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Abstract

What kind of internal mechanisms might Trans-
formers use to conduct fluid, natural-sounding
conversations? Prior work has illustrated by
construction how Transformers can solve var-
ious synthetic tasks, such as sorting a list or
recognizing formal languages, but it remains
unclear how to extend this approach to a con-
versational setting. In this work, we propose
using ELIZA, a classic rule-based chatbot, as
a setting for formal, mechanistic analysis of
Transformer-based chatbots. ELIZA allows us
to formally model key aspects of conversation,
including local pattern matching and long-term
dialogue state tracking. We first present a the-
oretical construction of a Transformer that im-
plements the ELIZA chatbot. Building on prior
constructions, particularly those for simulat-
ing finite-state automata, we show how sim-
pler mechanisms can be composed and ex-
tended to produce more sophisticated behavior.
Next, we conduct a set of empirical analyses
of Transformers trained on synthetically gen-
erated ELIZA conversations. Our analysis il-
lustrates the kinds of mechanisms these models
tend to prefer—for example, models favor an
induction head mechanism over a more precise,
position-based copying mechanism; and using
intermediate generations to simulate recurrent
data structures, akin to an implicit scratchpad
or Chain-of-Thought. Overall, by drawing an
explicit connection between neural chatbots
and interpretable, symbolic mechanisms, our
results provide a new framework for the mech-
anistic analysis of conversational agents.1

1 Introduction

One approach to understanding Transform-
ers (Vaswani et al., 2017) is to identify explicit
mechanisms that a Transformer could theoretically
use to solve a particular task. This bottom-up ap-
proach has been used to characterize the expres-

1Code and data are available at https://github.com/
princeton-nlp/ELIZA-Transformer.

sivity of the Transformer architecture for a variety
of synthetic and formal language tasks, including
regular languages (Bhattamishra et al., 2020a; Liu
et al., 2023), Dyck languages (Yao et al., 2021),
and PCFGs (Zhao et al., 2023). However, this line
of work has focused mainly on simple algorithmic
tasks applied to single-sentence inputs, and it re-
mains an open question whether we can extend
these approaches to understand how Transform-
ers could conduct natural-sounding conversations.
In this work, we propose to use rule-based chat-
bots for formal and mechanistic analysis of neural
conversational agents. We first present theoretical
constructions of how a Transformer can implement
a classic rule-based chatbot algorithm, and then we
use these constructions to guide a series of empiri-
cal investigations into how Transformers learn to
solve such tasks when they are trained on synthetic
conversation data.

In particular, we focus on ELIZA (Weizenbaum,
1966), one of the first artificial chatbots. The
ELIZA algorithm is simple but exhibits a number
of sophisticated conversational behaviors (Fig. 1).
The majority of ELIZA’s behavior is based on local
pattern/transformation rules: ELIZA compares the
user’s input to a set of templates, and responds by
reassembling the input according to an associated
transformation rule. However, ELIZA also em-
ploys several mechanisms that make use of the full
conversational history, including a mechanism for
varying its responses between successive turns, and
a memory queue to refer to turns from the begin-
ning of the conversation. ELIZA therefore offers a
natural next step from simpler, sentence-level set-
tings, comprising both local pattern matching and
long-distance dialogue state tracking.

First, we describe how a decoder-only Trans-
former could implement the ELIZA program
(Fig. 2). We start by showing how we can use
constructions from prior work as modular building
blocks—in particular, by decomposing the task into
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Figure 1: An example ELIZA conversation, adapted from Weizenbaum (1966) (left) and the corresponding parts
of the ELIZA program (right). ELIZA uses both local pattern matching and two long-term memory mechanisms
(cycling through responses, and a memory queue). At each turn, ELIZA compares the most recent input to a set of
decomposition templates and applies one of the associated reassembly rules. The 0 symbols in the decomposition
template are wildcards, which are used to decompose the user’s input into segments. A response is generated by
replacing each numeral in the reassembly rule with corresponding segment of the user’s input. If a template is
matched more than once in a conversation, ELIZA cycles through a list of possible reassembly rules. If the input
contains a special keyword (“my”), ELIZA stores it in a memory queue; later, if an input does not match any of the
templates, ELIZA reads the first memory from the queue.

a cascade of finite state automata (Liu et al., 2023;
Yang et al., 2024), along with a copying mecha-
nism for generating responses. This decomposi-
tion attests to the usefulness of algebraic automata
as building blocks for characterizing complex be-
havior in Transformers. On the other hand, we
also identify alternative constructions for key sub-
tasks, including a more robust copying mechanism
(Sec. 3.2) and memory mechanisms (Sec. 3.3) that
make use of intermediate ELIZA outputs—akin
to a scratchpad (Nye et al., 2021) or Chain-of-
Thought (Wei et al., 2022b). These alternative con-
structions inform our empirical investigations later
on. Incidentally, the ELIZA framework happens to
be Turing complete (Hay and Millican, 2022); our
results therefore lead to a simple, alternative con-
struction for a Transformer that simulates a Turing
machine, which we discuss in Appendix B.4.

Next, we generate a dataset of ELIZA transcripts
and train Transformers to simulate the ELIZA algo-
rithm (Sec. 4). We investigate which aspects of the
task are difficult for the models to learn, and find
that models struggle the most with precise copying
and with the memory queue mechanism—which
requires the composition of several distinct mecha-
nisms. We further study which of our hypothesized
constructions better match what the models learn,
and how the result varies according to the data dis-
tribution. For copying, we find that models have a
strong bias for an induction head mechanism (Ols-

son et al., 2022), leading to worse performance on
sequences with a high degree of internal repetition.
For the memory components, we find that models
make use of intermediate outputs to simulate the
relevant data structures, which underscores the im-
portance of considering intermediate computation
in understanding Transformers, even without an
explicit scratchpad or Chain-of-Thought. Together,
our results illustrate that ELIZA offers a rich set-
ting for mechanistic analysis of learning dynamics,
allowing us to decompose the task into subtasks,
conduct fine-grained behavioral analysis, and con-
nect this analysis to predictions about the model’s
mechanisms.

By drawing an explicit connection between neu-
ral chatbots and interpretable, symbolic mech-
anisms, our results offer a new setting for an
algorithm-level understanding of conversational
agents. We conclude by discussing the broader
implications of our results for future work on inter-
pretability and the science of language models.

2 Background: ELIZA

We start by describing the ELIZA algo-
rithm (Weizenbaum, 1966), following the
presentation of (Jurafsky and Martin, 2020). The
ELIZA algorithm can be decomposed into two
types of behavior: local pattern matching and
long-term memory, illustrated in Fig. 1. We discuss
ELIZA in more detail in Appendix A.
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2.1 Local Pattern Matching
First, ELIZA compares the most recent user in-
put to an inventory of pattern/transformation rules,
such as the following:

0 YOU 0 ME → What makes you think I 3 you?

The left-hand side of the rule is called a decompo-
sition template and corresponds to a simple regular
expression, where the 0 symbol is a wildcard that
matches 0 or more occurrences of any word. If
an input matches a template, it is partitioned into
a set of decomposition groups corresponding to
the wildcards. For example, the input “It seems
like you hate me” would be decomposed into four
groups: (1) It seems like (2) you (3) hate (4) me.
The right-hand side of the rule is called a reassem-
bly rule, and a response is generated by replacing
any number in the reassembly rule with the con-
tent of the corresponding decomposition group. In
this case, ELIZA will respond, “What makes you
think I hate you?” An ELIZA chatbot is defined
by an inventory of these rules, which are organized
into a configuration file known as the script. Each
decomposition template is assigned a rank and as-
sociated with one or more reassembly rules. Given
an input, ELIZA finds the highest ranked template
that matches the sentence and applies one of the
associated reassembly rules. The script also must
assign some reassembly rules to a null template,
which is used if none of the templates matches.

2.2 Long-Term Memory
While most responses consider only the previous
utterance, ELIZA includes two mechanisms that
use information from earlier in the conversation.

Cycling through reassembly rules First, each
template in a script can be associated with a list
of reassembly rules. If the template is matched
multiple times in a conversation, ELIZA will cycle
through all the rules in the list before returning
to the first item. For example, in Weizenbaum’s
ELIZA script, if the input contains the word “sorry,”
ELIZA will initially respond with “Please don’t
apologize.” If the user says “sorry” a second time,
ELIZA will say “Apologies aren’t necessary.” If the
user continues with “sorry”, ELIZA will eventually
say “I’ve told you that apologies are not required,”
and then cycle back to the first rule in the list.

Memory queue Second, if an utterance contains
a particular keyword (by default, the word “my”),

ELIZA stores it in a queue, referred to as the mem-
ory queue. Later in the conversation, if the user’s
input does not match any of the templates, ELIZA
will output the first item in the queue, applying one
of a set of memory reassembly rules. For example,
at the beginning of the conversation in Fig. 1, the
user states “My boyfriend made me come here.”
Many turns later, the user enters a sentence that
does not match any of the patterns, and ELIZA
replies, “Does that have anything to do with the
fact that your boyfriend made you come here?”

3 Constructions

Now we present our constructions for implement-
ing the ELIZA program with a Transformer de-
coder. We build the construction modularly by com-
posing constructions for each subtask in ELIZA
(Fig. 2). For the key subtasks, we identify multi-
ple possible mechanisms a Transformer could use,
some building on prior constructions—in particu-
lar, for simulating finite state automata—and others
drawing on intuitions from methods like Chain-
of-Thought (Wei et al., 2022b). In Section 4, we
will investigate empirically which of these options
are a better match for what the models learn. We
describe the constructions at a high level in this
section and defer the details to Appendix B.

Setup We consider a decoder-only Transformer
with softmax attention. At each turn in the con-
versation, the input will be the concatenation of
the conversation so far, with each user input and
each ELIZA response preceded by a special de-
limiter character, either u: (user) or e: (ELIZA),
respectively. The constructions use no positional
encodings, as we can use the self-attention mask
to infer positional information (Haviv et al., 2022;
Kazemnejad et al., 2023), and to segment the input
into turns, in order to restrict attention to a particu-
lar utterance. See Appendix B.1 for more details.

3.1 Local Pattern Matching

We start by considering a single turn in the conver-
sation, which involves first finding a template that
matches the input, and then generating a response
using the associated transformation rule.

Matching templates For template matching, we
make use of the fact that ELIZA templates are
equivalent to star-free regular expressions (Mc-
Naughton and Papert, 1971); these can be recog-
nized by simulating a corresponding finite-state
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Figure 2: The input to the Transformer is the conversation history, consisting of user inputs (beginning with u:)
followed by ELIZA’s responses (e:). The constructions then have four parts. First, the input is divided into segments,
each corresponding to a user input or ELIZA response. Second, the model attempts to match each user input to a
decomposition template; this step is executed in parallel, with each input compared to every possible decomposition
template. The model then identifies the highest scoring template and selects a reassembly rule, taking into account
the number of times this template has been matched earlier in the conversation. Finally, the model generates an
answer, either by applying a reassembly rule to the most recent user input (4a) or by transforming an input from
earlier in the conversation, using the “memory queue” mechanism (4b).

automaton. We build on the constructions of (Liu
et al., 2023; Yang et al., 2024). At a high level,
we can recognize a template with L symbols us-
ing a Transformer with L layers. At each layer ℓ
and position i, the Transformer determines whether
the input matches the first ℓ symbols of the tem-
plate at position i. The final output can be used to
both (a) determine if an input matches a template,
and (b) decompose the input according to the tem-
plate’s decomposition groups. Our constructions
recognize multiple templates in parallel using two
attention heads per layer—one attending uniformly
to the full prefix, and one attending to the previous
position. The depth of the Transformer therefore
scales with the length of the longest template in
the configuration script, and the width scales with
the total number of templates in the script. See
Appendix B.2 for more details.

Generating a response Now we assume that we
have identified a matching template and that the
embedding for each input token identifies the de-
composition group to which that token belongs.
The next step is to apply the reassembly rule to
the input to generate a response. At each gener-
ation step, the model needs to either generate a
constant word (defined by the reassembly rule), or
copy a word from one of the decomposition groups.
We present two high-level options, deferring the
precise details to Appendix B.3.

Option 1: Content-based attention (induction
head) The first possible approach is based on the

induction head (Olsson et al., 2022). This mech-
anism has been widely studied in prior work and
is considered a key primitive in Transformers (e.g.
Reddy, 2024; Singh et al., 2024; Akyürek et al.,
2024; Edelman et al., 2024). In our setting, we
define an induction head as follows: Given an input
sequence w, at each output position i, an induc-
tion head attends to an input position j such that
wi−n, . . . , wi = wj−n−1, . . . , wj−1, and copies
the token value wj (where n is some context size).
This mechanism has a drawback: as noted by Zhou
et al. (2024), it assumes that each word has a unique
n-gram prefix, so it can fail if the same n-gram
appears more than once in the input sequence. Ap-
pendix Table 3 shows an example.

Option 2: Position-based attention To avoid
this shortcoming, we propose a second option that
uses position rather than content to identify the
next word to copy. At each step, we can identify
the position to copy next as a function of the re-
assembly rule; the number of tokens generated so
far; and the number of tokens in each decompo-
sition group. This can be accomplished using an
attention layer to obtain the relevant counts, and a
feedforward layer to calculate the target position
(See Appendix Fig. 11 for details). Compared to
the induction head, this mechanism works equally
well regardless of the content of the copying seg-
ment. The drawback is that it relies on precise posi-
tion arithmetic; Zhou et al. (2024) argue that such
mechanisms are difficult for Transformers to learn,
and might not generalize to longer sequences.
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3.2 Cycling through Reassembly Rules

Now we turn to the first subtask that makes use of
information from earlier in the conversation: cy-
cling through reassembly rules. Specifically, we
allow each template t to be associated with a se-
quence of reassembly rules r1, . . . , rM . When tem-
plate t appears in a conversation for the ith time,
the model should respond with rule ri%M . We con-
sider two mechanisms (see Appendix Fig. 12 for
an illustration).

Option 1: Modular prefix sum One option is to
use the modular prefix sum mechanism described
by Liu et al. (2023): an attention head counts the
number of times t has been matched, and an MLP
outputs the result modulo M . We anticipate that
such a mechanism might perform worse as the se-
quence grows longer, as the model must attend over
a longer sequence and process a larger count. Ad-
ditionally, different templates can have a different
numbers of reassembly rules, so the model must
learn a separate modulus for each template.

Option 2: Intermediate outputs The model can
avoid modular arithmetic by making use of its
earlier outputs. Specifically, the model can reuse
the template matching mechanism to identify out-
puts where it responded to template t with any
of r1, . . . , rM . The model can then attend to the
most recent of these responses ri, and respond with
r(i+1)%M . This mechanism works regardless of the
cycle number. However, it would fail if the same
reassembly rule appears more than once in the list,
or if the reassembly rules are difficult to identify.
This use of intermediate outputs resembles prompt-
ing methods like scratchpad (Nye et al., 2021) and
Chain-of-Thought (Wei et al., 2022b), which we
discuss in more detail in Sec. 4.

3.3 Memory Queue

Finally, we incorporate the memory queue com-
ponent. Recall that ELIZA adds a user input to
the memory queue if it contains a special memory
keyword (e.g. “my”) and matches an associated
template. ELIZA reads an item from the mem-
ory queue if (a) the most recent input does not
match any templates and (b) the queue is not empty.
Given the output of the template-matching stage,
it is simple to determine whether an input repre-
sents an enqueue event or a no_match event. The
main challenge is to determine whether there are
any items in the queue, and so whether a given

no_match input should trigger a dequeue. Again,
we present two mechanisms, illustrated in Fig. 12.

Option 1: Gridworld automaton The first ap-
proach we consider is to use the construction
from Liu et al. (2023) for simulating a one-
dimensional “gridworld” automaton, which has S
numbered states and two actions: “increment the
state if possible” and “decrement the state if possi-
ble.” At each enqueue event, the automaton incre-
ments the state if possible, and at each no_match
event, the model decrements the state if possible.
If the state is decremented, we can conclude that
this input should trigger a dequeue. We can then
calculate the number of dequeues in the sequence,
d, and read the dth memory in the queue. Liu et al.
(2023) present a gridworld construction with two
Transformer layers and 2S attention heads, which
would allow us to implement a memory queue with
a maximum size of S.

Option 2: Intermediate outputs Alternatively,
as above, we can instead identify dequeue oper-
ations by examining earlier ELIZA outputs. By
reusing the template matching mechanism, we can
check whether an ELIZA response matches one
of reassembly rules associated with the dequeue
operation. Then, letting d denote the number of
dequeue operations, if d is less than the number of
enqueue operations, we read the dth memory from
the queue. Compared to the gridworld approach,
this construction uses fewer attention heads and
does not limit the size of the memory queue, but
it does impose a limit on the total number of en-
queues (because we need to embed the number of
enqueues to attend to the right memory).

4 Experiments

Now we investigate how Transformers learn the
ELIZA program in practice when we train them on
conversation transcripts. We focus on investigating
how the model solves the subtasks for which we
identified more than one possible construction.

Generating data For these experiments, we gen-
erate synthetic ELIZA data. We first sample a
configuration script consisting of templates and
associated reassembly rules, and then generate con-
versations that exhibit the different rules. At each
turn, we sample a template, and then sample a sen-
tence that matches that template by replacing each
wildcard with a sequence of words sampled uni-
formly from the vocabulary, and then generating
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Figure 3: Turn-level accuracy of Transformers trained on ELIZA conversations over training (Fig. 3a) and at the
final checkpoint (Fig. 3b), for models trained with three random seeds. Transformers quickly learn to identify the
correct reassembly rule (measured by Prefix only accuracy), and take longer to learn to implement the transformation
correctly (Full response). Accuracy is slightly worse on multi-turn and memory queue examples; see §4.1.

a response according to the ELIZA rules. The vo-
cabulary consists of the 26 lowercase letters. More
details are provided in Appendix C.1.

Model and training We train Transformers with
8 layers, 12 attention heads per layer, and a hidden
size of 768. We use the GPT-2 architecture (Rad-
ford et al., 2019) but remove the position encodings
and train all models from scratch. The models are
trained to predict the ELIZA responses (and not the
user inputs). See Appendix C.2 for more details.

4.1 Which Parts of the ELIZA Program are
Harder to Learn?

In Figure 3, we plot the accuracy over the course
of training and at the final checkpoint. The Full
response accuracy is the per-turn exact match ac-
curacy. The Prefix only accuracy is the accuracy
on the two-word prefix of the response, which we
ensure is unique for each reassembly rule. This
metric provides a proxy for distinguishing whether
errors are due to either (a) failure to identify the
correct rule, or (b) failure to implement the rule cor-
rectly. We additionally break down the results by
turn type, defined as follows: Single-turn: The first
response in the conversation. Multi-turn (no cy-
cling): The response for the first instance of a tem-
plate in the conversation. Multi-turn (cycling): The
response for a template that has already appeared
at least once in the conversation. Memory queue:
Responses that read from the memory queue. Null
template: Responses to inputs that do not match
any templates, when the memory queue is empty.

Accuracy by subtask Figure 3a shows that the
models quickly learn to identify the correct action
(as measured by prefix accuracy), achieving near-

perfect accuracy on almost all categories. The ex-
ception is the null template, which is used when
the input does not match any other pattern and the
memory queue is empty. At the final checkpoint
(Fig. 3b), accuracy is high but still imperfect, with
slightly lower accuracy in the multi-turn setting.

Error analysis In Figure 4, we test whether the
model’s errors are correlated with various proper-
ties of the input. We identify two main issues. First,
the models seem to struggle with precise copying.
Fig. 4a shows that accuracy is strongly correlated
with the number of tokens the model has to copy,
and only slightly correlated with the complexity of
the decomposition rule (defined as the number of
distinct copying segments in the transformation).
Similarly, Fig. 4b (left) shows that memory queue
accuracy decreases with the distance between the
current turn and the target memory, perhaps indi-
cating issues with long-distance copying.

Second, some errors seem to be related to track-
ing the state of the memory queue. Fig. 4b (right)
shows that accuracy is negatively correlated with
the total number of enqueue and dequeue opera-
tions in the sequence. Fig. 4c shows that the model
performs perfectly on null inputs, provided that
there have been no memory turns; accuracy de-
creases with the number of enqueues, indicating
that the models struggle when the queue has been
used but is now empty. We investigate this result
in more detail in Appendix Sec. D.1.

4.2 Comparing Copying Mechanisms
In Section 3.1, we identified two possible mecha-
nisms for copying: an induction head, which at-
tends based on the content of the input, and a
position-based attention head. We predicted that
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Figure 4: Which aspects of the task are most difficult for Transformers to learn? Copying (Fig. 4a): Accuracy
decreases considerably with the number of tokens to copy, and decreases slightly with the number of distinct copying
segments. Memory queue (Fig. 4b): The dequeue accuracy decreases when there is a greater distance to the target
memory and when there have been more queue operations earlier in the sequence. Null template (Fig. 4c): The
models do perfectly on null inputs provided there have been no memory turns in the sequence; accuracy decreases
with the number of enqueues, indicating that the models struggle when the queue has been used but is now empty.
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Figure 5: We train and test models on datasets that vary in whether copying segments are more or less likely to
contain the same n-gram multiple times (Fig. 5a). Models generalize poorly to data with more or less repetition
compared to the training distribution (Fig. 5b). Fig. 5c suggests that models trained on less repetitive data assign
higher attention scores to tokens with matching contexts, rather than calculating the correct target position. See §4.2.

the induction head will fail when the same n-gram
appears more than once in the input, while the
position-based mechanism will generalize. To ex-
plore which mechanism the models seem to learn,
we generate (single-turn) datasets that vary in how
likely it is for the same n-gram to appear multiple
times in a sequence. This is controlled by a parame-
ter α, with α < 1 corresponding to more repetition
of n-grams and α > 1 making it more likely that
most n-grams are unique.2

We start by training models on four different
datasets (Fig. 5a) and evaluating how well they

2Specifically, given a template, we generate a sentence as
follows: For each wildcard in the sentence, we sample a vector
p ∼ Dirichlet(α1), where 1 is a 26-dimensional vector of
all 1’s and α is the concentration parameter. Then we replace
the wildcard with 0-20 words sampled from Categorical(p).
With α < 1, p is more likely to concentrate most probability
on a small number of items, meaning each segment is more
likely to contain repeated n-grams. With α > 1, p is more
likely to be close to the uniform distribution (corresponding to
our setting in the previous section). See Fig. 5a for examples.

generalize to datasets with more or less repetition
(Fig. 5b). The model trained with the least amount
of repetition (α = 100) performs well in-domain
but suffers severe degradation on data with more
repetition; this provides preliminary evidence that,
in our default setting, models learn an induction
head mechanism that does not generalize when
n-grams can repeat. On the other hand, models
trained on the most repetitive data (α = 0.01) gen-
eralize poorly to higher values of α. The best-
generalizing model is trained with an α = 0.1,
suggesting that some moderate amount of repeti-
tion is needed to learn a robust mechanism. In
Appendix Fig. 14, we plot results over the course
of training, indicating that the most repetitive data
also takes longer to learn.

To get a sense of what mechanism these models
actually learn, we examine the final layer attention
heads. Specifically, given an ELIZA response, for
each output position i, we calculate the position
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Figure 6: We design counter-factual experiments to test whether models make use of intermediate generations to
keep track of the response cycle (Fig. 6a) or memory queue (Fig. 6b), or rely only on the user inputs. Error bars
show 95% confidence interval over models trained with three random seeds. Both experiments indicate that the
models use their own outputs from earlier in the sequence. When we edit the model’s earlier output, we can reliably
influence it to increment the response cycle or read a memory from earlier in the queue.

j of the input token that should be copied next.
Then we calculate the average pre-softmax atten-
tion score between the query embedding at position
i and key embeddings drawn from other validation
examples that satisfy one of two conditions: either
the key has same n-gram prefix as the query i, but
appears at a position k ̸= j; or the key appears
at the target position j but has a different n-gram
prefix (wi−n:i ̸= wj−n−1:j−1).

In Figure 5c, we plot the difference between
these scores for different n-gram windows, aver-
aging over attention heads, with positive values
indicating that the model assigns higher scores to
content than position. (We plot the results for each
head individually in Appendix Fig. 15.) When
α ≥ 1, the models prefer content to position once
there is a prefix match of at least three tokens in
length. For all models, the content score increases
with the length of the matching n-gram, with a
steeper increase when α < 1. The model trained
with a moderate amount of repetition (α = 0.1)
generalizes the best and is also the only model
that prefers position to content even at the longest
context window. While all models are sensitive to
content to some extent, the results illustrate how
the data distribution influences which mechanism
the model uses, and how well they generalize.

4.3 Comparing Memory Mechanisms

Next, we examine which mechanism the models
learn for the two subtasks that rely on information
from earlier in the conversation: cycling through
reassembly rules, and the memory queue. In Sec-
tions 3.2 and 3.3, we offered two possible construc-
tions for each subtask: one construction based on
simulating an automaton and one based on pro-

cessing previously generated outputs. Here, we
design counter-factual experiments to test whether
the model is sensitive to earlier responses. For
each mechanism, we edit the model’s response to
an intermediate turn in the sequence and then test
the model’s response at a subsequent turn (see Ap-
pendix C.3 for details). In Fig. 6, we test whether
the response is consistent with the automaton con-
struction, which predicts that the reponse will be
unchanged (Same); the intermediate-output con-
struction, which predicts that the response will
change in a specific way—either incrementing the
cycle counter (Increment) or reading a memory
from earlier in the clue (Decrement); or whether it
matches neither prediction (Neither). In both cases,
the model’s behavior is most consistent with the
intermediate-output hypothesis, either increment-
ing the cycle counter or decrementing the memory
queue counter as predicted. This illustrates the
importance of considering intermediate outputs in
understanding Transformer behavior, even without
an explicit scratchpad or Chain-of-Thought.

5 Discussion and Related Work

Expressivity with formal languages Numerous
works have formalized the expressive power of
Transformers on formal languages. Pérez et al.
(2021); Pérez et al. (2019); Bhattamishra et al.
(2020b) show that Transformers with hard attention
are Turing complete, and Wei et al. (2022a) study
their statistical learnability. Merrill et al. (2022);
Merrill and Sabharwal (2023); Hao et al. (2022);
Hahn (2020) further distinguish the expressivity of
transformers with different hard attention patterns.
Other works have investigated encoding specific
algorithms in smaller simulators, e.g. bounded-
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depth Dyck languages (Yao et al., 2021), modu-
lar prefix sums (Anil et al., 2022), adders (Nanda
et al., 2023), regular languages (Bhattamishra et al.,
2020a), sparse logical predicates (Edelman et al.,
2022), and n-gram language models (Svete and
Cotterell, 2024). Liu et al. (2023) propose a unified
theory for expressivity of different automata with
transformers. We refer the readers to Strobl et al.
(2024) for a more comprehensive survey.

Building on these works, numerous recent works
have tried to argue the expressivity of transform-
ers with in-context learning. Garg et al. (2022);
Akyürek et al. (2023); Fu et al. (2023); Ahn et al.
(2023); Bai et al. (2024); Li et al. (2023); Giannou
et al. (2023); von Oswald et al. (2023); Von Os-
wald et al. (2023); Panigrahi et al. (2023); Dai et al.
(2023) have argued that transformers can simulate
specific machine learning algorithms (e.g. linear
regression) on in-context examples. However, the
relation between the constructions and the perfor-
mance of Transformers on real world datasets has
been largely unclear. Our framework shows that
these constructions can be non-trivially extended
to demonstrate how a Transformer could simu-
late a chatbot program. A number of works have
demonstrated the theoretical advantage of scratch-
pads (Nye et al., 2021) and chain-of-thought (Wei
et al., 2022b) for the expressivity of bounded Trans-
former models (Feng et al., 2024; Li et al., 2024;
Nowak et al., 2024; Merrill and Sabharwal, 2024;
Abbe et al., 2024; Hu et al., 2024; Hou et al.,
2024). Our experiments illustrate how Transform-
ers trained on ELIZA data make use of their own
outputs to simulate data structures for dialogue
tracking, highlighting the importance of intermedi-
ate outputs even without an explicit scratchpad.

Challenges for mechanistic interpretability
One direction for future work is to consider our
ELIZA construction as a test bed for automatic
interpretability methods—for example, compiling
the construction into Transformer weights using
Tracr (Lindner et al., 2023). Specifically, given a
compiled Transformer corresponding to an ELIZA
chatbot, to what extent could we recover the pro-
gram using existing interpretability techniques,
such as circuit finding (Conmy et al., 2023; Syed
et al., 2023) and dictionary learning (Cunningham
et al., 2023; Gurnee et al., 2024; Marks et al.,
2024)? Possible difficulties include sharing of at-
tention heads across different ELIZA operations
like parsing and copying, and sharing of mech-

anisms for different ELIZA operations like cy-
cling and memory queues. As such, our frame-
work might encourage more sophisticated inter-
pretability techniques in the future. Similarly, the
ELIZA dataset could serve as a test-bed for recent
approaches to designing intrinsically interpretable
neural architectures for language tasks (e.g. Hewitt
et al., 2023; Friedman et al., 2023).

Mechanistic dependence on data Recent works
have tried to understand the behavior of attention
models trained on synthetic data. Nanda et al.
(2023) study feature formation in 1-layer trans-
former models on adders dataset. Zhong et al.
(2023) study the dependence on model hyperpa-
rameters and initialization. Akyürek et al. (2024);
Quirke et al. (2023) study formation of n-gram
induction heads in language models. Allen-Zhu
and Li (2023a); Zhao et al. (2023) study the be-
havior of LMs trained on different context-free
grammars. Allen-Zhu and Li (2023b, 2024) further
study knowledge manipulation and storage in LMs
trained on synthetic datasets. Zhang et al. (2022)
propose LEGO synthetic reasoning dataset to un-
derstand generalization of transformers with simple
boolean circuits. Finally, Zhang et al. (2023); Edel-
man et al. (2024); Nichani et al. (2024) give end-to-
end convergence analysis of self-attention models
when trained under simplistic data assumptions.
ELIZA complements these studies by offering a
rich but controlled setting requiring the compo-
sition of diverse subtasks. Each subtask admits
multiple plausible mechanisms, and, as shown in
Section 4.2, different data distributional properties
can lead to different mechanisms. With increasing
interest in formalizing the mechanistic relationship
between data and training behavior (e.g. Chan et al.,
2022; Hahn and Goyal, 2023; Reddy, 2024; Xie
et al., 2021; Jain et al., 2024; Lee et al., 2024;
Prakash et al., 2024), we believe ELIZA can be a
useful test bed for future studies.

6 Conclusion

In this work, we constructed a Transformer that
implements the classic ELIZA chatbot algorithm.
We then trained Transformers on ELIZA conversa-
tion transcripts and examined how well the models
matched our construction. Our constructions and
dataset raise a number of possibilities for future
research, including as a benchmark for automated
interpretability methods, and as a setting for mech-
anistic analysis of learning dynamics.
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Limitations Our constructions illustrate some
of the ways that Transformers could implement
ELIZA, but they are not exhaustive, and they might
not correspond to the solutions that Transformers
actually learn. Characterizing the mechanisms that
models learn empirically is a key challenge for fu-
ture work on interpretability. Second, we conduct
some analysis of the mechanisms that models learn,
but we do not conduct an exhaustive mechanistic
analysis; future work could conduct further analy-
sis using other interpretability techniques, such as
causal methods (e.g. Vig et al., 2020; Feder et al.,
2021; Geiger et al., 2021), to understand how the
mechanisms are encoded in the model’s weights.
Third, we do not investigate whether open-source
conversational models use similar mechanisms to
the ones we considered here. It is not straightfor-
ward to evaluate open-source conversational mod-
els on our synthetic task, because it is difficult to
teach a model to follow the ELIZA algorithm and
rules without further fine-tuning. One possible di-
rection for future work is to prompt an instruction-
tuned model to follow the ELIZA rules and investi-
gate which mechanisms it uses.

More generally, while ELIZA offers a setting
for investigating a number of aspects of conversa-
tions, there is a substantial gap between ELIZA
and real-world chatbots. For example, ELIZA is
a deterministic program, whereas most real-world
chatbots are trained on data with more stochasticity.
One possible path for future research is to grad-
ually extend the rule-based chatbot framework to
include more of the key phenomena observed in
modern language models, with the goal of under-
standing how these behaviors can be implemented
with interpretable Transformer mechanisms. These
include more sophisticated pattern matching (for
example, extending from regular expressions to se-
mantic parsing); in-context learning; and explicit
chain-of-thought reasoning.
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A ELIZA Algorithm Details

Here we provide some additional details about the
ELIZA algorithm. Our presentation of the ELIZA
algorithm in Section 2 omits some details of the
original ELIZA algorithm, to improve clarity, so
we describe these details here.3

Word-level translation An ELIZA script can in-
clude word-level translation rules—for example, I
= YOU, YOU = I, and ME = YOU. These translations
are applied to all of the words in the input before
trying to match the input to a pattern. Therefore, in
the original ELIZA script, the patterns are written
to match inputs after the word-level translations
have been applied. So, for example, the rule

0 ARE I 0 → Would you prefer if I weren’t 4?

would match the input “Are you laughing at me?”
and transform it to “Would you prefer if I weren’t
laughing at you?” In this paper, we write rules to
match the input prior to word-level translations—
so, for example, we would present the pattern above
as 0 ARE YOU 0. Word-level translation is trivial
to incorporate into the Transformer construction,
by using the final linear layer to map each word to
its translation.

Keywords Each entry in an ELIZA script con-
sists of a ranked keyword. Each keyword is asso-
ciated with a list of decomposition templates, and
each decomposition template is associated with
one or more transformation rules. See Figure 7
for an example. To select a decomposition tem-
plate, ELIZA finds the highest ranked keyword that
appears in the input, and then finds the first decom-
position template in the associated list that matches
the input. If none of the templates matched, ELIZA
checks the next highest-ranked keyword. In this
paper, we ignore the role of keywords, and instead
define an ELIZA script by a set of ranked decom-
position templates and associated transformation
rules.

Pre-transformation rules The pre-
transformation rule is a special rule that
applies a transformation to the input, and then
“passes control” to another keyword in the script.
There is one use of the pre-transformation rule

3For an annotated explanation of an ELIZA script,
see https://github.com/jeffshrager/elizagen.org/
blob/master/1965_Weizenbaum_MAD-SLIP/1966_01_
CACM_article_Eliza_script.txt. For more resources
related to ELIZA, see http://elizagen.org/.
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Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
It’s true. I am unhappy.
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY
My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
My father.
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive, but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

Table 1: An example ELIZA conversation, reproduced from Weizenbaum (1966). Lines with all capital letters are
generated by ELIZA.

in Weizenbaum’s ELIZA script: if the input
matches the pattern 0 I’m 0, it is reassembled
as “I am 3,” and then matched against templates
with the keyword “am,” such as 0 I am 0.
However, the pre-transformation rule is critical
to the construction of Hay and Millican (2022)
for embedding a Turing machine in an ELIZA
script, which we will discuss in more detail below
(App B.4). In this construction, the input at each
step represents the tape of the Turing machine, and
keywords in the script correspond to states. Each
pre-transformation rule transforms the input by
applying one update to the tape, and then passes
control to a new keyword corresponding to the
next state.

B Construction Details

In this section, we provide additional details about
our ELIZA constructions, including sample imple-
mentations in RASP (Weiss et al., 2021). The input
to a RASP program is a sequence of tokens. The
program then consists of a series of operations that
output new sequences of equal length to tokens,
corresponding to intermediate embeddings in the
Transformer. The select and aggregate opera-

tions correspond to the attention mechanism in the
Transformer; these are the only operations that can
combine information from different positions in
the sequence. All other operations must operate
independently at each position, corresponding to
feedforward layers. Like Weiss et al. (2021), we
allow feedforward layers to implement arbitrary
element-wise transformations. We do not provide
explicit constructions for these element-wise trans-
formations; we leave this for future work. Figure 8
shows the RASP (Weiss et al., 2021) attention prim-
itives we use in our construction, implemented in
NumPy (Harris et al., 2020).

B.1 Input Segmentation and Position
Encoding

Our first step is to divide the input into segments,
corresponding to the turns in the conversation. This
is accomplished by using the special delimiter to-
kens to count the number of utterances seen so far:

segment_ids = selector_width(
select(tokens, tokens, lambda q, k: k in ("u:", "e:"),
max_width=max_segments)

We will use these segment_ids throughout the con-
struction to restrict attention to a particular utter-
ance. The segment_ids are also used to generate
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Figure 7: Part of an ELIZA script, from Weizenbaum (1966). Each entry in the script consists of a ranked keyword
and a list of patterns, with each pattern associated with multiple transformation rules.

local positional encodings:

segment_positions = selector_width(
select(segment_ids, segment_ids, ==),
max_width=max_segment_length)

This value encodes the position relative to the start
of the current segment.

Remark on length generalization While not the
focus of our investigation here, our approach to seg-
ment and position encodings has implications for
length generalization, similar to the cases studied
by Zhou et al. (2024). In particular, we must spec-
ify in advance the maximum number of segments
per conversation, as well as the length of each seg-
ment. This is because the selector_width op-
erator is implemented using one attention layer
followed by one feed-forward layer. At each po-
sition i, the attention layer outputs 1/c, where c
is the number of key positions attended to from
position i. The feed-forward layer then maps each
value of 1/c to an orthogonal embedding. In our
construction, we implement this second step as a
look-up table, meaning that we must decide in ad-
vance on the maximum possible value of c. This
means that our construction sets a limit on the num-
ber of segments per conversation, as well as the
length within each segment. If a model learned this
mechanism, we would expect it to fail to general-
ize if the number of segments or the length of a
segment increases beyond the training set. (On the
other hand, the construction does not place a direct
limit on the total conversation length.)

B.2 Template Matching

The next step in the construction is to compare
the most recent input to the inventory of decom-
position templates. Template matching involves
two things: finding a template that matches the in-
put, and decomposing the input according to that
template’s decomposition groups. Our construc-
tion makes use of the fact that ELIZA templates
are equivalent to star-free regular expressions (Mc-
Naughton and Papert, 1971; Pin, 2020). As a result,
we can recognize these by simulating the corre-
sponding finite-state automaton, building on the
constructions of Liu et al. (2023) and Yang et al.
(2024), adapted to recognize multiple templates in
parallel.

Decomposition templates Given a vocabulary
V , a decomposition template is a sequence t =
t1, . . . , tL, where each ti is either a word from
V; the wildcard character 0, which matches a se-
quence of zero or more words from V ; or a positive
integer n, which matches a sequence of exactly
n words from V .4 We assume that the vocabu-
lary contains two special beginning- and end-of-
sequence delimiters, ˆ and $ respectively, and for
every input w1, . . . , wN and template t1, . . . , tL,
w1 = t1 = ˆ and wN = tL = $. We will use t:i
to denote the template prefix t1, . . . , ti. As a work-
ing example, consider the vocabulary V = {a, b}
and the template t = ˆa0bb0$. This template
matches the input ˆaaabbaa$ and decomposes it

4A template can also include an equivalence class W ⊂ V ,
which matches one instance of any word in W . For example,
the template 1(a|b)1 matches both cab and cbb. This can be
addressed at the embedding layer by assigning one dimension
to the value of the indicator 1{w ∈ W} for each word w.
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def select(keys, queries, predicate):
# Calculate a (binary) attention pattern.
selector = np.array([[predicate(q, k) for k in keys] for q in queries])
return np.tril(selector)

def selector_width(selector, max_width=None):
# Count the number of keys attended by each query, up to `max_width`.
width = selector.sum(-1)
if max_width:

return np.minimum(width, max_width)
return width

def aggregate(selector, values, one_hot=False):
# Aggregate either a single value vector or a batch of value vectors
# stored in a dictionary.
if type(values) == dict:

return {k: aggregate(selector, v, one_hot) for k, v in values.items()}
if one_hot:

return values[selector.argmax(-1)]
attn = selector / np.maximum(selector.sum(-1, keepdims=True), 1e-9)
return values @ attn.T

Figure 8: Code for the primitive RASP operations (Weiss et al., 2021) we use in our construction, using NumPy (Har-
ris et al., 2020). Each attention head can implement one pair of select and aggregate operations. The
selector_width function corresponds to an attention head followed by a feed-forward layer, which maps the scalar
attention output to an embedding that can be used in subsequent attention layers. Because selector_width maps
each possible width to a unique, orthogonal embedding, the program must specify in advance the maximum width it
will handle.

into five groups: (1) a (2) aa (3) b (4) b (5) aa.
We always take a greedy approach to template
matching: for example, using the same tem-
plate, the input ˆaabbbaa$ will be decomposed
as (1) a (2) a (3) b (4) b (5) baa rather than
(1) a (2) ab (3) b (4) b (5) aa. Note that each
decomposition group corresponds to a prefix of the
template: word wi is in group ℓ if w:i matches the
template prefix t:ℓ.

Matching templates Our construction uses L
Transformer layers, where L is the maximum num-
ber of states in any template. At each layer ℓ, we
calculate whether the input matches the template
prefix t:ℓ for each template t and at each position i.
If tℓ is the wildcard character 0, then w:i matches
t:ℓ if t:ℓ−1 has been matched at any position j < i.
If tℓ is a vocabulary item w, then w:i matches tℓ if
wi = w and w:i−1 matches t:ℓ−1 (or, if tℓ−1 is 0, if
w:i matches t:ℓ−1, to account for the possibility that
0 matches zero words). We check these conditions
using two attention heads per layer:

These attention heads restrict attention to the
most recent utterance by taking the logical AND
between two selectors; see Lindner et al. (2023,
Appendix F) for a discussion of mechanisms for
combining selectors. Note that each layer uses two
attention heads, with each attention head calculat-
ing frac_prev or select_prev for all templates
in parallel.

Templates as finite-state automata While our
construction is presented in terms of ELIZA tem-
plates, we note that the ELIZA template language
defines a subset of star-free regular languages. As
a result, we can formulate this construction as an
approach to simulating a finite-state automaton,
building on the constructions of Liu et al. (2023)
and Yang et al. (2024). In particular, consider again
our example template t = ˆa0bb0$. We can rec-
ognize this template by simulating the finite-state
automaton illustrated in Figure 10. Each state in
the automaton corresponds to a prefix of the tem-
plate: if the automaton is in state ℓ after processing
words w1, . . . , wi, then the sequence w:i matches
the template prefix t:ℓ. Given a template t1, . . . , tL,
we will therefore refer to the states of the corre-
sponding automaton using the template prefixes
t:1, . . . , t:L. Note that some special handling is re-
quired because the automaton states are assigned
from left to right with no ability to look ahead in
the input. For example, consider the template 0ab
and input bacaab, which should be decomposed
as (1) baca (2) a (3) b. Without looking ahead in
the input, we have no way of knowing that the first
two a tokens belong in group 1 rather than 2. Our
template matching procedure would assign this se-
quence the states 121223. A similar issue arises
if we have a template such as 01ab, which should
decompose input bacaab as (1) bac (2) a (3) a (4)
b. These issues can be addressed by taking some
additional care in the generation stage, discussed
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def match_templates(tokens, segment_ids, segment_positions, templates):
L = max(len(t) for t in templates)
prefixes = [{("u:",): tokens == "u:"}]

# Each layer l checks if the input matches t[:l+1]
for l in range(1, L):

just_matched = select_prev(prefixes[-1], segment_ids, segment_positions)
ever_matched = frac_prev(prefixes[-1], segment_ids, segment_positions)
new_matches = {}
for t in templates:

if len(t) <= l: continue
if t[l] == "0":

new_matches[t[:l+1]] = ever_matched[t[:l]] > 0
elif t[l-1] == "0" and t[l] == "1":

new_matches[t[:l+1]] = prefixes[-1][t[:l]]
elif t[l-1] == "0":

new_matches[t[:l+1]] = prefixes[-1][t[:l]] & (tokens == t[l])
elif t[l] == "1":

new_matches[t[:l+1]] = just_matched[t[:l]]
else:

new_matches[t[:l+1]] = just_matched[t[:l]] & (tokens == t[l])
prefixes.append(new_matches)

# For each template, identify the longest matching prefix at each position.
states = {}
for t in templates:

s = np.stack([m[t[:l+1]] for l, m in zip(range(len(t)), prefixes)])
ind = np.arange(s.shape[0])
states[t] = (ind[:, None] * s).max(0)

return states

Figure 9: Code for matching an input sequence tokens to a set of decomposition templates.

def frac_prev(values, segment_ids, segment_pos):
return aggregate(

(select(segment_ids, segment_ids, eq) &
select(segment_pos, segment_pos, not_eq)),

values)
def select_prev(values, segment_ids, segment_pos):

return aggregate(
(select(segment_ids, segment_ids, eq) &
select(segment_pos, segment_pos, is_prev)),

values)

in more detail below (App. B.3).

Comparison to existing constructions Our con-
struction differs in some ways from prior work for
simulating finite state automata with Transform-
ers. In particular, the construction of Yang et al.
(2024) uses hard (one-hot) attention to recognize
star-free regular expressions. Our construction uses
a frac_prev attention head, which attends uni-
formly to all positions in the sequence; this allows
us to match multiple templates using one atten-
tion head. While the number of attention heads is
constant with respect to the number of templates,
the embedding dimension increases linearly with
the number of templates, in order to encode the
automaton state for each template in parallel.

Reducing the number of layers For ease of pre-
sentation, we described a template matching con-
struction that uses one Transformer layer for each
symbol in the template. Here, we describe two
modifications that reduce the number of layers to
the number of wildcard symbols in the template.

Combining wildcards: First, we can use one

layer to match both a wildcard symbol and the sym-
bol that immediately follows. For example, con-
sider the template a0b0 and input accbabc, which
we aim to decompose as (1) a (2) cc (3) b (4) abc.
The computations for this example are illustrated
in Table 2.

Handling n-gram literals: The second modifi-
cation pertains to n-gram literals in the template.
For example, consider the template a0bc0. As pre-
sented above, our construction uses one layer to
match the prefix a0b and another to match the pre-
fix a0bc. Instead, we can combine these operations
into a single layer by using two attention heads. At
position i, one attention head checks whether the
previous word wi−1 is b. The second attention head
checks whether the prefix a0 has been matched any-
where to the left of wi−1, attending to all tokens at
positions less than i− 1. We can use this approach
for any n-gram up to some maximum n, defined
by the number of attention heads per layer.

B.3 Generating a Transformation

Now we assume that we have identified a match-
ing template and that the embedding for each input
token identifies the decomposition group to which
that token belongs. The next step is now to apply
the chosen reassembly rule to the input to generate
a response.
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Figure 10: A finite-state automaton corresponding to the ELIZA template t = ˆa0bb0$. See App. B.2.

Input a c c b a b c

Attention 1 a a0 a0 a0 a0 a0 a0
MLP 1 - - - a0b - a0b -
Attention 2 - - - - a0b0 a0b0 a0b0

Output 1 2 2 3 4 4 4

Table 2: Illustration of the computations involved in template matching construction that uses one Transformer layer
for each wildcard symbol in the template. Here, each entry in the table illustrates a value calculated at that layer,
corresponding to a template prefix that has been matched at that point. For example, the first-layer MLP identifies
that the prefix a0b has been matched at two positions. We distinguish between the first and second matches of this
prefix by assigning each position to the longest prefix that matches at that point. See App. B.2.

Reassembly rules Given a template t1, . . . , tL
and vocabulary V , a reassembly rule is a sequence
r = r1, . . . , rM , where each ri is either a word
w ∈ V or an integer n ∈ [M ] such that tn ∈ {0, 1}.
Given an input w1, . . . , wN , let s1, . . . , sN ∈ [L]
denote the lengths of the longest matching tem-
plate prefix at each position—that is, t:si is the
longest prefix matching w:i. We refer to each si as
a decomposition group. For each ri, if ri ∈ V , the
model outputs ri. If ri ∈ [L], the model outputs the
subsequence of w such that, for each wj , sj = ri.
For example, consider the template t = a0bb0
and example input aaabbab, with automaton states
1223455. The reassembly rule r = c2d5 would
generate the response caadab. We can divide this
process into two stages. First, at each step, we
need to determine the reassembly state—that is,
which symbol of the reassembly rule are we cur-
rently processing. In Fig. 11, we illustrate how we
can determine the state as a function of the num-
ber of tokens that have been generated so far and
the number of tokens in each decomposition group.
Second, if the next token should be copied from
the input, we need to identify the exact token in
the input that should be copied. We present two
mechanisms for copying, one using content-based
attention and one using position-based attention.

Option 1: Content-based attention (induction
head) The first possible approach uses content-
based attention, akin to an n-gram level induction
head (Olsson et al., 2022; Akyürek et al., 2024).

First, at each input position j, the key embedding
encodes the decomposition group to which the to-
ken belongs as well as the identity of the previous
n tokens, where n is the maximum context win-
dow. Second, at each output position i, the query
embedding encodes the decomposition group si
from which we should copy at this step, as well as
the identity of the current token and any previous
output tokens associated with this decomposition
group. An attention head can then attend to the ear-
liest input position j such that sj = si and, for all
k from 0 to n, if si−k = si then wj−k−1 = wi−k.
Note that we must specify a maximum context win-
dow, n, which is constrained by the embedding
size. If n is less than the length of a decompo-
sition group, this mechanism can fail if the same
n-gram appears more than once in the decomposi-
tion group, as noted by Zhou et al. (2024).

For example, consider the template t = a0b0
and reassembly rule r = h2. For an input
acdecdfbg that matches this template, the output
under the reassembly rule is given by hcdecdf. If
the model uses a 2-gram induction head, the be-
havior of the model for the same input is given in
Tab. 3

Option 2: Position-based attention Our second
possible approach uses position-based attention and
is described in Fig. 11. Specifically, we can use
an attention head to count the number of tokens in
each decomposition group, as well as the position
in the input sequence at which that decomposition
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def get_reassembly_action(group_count, template, rule, step):
# For each template t, group_count[t][l] is the number of input tokens with group t[l]
counts = group_count[template]

# The position in the input sequence at the start of each group
group_start_positions = np.concatenate([np.array([0]), np.cumsum(counts[:-1])])

# The number of tokens in each part of the reassembly rule
rule_part_sizes = np.array([counts[int(r)] if r.isnumeric() else 1 for r in rule])

# The length the output will be after applying each part of the reassembly rule
rule_part_end_positions = np.cumsum(rule_part_sizes)

# Return to the user if we're done generating.
if step == rule_part_sizes.sum():

return "u:"

# Which part of the rule are we in?
i = np.argmax(rule_part_end_positions > step)
r = rule[i]

# Return the position of the token to copy:
if r.isnumeric():

num_already_copied = step - (rule_part_end_positions[i - 1] if i > 0 else 0)
target_position = int(group_start_positions[int(r)] + num_already_copied + 1)
return "copy", target_position

# Return a constant token to output.
return "print", r

Figure 11: Code for generating an output token at step i given a user input x, the corresponding sequence of
automaton states, and a reassembly rule.

Input a c d e c d f b g E h c d e c d

Previous 2-gram 00 0a ac cd de ec cd df fb
Decomposition group 1 2 2 2 2 2 2 3 4
Reassembly state h 2 2 2 2 2 2
Current 2-gram 00 0c cd de ec cd

Output h c d e c d e(×)

Table 3: Behavior of a model that uses a 2-gram induction head given input acdecdfbg, template t = a0b0, and
reassembly rule r = h2. Here, the model needs to output the literal token h and then copy the contents of the second
decomposition group. At each copying step, the 2-gram induction head attends to the position with decomposition
group 2 such that the Previous 2-gram is the longest match for the Current 2-gram, attending to the earliest matching
position in the case of ties. For example, after generating E h c, the Current 2-gram is 0c (the previous token, h,
is not part of this copying group, so is replaced with a 0, which acts as a wildcard); the earliest position with the
longest matching prefix is a c d, and the model outputs d. This rule leads to an error if the same 2-gram appears
more than once in the copying segment: after generating E h c d, the model correctly outputs e, but after generating
E h c d e c d, the model cannot disambiguate the two occurrences of c d in the input and so mistakenly outputs e.

group begins. A feedforward layer can then cal-
culate the position of the input token that should
be copied at a given generation step. As discussed
by Zhou et al. (2024), this form of position arith-
metic might be more difficult for the model to learn.
However, if this mechanism is learned correctly, we
predict that it might generalize better than content-
based attention in settings where the same n-gram
appears multiple times in the sequence. The behav-
ior of the model for an input is outlined in Tab. 3.

B.4 Pre-transformation Rules and an ELIZA
Transformer Turing Machine

In this section we discuss how to incorporate the
special pre-transformation rule into our construc-

tion. This rule is used by Hay and Millican (2022)
to prove that ELIZA is Turing-complete, which will
allow us to immediately derive a Turing machine
construction for the ELIZA Transformer.

Pre-transformations with the ELIZA Trans-
former As discussed in Appendix A, a pre-
transformation rule consists of a decomposition
template, a transformation rule, and a reference
to another keyword in the script. If an input w
matches the template, ELIZA reassembles it ac-
cording to the transformation rule to get a new
input w′, and then reprocesses w′ according to
the specified keyword. Pre-transformation rules
can trigger an arbitrary number of computational
steps (for example, we can write a script corre-
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Input a c d e c d f b g E h c d e c d

Position 1 2 3 4 5 6 7 8 9
Decomposition group 1 2 2 2 2 2 2 3 4
Reassembly state h 2 2 2 2 2 2
Position to copy 2 3 4 5 6 7

Output h c d e c d f

Table 4: Behavior of a model that uses position-based attention given the input acdecdfbg, template t = a0b0, and
reassembly rule r = h2. The position-based copying mechanism uses an attention head to count the number of
tokens in each copy group and an MLP to calculate the target position based on current step and number of tokens
per group. Finally, an attention is used to copy the token from the target position.
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Figure 12: ELIZA includes two components that make use of the long-term conversation history: cycling through
response templates (left), and the memory queue (right). We identify two mechanisms for these components. Top:
First, after parsing the user’s input, we can use existing automaton constructions (Liu et al., 2023) as black box
components to simulate the relevant data structures. Bottom: Alternatively, we can re-use the template matching
mechanism to also parse intermediate ELIZA outputs, resulting in simpler constructions with different generalization
tradeoffs.

sponding to a Turing machine that never halts).
Therefore, given a Transformer with a finite num-
ber of layers, the only way to incorporate arbitrary
pre-transformation rules into our construction is to
enable the Transformer to perform variable com-
putation depending on the input. The most natural
way to do this is using a Chain-of-Thought-style
approach (Wei et al., 2022b): if the input matches
a pre-transformation rule, the ELIZA Transformer
will output the transformed input (along with some
indicator of the new state), and then reprocess the
newly generated output. This approach also follows
from Merrill and Sabharwal (2024), who demon-
strate that intermediate-decoding steps are neces-
sary for simulating arbitrary Turing machines with
decoder-only Transformers.

ELIZA Transformer Turing Machine Hav-
ing incorporated pre-transformation rules into the
ELIZA Transformer, we can now use the ELIZA
construction from Hay and Millican (2022) to im-
mediately get a new construction for simulating

a Turing machine with an auto-regressive Trans-
former. In this construction, each action in the Tur-
ing machine is expressed as a pre-transformation
rule, and the input at each timestep encodes the
tape. Given a Turing machine (TM) that runs in
T (n) steps (where n is the length of the input), this
construction uses T (n)2 generation steps: at each
step, it finds the pattern that matches the most re-
cent input, regenerates the tape according to the as-
sociated transformation rule, and then reprocesses
the new version of the tape. This resembles exist-
ing constructions, but with some differences. For
example, Wei et al. (2022a) give a construction
that uses T (n) generation steps: at each step, the
model generates one new token, which encodes the
state and action taken at that step. (On the other
hand, Wei et al. (2022a) assumes the TM uses a
single-directional tape, so will take T (n)2 steps to
simulate a TM with a bi-directional tape running
in T (n) steps.) Note that the ELIZA construction
does not use either of the long-term memory mech-
anisms (response cyling or the memory queue).
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At each step, the model needs to attend only to
the most recent version of the tape—which has a
length of T (n)—rather than the full conversation
history, which has a final length of T (n)2. The
construction could therefore use sliding window
attention (e.g. Beltagy et al., 2020) to reduce the
number of attention comparisons at each step.

C Experimental Details

Here we provide more details about how we gen-
erate the data and conduct the experiments. Code
and data for reproducing the experiments will be
made available after the anonymity period.

C.1 Data Generation

To generate an ELIZA dataset, we first generate
a set of decomposition templates and reassembly
rules, and then generate conversations by gener-
ating sentences that match the different decompo-
sition templates and applying the corresponding
rules. For all templates and sentences are drawn
from a vocabulary V consisting of the 26 lower-
case English letters. Each turn begins with a spe-
cial delimiter character—U for user inputs and E for
ELIZA inputs—and ends with a period, and each
conversation begins with a special beginning-of-
sequence token.

Decomposition templates Our distribution over
decomposition templates is defined by the follow-
ing parameters: the minimum and maximum num-
ber of wildcard symbols per template; and the max-
imum n-gram length, meaning the maximum num-
ber of contiguous non-wildcard symbols. For ex-
ample, the template 0a0bc0 has two wildcards and
a maximum n-gram length of two (bc). To generate
a template, we first pick the number of wildcards
by sampling a number ℓ uniformly from between
the minimum and maximum, and then form a tem-
plate by interleaving ℓ wildcard symbols with ℓ+1
n-grams. Each n-grams is sampled by first sam-
pling a length m uniformly from between 0 and
the maximum length (for the first and last n-gram)
or between 1 and the maximum length (for any
n-gram between two wildcard symbols), and sam-
pling m words uniformly from V . For our main
set of experiments, we sample 31 templates with
between two and four wildcards and a maximum
n-gram length of three. For our analysis of copying
mechanisms, we sample 15 templates, each with
exactly two wildcard characters and a maximum
n-gram length of 1. For all experiments, the final

template is the null template. The only wildcard
symbol we use is 0, corresponding to zero or more
words, although ELIZA templates can also include
symbols that match exactly n wildcard words.

Reassembly rules Given a decomposition tem-
plates, a reassembly rule consists of a sequence
of words from V and integers indexing wildcards
in the template. We refer to these wildcards as
copying segments. Our distribution over reassem-
bly rules is defined by the minimum and maximum
number of copying segments and the maximum
n-gram length. Given the set of integers corre-
sponding to the available copying segments in the
template, we generate a transformation rule by sam-
pling up to ℓ of these numbers without replacement
(where ℓ is sampled uniformly for each rule), and
then form a rule by interleaving numbers with ran-
domly sampled n-grams as above. We addition-
ally prepend each reassembly rule with a unique,
constant two-word prefix. For our main experi-
ments, we sample up to five reassembly rules per
templates, each with between one and four copying
segments. For our analysis of copying mechanisms,
we sample one reassembly rule per template, each
with exactly two copying segments characters.

Single turn To generate a single turn of a con-
versation, we sample a decomposition template
and then sample a sentence that matches that tem-
plate. For each wildcard in the template, we pick
a segment length m uniformly from between 0
and the maximum segment length, and then sam-
ple m words from the vocabulary. For our first
set of experiments, the maximum segment length
is 10 and we sample the m words uniformly for
each segment. In our second set of experiments,
the maximum segment length is 20, and, for each
segment, we first sample a unigram distribution
p ∼ Dirichlet(α1), and then sampling m words
from Categorical(p), as described in Section 4.2).

Conversations For our main experiments, we
generate conversations by sampling a sequence of
turns until we reach the maximum input length
(512 tokens). (For our experiments with copy-
ing mechanisms, each conversation consists of a
single turn.) We take some additional considera-
tions to ensure that the data demonstrates the cy-
cling behavior—that is, to ensure that each tem-
plate occasionally appears enough times in a con-
versation to cycle through all of the associated
reassembly rules. In particular, for each conver-
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sation, we sample a distribution over templates
p ∼ Dirichlet(α), and then for each turn sam-
ple a template t ∼ Categorical(p). Here, α is
a 32-dimensional vector, corresponding to the 32
templates (including the null template); setting the
entries of α to be less than one makes it more likely
that p assigns most probability to a small number
of templates. We set the entries to be 1/32, with
the exception of the memory template, which is
set to 1/4 (to increase the proportion of examples
that demonstrate the memory queue). Additionally,
after sampling p, we ensure that the likelihood
assigned to the null template is at least half the
likelihood assigned to the memory template; this is
to increase the proportion of examples that contain
both enqueue operations and dequeue operations
(which are triggered by the null template). For our
first set of experiments, we sample 100,000 conver-
sations for training and 20,000 for testing. For our
second set of experiments, we sample 32,000 and
16,000 conversations for training and evaluation,
respectively.

Memory queue To incorporate the memory
queue mechanism, we select one of the 32 tem-
plates to serve as the memory template. This tem-
plate is associated with two lists of reassembly
rules: the first list is used to respond to inputs that
match the template (enqueue reassembly rules),
and the second list is used later in the conversa-
tion when the memory is read from the queue (de-
queue reassembly rules). In Weizenbaum’s ELIZA
program (Weizenbaum, 1966), for each memory,
a dequeue reassembly rule is selected at random
from the list. In our experiments, we instead use
the cycling mechanism, to ensure that the behavior
is deterministic. That is, given dequeue reassembly
rules r1, . . . , rM , at the nth dequeue in the conver-
sation we use the reassembly rule rn%M . In our
dataset, there are four dequeue reassembly rules.
We also limit the size of the queue: when sampling
conversations, we ensure that the queue contains at
most four memories at any time.

C.2 Models and Training

For all of our experiments, we train 8-layer decoder-
only Transformers with 12 attention heads per layer,
a hidden dimension of 768. The models have no
position embeddings but are otherwise based on the
GPT-2 architecture (Radford et al., 2019) and are
implemented using PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020). We use the

Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e-4. For multi-turn experiments,
we use a batch size of 8 and train for 10 epochs.
For single-turn experiments, we use a batch size
of 64 and train for 100 epochs. For each setting,
we train models with three random seeds; plots are
generated with Seaborn (Waskom, 2021) and show
the 95% confidence intervals.

C.3 Additional Details: Mechanism Analysis

Cycling through responses Given a template t
with reassembly rules r1, . . . , rM , we select conver-
sations in which t appears n > 1 times. For some
i < n, we identify the turn at which t is matched
for the ith time in the conversation, and replace the
response with rj for some j ̸= i. Then we evalu-
ate the model’s response at the next occurrence of
template t. If the model used the modular sum, we
would expect it to give the Same response as before
the intervention (responding with ri+1%M ); if it
uses the intermediate output, we would expect it to
instead reply with rj+1%M (Increment). Figure 6a
indicates that the model almost always increments
its response, indicating that the model relies on
previous responses to update the response cycle.5

Memory queue We conduct a similar experiment
to test the memory queue mechanism. We select
conversations containing n > 1 two dequeue turns.
For some i < n, we identify the ith dequeue turn
and replace the response with a constant string,
corresponding to a null response, and evaluate the
model’s response at dequeue i + 1. If the model
used the gridworld automaton, we would expect
it to give the Same response as before, replying
with memory i+ 1. If the model relied on interme-
diate outputs, we would expect it to instead reply
with memory i (Decrement). Figure 6b shows that
the model almost always decrements the memory
counter, indicating that it examines its own earlier
responses to identify the state of the queue.

D Additional Results

D.1 Errors on null inputs

In Sec. 4, we found that models perform worse on
inputs that do not match any of the templates, in
situations where the memory queue is empty. We

5The difference between Full response and Prefix only
accuracy indicates that the model generally selects the re-
assembly rule predicted by the Increment hypothesis, but does
not implementing the copying step correctly, perhaps because
different rules can use different decomposition groups.
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Figure 13: We recreate our experiments from Sec. 4 using a different version of the cycling mechanism for null
templates. In our original experiments, we incremented the cycle number every time the null input is matched,
even if the subsequent response is to read from the memory queue. Here, we instead increment the cycle number
only when the null input is followed by a null response. While the overall trends are similar, models trained on
the second version of the data perform better overall (Fig. 13a); and accuracy on null inputs does not decrease as
dramatically as a function of the number of enqueues in the conversation (Fig. 13b). This suggests that the task is
easier for models to learn when they can keep track of the cycle number using their previous responses, rather than
having to count the number of null inputs. See App 4.1 for more details.

refer to inputs that do not match any templates as
null inputs, and say that they match the null tem-
plate. Note that, like the other templates, the null
template is associated with multiple reassembly
rules, and the model should cycle through these
rules when the null template is matched multiple
times. (In our experiment, there are five rules as-
sociated with the null template.) We conjecture
that the lower performance on null inputs could be
related to difficulty tracking the cycle number for
null templates.

In particular, there is some ambiguity in how to
track the cycle number for the null template, be-
cause a null input does not always lead to a null
response: if the memory queue is non-empty, the
model should respond by reading from the mem-
ory queue. In our experiments, we increment the
cycle number every time the null input is matched,
even if the next response reads from the memory
queue. However, we could instead increment the
cycle number only when the null input is followed
by a null response. For example, consider a case
where the null template is associated with three re-
assembly rules (“Null rule 1”, “Null rule 2”, “Null
rule 3”). The difference between these mechanisms
is illustrated in the following conversation:

User Cycle on input Cycle on response

U: Null. E: Null rule 1. E: Null rule 1.
U: Memory A. E: Enqueue. E: Enqueue.
U: Null. E: Dequeue A. E: Dequeue A.
U: Null. E: Null rule 3. E: Null rule 2.

We hypothesize that the first mechanism (Cy-
cling on null inputs) is more difficult for the model
to learn; for example, the model cannot determine
the cycle number by using the intermediate output

mechanism described in Sec. 3.2. To test whether
this is the case, we create new conversation dataset
using the same script as in our original experiments,
but using the second approach to determining the
cycle number for null inputs (Cycling on null re-
sponses). All other training details are unchanged.
The results of this experiment are plotted in Fig. 13.
While the error patterns are broadly similar in both
cases, models trained on this second version of the
data perform better overall, and do not suffer as
much performance degradation as a function of the
number of enqueues. This could suggest that the
task is easier for the models to learn when they
can determine the cycle number as a function of
previous null outputs, rather than having to count
the number of null inputs.

D.2 Copying mechanisms

In Fig. 14, we plot the training curves correspond-
ing to the experiments described in §4.2. Models
generalize the worst to data with the highest degree
of internal repetition (αtest = 0.01); this data also
takes models longer to learn. This agrees with the
findings of Zhou et al. (2024) and could suggest
that induction-head style mechanisms are easier
for Transformers to learn compared to mechanisms
that rely on position arithmetic.

In Fig. 15, we recreate the results from Fig. 5c,
but plotting the results separately for each final-
layer attention head. As discussed in §4.2, in this
plot, positive values indicate that the attention head
has a preference for attending on the basis of po-
sition rather than content, and negative values in-
dicate a preference for attending based on content
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Figure 14: We train and evaluate models on datasets that vary in how likely it is for an n-gram to appear multiple
times in a sequence. These training curves correspond to the experiments discussed in §4.2. Lower values of the
concentration parameter, α, correspond to higher amounts of repetition. For each setting, we train models with three
random seeds and plot the accuracy (mean and 95% CI) on each of the four test distributions over the course of
training. The biggest performance drop occurs when models trained with αtrain > 0.1 are evaluated on the setting
with the most repetition (αtest = 0.01); accuracy on this data also improves more slowly compared to the other
settings, even when αtrain = 0.01 (left-most plot).
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Figure 15: Which mechanism do Transformers use to copy segments of the user’s input? At each copying step,
we can identify the position in the input we should read from next by counting the number of tokens in each
decomposition group. To investigate whether models use this mechanism, we compare the difference in the average
attention score between queries and keys under two conditions: either the key has same n-gram prefix as the current
output, but appears at the wrong position; or the key appears at the target position but has a different n-gram prefix.
In Fig. 5c, we averaged this metric over all 12 attention heads in the final layer; here, we show the results for
each final-layer attention head individually. Each column corresponds to a model trained on data generated with a
different concentration parameter α, with lower values corresponding to sentences that are more likely to repeat
the same n-grams multiple times. For each model, the majority of attention heads show broadly similar patterns,
suggesting that similar mechanisms are implemented redundantly by multiple heads.

(i.e., to tokens that have the same n-gram prefix
as the current token), rather than position. Inter-
estingly, within each model, the majority of atten-
tion heads show broadly similar patterns, perhaps
indicating that the models encode the same mech-
anism redundantly across multiple heads. This re-
sult echoes the findings of Singh et al. (2024), who
find that models learn multiple parallel induction
heads. Fig. 15 also suggests that none of the heads
cleanly corresponds to exactly one mechanism, un-
derscoring the challenges of aligning real-world
Transformers with symbolic mechanisms.

Finally, in Fig. 16, we measure how well models
generalize to data with longer copying segments.
Models trained on data with less n-gram repetition
(αtrain ≥ 1) generalize better to longer sequences.
This would be consistent with the claim that these
models rely more on content-based attention. As

discussed in §3.1, we would expect content-based
attention to generalize poorly to data with more
n-gram repetition, while we would expect position-
based attention to generalize poorly to data with
longer copying segments.
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Figure 16: Models are trained on data where each copying segment has a maximum length of 20, and evaluated on
data where segments can have length up to 50. Models trained on less repetitive data (αtrain ≥ 1) generalize worse
to data with more n-gram repetition, but they generalize better to longer sequences.
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