both readings are possible, and
we would like to recover features that are sensitive
to both readings.

When computing faithfulness, Marks et al.
(2024) give approximately the first 1

4 of the lay-
ers in the model for free—that is, all features in
the embedding layer and through the end of layer
1 for Pythia. In other words, all features in these
layers are implicitly included in the circuit, regard-
less of whether they passed the effect threshold.
The reasoning is that these features are generally
only responsible for detecting that certain tokens
have appeared in the inputs; thus, without them, the
model would not be aware that these tokens have
appeared, and it would therefore not be possible to
perform the task. Unlike in their setting, we do not
have a distinction between the circuit discovery set-
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ting and the evaluation setting,11 but we do find that
many embedding and layer-0 features still do not
appear in the circuits that should. These generally
correspond to word detectors for tokens that only
appeared in one example in D. Thus, for Pythia,
we give the model only the embedding and layer-0
features for free when computing faithfulness. For
Gemma 2, we find that layers 0–2 contain word
detector features, so we give all features layers 0,
1, and 2 for free when computing faithfulness.

Our faithfulness results for Pythia-70m in §4.2
are either much lower or much higher than 1.0.
For NP/S, we obtain a faithfulness of 0.20, which
means that we have recovered 20% of the logit dif-
ference between the non-garden-path and garden-
path continutions as compared to the full model.
For NP/Z, we obtain a faithfulness of 3.48, mean-
ing that our circuit’s logit difference is over 300%
higher than the full model’s. For Gemma-2-2b
(circuits in App. F), the NP/S circuit has faithful-
ness 0.07, whereas the NP/Z circuit has faithfulness
0.23. 0.20 is on par with the faithfulness values
of Marks et al. (2024) for subject–verb agreement,
but 3.48 is very high, and likely means that we
have not captured many of the important negative-
effect (garden-path-upweighting) features. Indeed,
when we lower the effect threshold, we observe
that faithfulness slowly (but non-monotonically)
approaches 1. The Gemma NP/S circuit’s low
faithfulness of 0.07 suggests that we must include
many more features to capture the full mechanism.
This is unsuprising, given that this model is sig-
nificantly larger than Pythia and should therefore
require more features to achieve the same behavior.

In follow-up analyses, we find that achieving
close to a faithfulness of 1 requires many hun-
dreds of features for Pythia-70m—and thousands
for Gemma-2-2b.12 Currently, this number of fea-
tures is not tractable to annotate manually, and our
initial experiments revealed that automated feature
labeling methods such as those of Bills et al. (2023)
tend to not be sensitive to syntactic distributions,
instead preferring purely lexical or semantic inter-
pretations of feature activation patterns. Future
work could enable new mechanistic analyses by
improving the ability of automated neuron/feature

11As there is no optimization involved in obtaining the
circuit, a held-out set is not always used in circuit discovery.
That said, we acknowledge that evaluating circuits on held-out
data makes it more likely that the discovered mechanism will
generalize to wider distributions of inputs.

12See App. E for faithfulness values for Gemma 2’s circuits.
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Figure 6: Mean difference in probability of GP and non-
GP continuations under interventions for Pythia-70m,
on the larger-scale SAP Benchmark. Error bars indicate
the standard error of the mean (SEM); however, SEM
is near-0 and thus not visible. Interventions on inter-
pretable features reverse model behavior, as expected;
random interventions do not change behavior.

explanation techniques to detect syntactic distribu-
tional features.

D Causal Experiments on a Larger
Dataset

The dataset from Arehalli et al. (2022) that we
adapt for feature circuit finding is small. This is
important, because we manually adapt it to be com-
patible with our methods. In particular, we craft
the unambiguous examples described in §4.1, and
also force every example to have the same token
length. The latter is key, because, if we wish to esti-
mate the importance of a feature at a given position
over a number of different examples, each example
must have the same token length, and the type of
token at each position (e.g. verb, final noun, etc.)
must be the same. For this reason, it is currently
infeasible to run these experiments (or any other
feature experiments) on a larger, non-handcrafted
dataset.

These same restrictions do not apply to the
causal experiment. In that experiment, as long as
we know where the verb and final noun are located
in the sentence, our sentences may have different
lengths, and different semantic content at each po-
sition. Taking advantage of this, we run our causal
experiment (see §4.3) again on a larger dataset.
We use the syntactic ambiguity benchmark (SAP
Benchmark, Huang et al., 2024), of which Arehalli
et al.’s dataset is a subset. This dataset has 7952
NP/Z sentences and 7948 NP/S sentences. We fol-
low the methods from §4.3 exactly, taking special
care to accommodate the different lengths and po-
sitions in this dataset. We perform this analysis
only on Pythia-70m-deduped; performing this on
Gemma-2-2b would be rather slow.
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Figure 7: Mean difference in probability of tokens cor-
responding to garden path (“,”/“.”) and non-garden-path
(“was”) readings of the input for Gemma-2-2b, aggre-
gated by garden path structure. Error bars indicate the
standard error of the mean. Inputs are either ambiguous,
or compatible with only a garden-path or non-garden-
path reading. (Non)-garden-path tokens are more proba-
ble given (non)-garden-path inputs. In ambiguous cases,
the model prefers the garden path reading, except for
NP/S inputs.

Our results (Figure 6) show that the features
we found in §4.2 generalize to this larger dataset
as well, even though they were found on a very
small subset thereof. Our ablations successfully
induce the model to produce non-GP continua-
tions for NP/Z sentences, and GP continuations
for NP/S sentences, reversing its initial preferences,
exactly as in §4.3. Again, the random ablations
are ineffective, leaving performance close to the
no-intervention baseline.

E Results for Gemma-2-2b

To ensure our findings are not merely a function of
model size or the Pythia SAEs, we also replicate
the experiments for Gemma-2-2b. We first present
results for the behavioral analysis (App. E.1). Then,
after discovering feature circuits for NP/S and
NP/Z (shown in App. F), we causally verify the
labels we assign to these features (App. E.2). We
use Lieberum et al.’s (2024) Gemma-2-2b SAEs
with 16,384 features.

E.1 Behavioral experiments
Here, we present behavioral results for Gemma-
2-2b (Figure 7). The experimental setup is the
same as that described in §4.1. For all sentence
structures, findings are largely consistent as those
for Pythia: Gemma 2 upweights and downweights
garden-path tokens in appropriate contexts. For
ambiguous inputs, the model gives more probabil-
ity to garden-path continuations in NP/Z, but non-
garden-path continuations in NP/S. For MV/RR,
Gemma-2-2b assigns higher probability to non-GP
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Figure 8: Difference in mean probability of tokens corre-
sponding to garden-path and non-garden-path readings
of the input for Gemma-2-2b, aggregated by garden path
structure. Error bars indicate the standard error of the
mean. We either intervene on interpretable features to
induce the opposite behavior, or intervene on random
features. The interventions on interpretable features
are effective in the way we expect, whereas random
interventions do not change behavior.

continuations than GP continuations in contexts
that license non-GP continuations only. This is
distinct from what was observed in Pythia, where
probabilities for both continuations were closer to
each other, with GP continuations being slightly
more probable.

E.2 Causal verification

Having shown that Gemma 2 prefers the GP read-
ing for NP/Z, we aim to induce the dispreferred
non-GP reading by clamping subject detectors to
high activations (100.0) at the final noun, and
clamping object detectors to low activations (0.0).
Note that the artificial high activation here is much
larger (100.0) for Gemma 2 than what we used for
Pythia (2.0). This is because the activations are gen-
erally much larger in the Gemma 2 SAEs; indeed,
activations of 100.0 are not necessarily out of dis-
tribution. For NP/S, Gemma 2 prefers to non-GP
reading, so we attempt to induce the dispreferred
GP reading by doing the opposite—namely, setting
the subject detector and object detector features
to 0.0 or 100.0, respectively, and by clamping the
sentential-clause-verb detectors to 0.0 at the verb
position. As in §4.3, we compare to a baseline
where we clamp the same number of randomly
sampled features to high or low activations.

Our findings (Figure 8) suggest that the features
we find are causally relevant, and in the way we
expect. For NP/Z, we can change the model’s
probabilities such that p(non-GP) > p(GP). For
NP/S, we can decrease the originally preferred
p(non-GP). The increases in p(GP) is difficult to
visualize, but present: p(GP) is increased from
5 × 10−6 to 4 × 10−3, and because the new
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Figure 9: Sparse feature circuit for Pythia-70m on the NP/Z garden path structure. Features with larger positive
effects are colored in deeper shades of blue; features with larger negative effects are colored in deeper shades of red.
Zoom in to view feature annotations.

Figure 10: Sparse feature circuit for Pythia-70m on the NP/S garden path structure. Features with larger positive
effects are colored in deeper shades of blue; features with larger negative effects are colored in deeper shades of red.
Zoom in to view feature annotations.

p(non-GP) is 1× 10−9, we have induced a relative
preference for the originally dispreferred reading.
Nonetheless, it is likely that other continuations
outside of the GP and non-GP tokens we consider
have now become more probable than either of
these two possibilities.

F Feature Circuits

Here, we present the full sparse feature circuits
for NP/S and NP/Z. We include feature circuits
for both Pythia-70m and Gemma-2-2b. For both
Pythia circuits, we set the node threshold to 0.1 and
the edge threshold to 0.001. To keep the feature
circuit a size that will fit onto a page (and to keep
the number of features we must manually annotate
reasonable), we slightly increase the node threshold
to 0.12 when discovering the Gemma 2 circuits.

Because we include any node where the abso-
lute value of the ÎE is over the node threshold,
we include positive- and negative-effect features.
Positive-effect features increase the relative proba-
bility of the non-garden-path continuation over the
garden-path-continuation, whereas negative-effect
features increase the garden-path continuation prob-
ability relative to the non-garden-path continuation.
We manually annotate all features in these circuits

by observing their activation patterns and the to-
kens whose probabilities are most affected when
the feature is ablated.13

The sparse feature circuits for NP/Z (Figures 9
and 11) are similar across models. Both contain pri-
marily spurious or word-level features in the lower
layers, and more syntax-sensitive features in the
upper layers. See Figure 3 for a condensed version
of Pythia’s NP/Z circuit, where we summarize the
main categories of features and their effects on the
model’s preferred continuation. Pythia’s NP/Z cir-
cuit contains 65 features, and Gemma 2’s contains
182.

The sparse feature circuits for NP/S (Figures 10
and 12) show similar trends. See Figure 13 for a
condensed version of Pythia’s NP/S circuit. Note
that more of the features have negative effects in
the NP/Z circuits than in the NP/S circuits, as both
models more strongly prefer the garden path con-
tinuations for NP/Z inputs. Pythia’s NP/S circuit

13We acknowledge that there are issues in both precision
and recall when assigning textual explanations to neurons
(Huang et al., 2023), and that these issues extend to sparse
features. Our causal verification experiments mitigate this
somewhat, but natural language is ultimately an ambiguous
medium for expressing the functional role of model compo-
nents. Future work should consider more formal ways of
describing sparse features.
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Figure 11: Sparse feature circuit for Gemma-2-2b on the NP/Z garden path structure. Features with larger positive
effects are colored in deeper shades of blue; features with larger negative effects are colored in deeper shades of red.
Zoom in to view feature annotations.
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Figure 12: Sparse feature circuit for Gemma-2-2b on the NP/S garden path structure. Features with larger positive
effects are colored in deeper shades of blue; features with larger negative effects are colored in deeper shades of red.
Zoom in to view feature annotations.
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Figure 13: Pythia-70m’s feature circuit for processing
NP/S garden path sentences. We group features by their
functional role in the circuit and display the number
of features in each group. Red features have negative
scores, and push the model towards the garden path
reading; blue features have positive scores, and do the
opposite. Unlabeled early-layer features are word detec-
tors. Many late-layer features encode syntactic features,
whereas early-layer features largely consist of word de-
tectors and heuristics. Note that we exclude features
that are difficult to interpret from the feature counts.

contains 155 features, and Gemma 2’s contains
179.

G Structural Probe Training and Results

G.1 Probe Details

We use Eisape et al.’s (2022) MLP action probes
to probe Pythia-70m’s internal parse information.
These probes take in the representations of two
words,14 and compute the probability of a given
parse action a as

P (a) ∝ exp
(
e⊤a MLP([h1,h2]) + ba

)
, (6)

where h1 and h2 are the hidden representations
of the words whose relation you wish to predict,
and ea and ba are learned weight and bias terms
respectively.

While we consider the parse probes in isola-
tion, Eisape et al. (2022) use them as part of a
larger parsing architecture. Specifically, they rely
on the arc-standard dependency formalism (Nivre,
2004), which parses the input into subtrees which
are placed on a stack and repeatedly combined with
each other via parse actions in order to obtain a full
(incremental) parse of the input.

There are three parse actions: LEFT-ARC, which
pops the first two subtrees s1, s2 off the stack and
draws an arc from s1 to s2; RIGHT-ARC, which

14Our dataset contains no multi-token words, but during
training, multi-token words are aggregated to form a single-
token representation.
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Figure 14: Probe unlabeled attachment score (UAS) and
undirected unlabeled attachment score (UUAS) on the
Penn Treebank test split, by layer.

does the same, but draws the opposite arc; and GEN,
which indicates no relation, and moves the parsing
process forward by generating another token.

Notably, LEFT-ARC and RIGHT-ARC refer not to
the position of words in the sentence, but to the
direction of the arc between popped subtrees. This
is why the non-garden-path reading corresponds
to the LEFT-ARC action; during normal parsing of
our garden path fragments, the final noun heads s1,
while the verb heads s2, so arcs are reversed with
respect to their appearance on paper.

G.2 Probe Training

Following Eisape et al. (2022), we train our probes
on the training split of the Penn Treebank (Taylor
et al., 2003);15 we use essentially the same hyper-
parameters as in their work, modified to work with
Pythia-70m-deduped, rather than GPT-2. Then, we
also record unlabeled attachment score (UAS) and
undirected unlabeled attachment score (UUAS) on
the test split, in order to verify that our probes are
effective.

Our results (Figure 14) show that the probes are
indeed effective. The probes’ UAS and UUAS are
similar to the values. The UAS for the last layer
is unusually low, even considering the last layer’s
lower performance in Eisape et al. (2022), indicat-
ing that the direction of dependency relations is
not captured, but this tracks with the probes’ poor
performance on garden path sentences using repre-
sentations from that layer.

15Note that the Penn Treebank does not originally come
with these splits, which were defined in Hewitt and Manning
(2019). Documents 2-21 of the WSJ portion of the dataset are
considered the train split; document 22 is the validation split;
document 23 is the test split.
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Figure 15: Probe action probability across layers and
sentence types (GP and non-GP). GEN corresponds to
the non-GP reading, and LEFT-ARC to the GP reading
(RIGHT-ARC is implausible and is excluded, as it always
receives low probability). GP sentences elicit primarily
LEFT-ARC; non-GP sentences elicit GEN. However, both
readings do have non-zero probability in both cases.

G.3 Probe Evaluation on Unambiguous
Garden-Path-Derived Stimuli

In §5.2, we found that the probes’ judgments on
regarding the parse of the sentence matched with
our observations based on features and behavior.
But do these probes also behave sensibly on stimuli
whose parse is known? To test this, we evaluate
the probes on the unambiguous stimuli from our
dataset (Table 1), and record their action probabili-
ties. Ideally, the probes should prefer LEFT-ARC on
GP sentences, and GEN on non-GP sentences.

Our results (Figure 15) show that this is generally
the case: GP sentences elicit primarily LEFT-ARC;
non-GP sentences elicit GEN. However, the model
struggles on NP/Z non-GP sentences, perhaps be-
cause these are the least plausible ones; such sen-
tences are generally written with a comma after the
verb, and read strangely. Moreover, both readings
do have non-zero probability in most cases, even
though their construction should preclude the alter-
native reading. The probes thus seem somewhat
less attuned to syntactically in/valid readings than
LM probabilities are.

G.4 Feature Consistency

We can test the consistency between whole-model
and probing methods by performing feature anal-
ysis with our structural probe. Each probe takes
as input residual stream activations, for which we
have SAEs; we can thus use AtP-IG to find features
that influence the quantity p(LEFT-ARC) - p(GEN),
just as we previously found model features that
influenced p(GP) - p(non-GP). For each structure
(NP/Z and NP/S) and layer of the model, we take
Fc, the set of features in that layer of the circuit,
and Fp, the set containing the top-|Fc| features for
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Figure 16: Overlap of probe and circuit features, com-
puted as recall with respect to circuit features. Random
chance overlap is near 0, but probe features overlap sig-
nificantly with circuit features.

Model MV/RR NP/S NP/Z

Gemma-2-2b 73.0 83.3 70.9
–Neg MV/RR features 73.0 83.3 79.2
–Neg NP/S features 70.9 83.3 70.9
–Neg NP/Z features 73.0 85.4 72.9

–Pos MV/RR features 70.9 83.3 60.4
–Pos NP/S features 70.9 83.3 75.0
–Pos NP/Z features 73.0 83.3 70.9

Table 4: Accuracies on follow-up reading comprehen-
sion questions given garden path sentences. “Pos” refers
to ablating positive-effect features, or those promoting
the non-garden-path reading. “Neg” refers to ablating
negative-effect features, or those promoting the garden-
path reading. Performance generally changes little un-
der ablations, except for NP/Z when ablating MV/RR
features.

the probe. We quantify the sets’ overlap via recall,
|Fc∩Fp|
|Fc| . The expected recall for random features

would be very near 0; however, Figure 16 shows
that the probe features’ recall is quite high. This
overlap is highest (0.6-0.8) in the embeddings, but
there is also high overlap (0.35-0.45) in layers 3 and
4, which contain interpretable, high-level syntac-
tic features. Thus, even though these probes were
trained and attribution performed in very ways, the
same underlying features are responsible.

H Reading Comprehension Questions:
Performance under ablations

Here, we assess the extent to which we can in-
fluence model performance in garden path read-
ing comprehension questions by ablating the GP-
promoting or non-GP-promoting features. Using
the same dataset as in §6, we ablate the top 10 and
bottom 10 features discovered from §4.2 and then
remeasure performance. We hypothesize that ablat-

3202



ing the positive features (those promoting the non-
garden-path reading) will cause performance to
drop, whereas ablating the negative features (those
promoting the garden-path reading) will cause per-
formance to increase.

Our results (Table 4) indicate that the ablations
are largely ineffective at changing behavior. In
some cases, performance does decrease or increase,
but typically not to a significant extent. Where
differences are significant, it is generally not for
the structure from which the features were discov-
ered. For example, ablating positive MV/RR fea-
tures causes a significant increase in performance
for NP/Z questions, and ablating negative MV/RR
features also increases performance on NP/Z ques-
tions.

I Data Artifacts, Experimental Details,
and Risks

Data Artifacts In this paper, we mainly use Are-
halli et al.’s (2022) garden path sentence dataset,
which is in turn a subset of the syntactic ambi-
guity benchmark (SAP, now published as Huang
et al., 2024), a larger garden path sentence dataset.
The latter uses an MIT license, and our use case
(intepretability and psycholinguistic research) is
appropriate for the license. The other datasets—
BoolQ (Clark et al., 2019a) and MCQA (Wiegreffe
et al., 2024)—are released with licenses (CC BY-
SA 3.0 and Apache 2.0) compatible with research
use. All datasets are entirely in English.

We also craft two follow-up sentences per NP/Z
and NP/S sentence in the aforementioned dataset.
These follow-up sentences, and code for our exper-
iments, will be released upon acceptance.

Experimental Details We perform our experi-
ments using an Nvidia A100 (80GB) GPU and
Nvidia RTX 6000 Ada GPU. The former is help-
ful for finding Gemma feature circuits with a low
threshold. In total, running all experiments should
take no more than 5 GPU-days on the former (per-
haps less). Most of the runtime comes from running
the Gemma experiments and training parse probes.

All experiments are implemented in PyTorch
(Paszke et al., 2019) using the NNsight inter-
pretability framework (Fiotto-Kaufman et al.,
2024). All LMs used were accessed via Hugging-
Face (Wolf et al., 2020).

Risks Because our study only attempts to inter-
pret pre-trained models, we believe that it poses

few risks; similarly, the basic follow-up questions
carry with them few risks.
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