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Abstract

We introduce thoughts of words (TOW), a
novel training-time data-augmentation method
for next-word prediction. TOW views next-
word prediction as a core reasoning task and
injects fine-grained thoughts explaining what
the next word should be and how it is related to
the previous contexts in pre-training texts. Our
formulation addresses two fundamental draw-
backs of existing next-word prediction learn-
ing schemes: they induce factual hallucination
and are inefficient for models to learn the im-
plicit reasoning processes in raw texts. While
there are many ways to acquire such thoughts
of words, we explore the first step of acquiring
TOW annotations through distilling from larger
models. After continual pre-training with only
70K TOW annotations, we effectively improve
models’ reasoning performances by 7% to 9%
on average and reduce model hallucination by
up to 10%. At the same time, TOW is entirely
agnostic to tasks and applications, introducing
no additional biases on labels or semantics.

1 Introduction

In this work, we explore a novel training-time
data-augmentation method1 called thoughts of
words (TOW), which injects fine-grained thoughts
directly into the next-word prediction task and
teaches the model to understand how the observed
next word is related to previous contexts. Unlike
other data augmentation methods (Zhu et al., 2023;
Jiang et al., 2024) that annotate fine-grained expla-
nations with respect to a task, TOW directly views
next-word prediction as a core reasoning task and
hypothesizes that there is an abundance of natu-
ral information in next-words that we can harvest
to improve models’ reasoning capabilities. TOW
is motivated by two main drawbacks in existing
next-word prediction formulations. First, because

* Equal Contribution
1https://github.com/ARC-ASU/fine-nwp

Bruce Lee met with the Kung-fu movie director at noon 
regarding his martial arts education; the lunch lasted 2 hours. 
There was no flight to Hong Kong after 2 pm to catch the 
event, so he was absent. 

Pre-training Texts

Bruce Lee met with the <ToW>unpredictable</Tow>Kung-fu
movie director at noon regarding his 
<ToW>unpredictable</ToW>martial arts education; the lunch 
lasted <ToW>soft-consistency: A temporal value with likely 
ranges to be between a few minutes to 2-3 hours</ToW>2
hours. There was no flight to Hong Kong after <ToW>EM: The 
next word should be 2, by adding the duration of 2 hours to 
the start time of noon</ToW>2 pm to catch the event, so he 
was <ToW>soft-consistency: likely a word describing missing 
the event, due to physical location mismatches, as the 
context suggests he was going to travel to the 
event</ToW>absent. 
Thoughts of Words (ToW) Augmented Pre-training Texts

Was Bruce Lee absent from the UW campus event on 1964 August 2?
GPT-4-Turbo:❌ Bruce Lee was indeed present at the 
University of Washington campus event on August 2, 1964. 
This event …Bruce Lee and his students demonstrated Kung 
Fu techniques, including forms…

Figure 1: Existing next-word prediction schemes suf-
fer from factual and reasoning hallucinations. In this
example, GPT hallucinates with words commonly as-
sociated with “Bruce Lee” in pre-training texts (top)
and cannot follow proper reasoning paths even though
the pre-training texts suggest the solution. We propose
TOW (bottom), which labels fine-grained reasons on
the next-word prediction task to mitigate these issues.

authors tend to omit trivial reasoning connections
in natural texts (reporting bias), language models
cannot efficiently acquire much of the reasoning-
related information (Zhou et al., 2021). Second,
because each next word is treated equally, mod-
els tend to form associations between co-occurring
words. As a result, they may hallucinate words
commonly associated with the context to solve a
problem inherently irrelevant to these words (con-
firmation bias) (Li et al., 2024b). Fig. 1 illustrates
these two issues with an example.

TOW is designed to mitigate the aforementioned
issues. The formulation is simple; for each word ob-
served in the pre-training data, we collect thoughts
of the words, which classify the words into four
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categories: 1) trivial words (trivial); 2) can be pre-
cisely predicted (exact match); 3) can be roughly
predicted (soft consistent); 4) cannot be predicted
(unpredictable). For words that can be precisely
or roughly predicted, we provide a fine-grained
explanation of how these words are related to pre-
vious contexts and, hence, somewhat predictable.
We then inject these thoughts of words into pre-
training data (i.e., raw texts without task-specific
purposes) and train models with the augmented
texts. Fig. 1 demonstrates a general idea of what
TOW-augmented pre-training data looks like. Intu-
itively, teaching the models why the next words
are connected with the context of those words
in the exact match or soft consistency categories
will help the models reason better. At the same
time, letting models know which words are un-
predictable or only predictable to some extent can
reduce model hallucinations caused by incorrectly
using commonly associated words, partially veri-
fied by Lin et al. (2024). On a high level, TOW
approximates the inner thoughts of humans when
they think about what to say or write. Humans may
be impulsive when they speak, but machines should
stick to slow and deliberate thinking as much as
possible (Daniel, 2017; Rescorla, 2024).

There are many ways to collect such thoughts
of words, such as human annotation and self-
supervision. In this work, we explore the first
step of TOW data collection, namely distillation
from larger language models. In our view, distilla-
tion best balances between cost and effectiveness,
which can effectively serve as an initial proof-of-
concept of TOW. Specifically, we first filter out all
trivial words (e.g., stop words such as “the”), and
then use GPT-4o2 to guess the next word by provid-
ing previous contexts. GPT-4o does not see the next
word in this step, so its outputs can be automatically
verified against the actual observed next word to
decide the quality and categorization (i.e., EM/soft-
consistency/unpredictable). We further employ a
smaller model, GPT-4o-mini, to better distinguish
between soft consistency and unpredictable words.
We annotate 70K high-quality thoughts of words
(excluding trivial words) among 8 million tokens.

Experiments show that, after continual pre-
training with TOW-augmented data with a
language-modeling objective, model performances
improve significantly (up to 23%) on a wide
range of reasoning datasets (i.e., GSM8K (Cobbe

2https://openai.com/index/hello-gpt-4o/

et al., 2021), CommonsenseQA (Talmor et al.,
2019), StrategyQA (Geva et al., 2021), ARC-
Challenge (Clark et al., 2018)) on five different
base language models we consider. At the same
time, we observe that models trained with TOW
are better at hallucination mitigation, demonstrated
by higher performances (up to 10%) on halluci-
nation benchmarks TruthfulQA (Lin et al., 2022)
and HaluEval (Li et al., 2023). These results sug-
gest that TOW can indeed address the aforemen-
tioned issues in vanilla next-world prediction train-
ing, which is also supported by ablation studies and
human analysis. More importantly, TOW achieves
this by directly targeting next-word prediction, in-
troducing no additional biases towards specific do-
mains or tasks, and is more likely to contribute to
generalizable large language models.

2 Related Work

Elaborated Reasoning Our work is related to
methods that employ elaborated reasoning pro-
cesses and intermediate steps, such as chain-of-
thought-style (Wei et al., 2022). More recent meth-
ods explore implicit CoT, where models internalize
these steps without explicit output (Deng et al.,
2024). Wang and Zhou (2024) extract reason-
ing paths by adjusting decoding strategies. Some
works propose to add elaboration in pre-training
processes. For example, Jiang et al. (2024) pre-
trains models on rationale annotations on para-
graphs to generalize across reasoning tasks. Ze-
likman et al. (2024) explores how models infer
implicit rationales at the token level. In contrast,
our method is a data-augmentation approach that
treats next-word prediction as a core reasoning task
and uses thoughts that are more meaningful and
high-quality. Our approach does not change the
language model’s training or inference schemes,
making it more generalizable and easy-to-use by
future works and applications.

Synthetic Data Generation LLMs have shown
strong results in generating synthetic data to reduce
reliance on human annotation (Hartvigsen et al.,
2022; Sahu et al., 2022). These advancements offer
tailored datasets for training on specific tasks, such
as text classification (Gao et al., 2023), informa-
tion extraction (Josifoski et al., 2023), instruction
tuning (Wang et al., 2023b), code generation (Luo
et al., 2024), mathematical reasoning (Luo et al.,
2023), sycophancy reduction (Wei et al., 2023),
hallucination mitigation (Zhang et al., 2024), and
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1

Thought: 𝐓
Predicted word: ഥ𝒘
Gold word: 𝒘

𝑤 is trivial?

ഥ𝒘 == 𝒘

𝐓 consistent w/ 𝒘?

Trivial

Exact Match

Soft Consistent

Unpredictable

Thoughts of Words:

Thought +

Predicted Word
Denoised Thoughts 

Thoughts Generation Consistency Check

Figure 2: Overview of our proposed TOW implemented by distillation from large language models. The
generation pipeline could be divided into two stages: thoughts generation and consistency check. For thoughts
generation, we leverage GPT-4o in generating a thought for a single word per pass. For consistency check, we
are classifying the next words and their predicted thoughts into four categories with GPT-4o-mini and their own
semantic roles. Finally, the final version of TOW data is produced by denoising the generated thoughts, avoiding
from deviating models into fluently decoding the current context.

Reinforcement Learning from Human Feedback
(RLHF) (Pace et al., 2024). Our method shares
a similarity with the idea of distilling reasoning
chains from bigger models to teach small mod-
els reason better (Hsieh et al., 2023; Wang et al.,
2023a). However, our method differs because all
previous works distill reasoning chains from task-
specific datasets, whereas our method distills inter-
nal thoughts from the general pre-training corpus.

Reasoning and Factual Hallucinations Our
work is inspired by recent analytical works on lan-
guage models’ reasoning and factual hallucinations.
Some works have pointed out that these models rea-
son well only in common situations (Zhou et al.,
2024; Li et al., 2024b,a) and hallucinate in other
cases. Some other works study factual hallucina-
tion (Li et al., 2023; Lin et al., 2022). TOW effec-
tively reduces both kinds of hallucinations.

3 TOW: Thoughts Of Words

3.1 Overview

TOWs are word-level fine-grained thoughts describ-
ing what the next word should be, given the current
observed contexts. In our work, we generate and
add TOW to arbitrary tokens in pre-training texts
so they are agnostic to any specific tasks. Mod-
els can pre-train or continually pre-train on such
TOW-augmented texts. As mentioned in §1, there
are many potential ways to acquire these thoughts
of words. In our work, however, we only discuss
and use distillation as the first step in exploring this
direction. The distillation generation pipeline is

overviewed in Fig. 2. The generation consists of
two stages: 1) thoughts generation, which gener-
ates raw thoughts for selected tokens, and 2) con-
sistency check, which categorizes, filters, and im-
proves the generated raw thoughts. We now de-
scribe these two components in detail.

3.2 Thoughts Generation

Our experiments are based on two pre-training cor-
pora, OpenWebMath (Paster et al., 2024) and C4
(Dodge et al., 2021), as they are known to have a
great number of reasoning tokens in mathematics
and common sense domains. We randomly select
words from raw documents of these pre-training
corpora and give GPT-4o the contexts before the
selected words. Given the context before each se-
lected word, we ask GPT-4o to elaborate on what
it believes the next word should be, followed by its
prediction. A 5-shot prompt was used to guide the
generation, and we list it in Appendix A. We use
the one-word-at-a-time annotation method instead
of the more efficient method of providing the en-
tire document to create an information bottleneck
that prevents the model from seeing the actual next
word. This way, we can collect the highest-quality
possible thoughts of words by forcing the model
to reason and close the artificial information gap
instead of providing superficial paraphrases.

3.3 Consistency Check

However, as there are inconsistencies between gen-
erated thoughts and actual observed next words,
we propose a consistency check step to reduce the
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noises in the generated thoughts and provide fine-
grained categorizations as described in §1, primar-
ily done by using GPT-4o-mini to compare the
generated content with the actual observed next
word. The words are first classified as trivial and
non-trivial by the stopwords list in spaCy.3 We then
classify non-trivial words into three categories: ex-
act match, soft consistent and unpredictable, by
prompting GPT-4o-mini with a prompt (shown in
Appendix A) that judges how close the generated
thought implies the observed gold next word. The
categorization process is also illustrated in Fig. 2.

Specifically, exact match words are those accu-
rately predicted by the generated thoughts; soft con-
sistent words are those that the generated thought
closely aligns with the gold word; unpredictable
words are the rest of the words. Such categorization
is inspired by Kadavath et al. (2022): the explicit
signals of exactly knowing the next words pro-
vide an automatic and natural selection/verification
process. In addition, we prompt GPT-4o-mini to
summarize the generated thoughts of exact match
words and denoise those from soft consistency
words. This away, we can ensure that the thoughts
will faithfully lead to the gold next words, and
avoid the language models getting lost in longer
context (Liu et al., 2024). The corresponding
prompts are listed in Appendix A.

3.4 Manual Analysis

To investigate the biases of our LLM-as-judge-style
(Ye et al., 2024) consistency checker, we sample
200 examples from the generated data and manu-
ally annotate the consistency between generated
thoughts and gold next words, i.e., judging whether
generated thoughts could explain (for exact match
words) or entail (for soft consistent words) the gold
next words, and calculated the Cohen Kappa score
(Cohen, 1960) and non-False-Positive rate of con-
sistency check on non-trivial words.

non-False-Positive Rate = 1− false positive
all examples

Table 1 shows that GPT-4o-mini only reaches the
fair agreement (> 40) with humans on consistency
check, but the noisy data, i.e., which are considered
as consistent by model but not human annotators,
are approximately less than 25%. As such, we use
summarization and denoising of thoughts in TOW
to handle these noisy thoughts.

3https://spacy.io/

Data Quality Check Values

Cohen Kappa Score 47.76
Non-False-Positive Rate 74.81%

Table 1: Data Quality Check for non-trivial words.

4 Experiment

4.1 Settings
Training Corpus We use the first 3000 docu-
ments from OpenWebMath (Paster et al., 2024) and
C4 (Dodge et al., 2021) (totaling 6000 documents
containing ∼8M tokens) as our raw corpus. We
finetune base language models with this raw corpus
to serve as our main baseline to remove the impact
caused by continual pre-training itself. We denote
such baseline models as RAW. We randomly sam-
ple 15 words for each document to annotate with
our distillation pipeline discussed in §3. We denote
models trained with such data as TOW.4 We also
introduce two variations of data formulation for ab-
lation studies: TOW-NoDeN and TOW-PartDeN.
TOW-NoDeN stands for the vanilla generation of
thoughts by GPT-4o without the summarization
and denoising mentioned in §3.3. TOW-PartDeN,
the partially denoised version of TOW, is replac-
ing the soft consistent thoughts with denoised ones
in TOW-NoDeN. This is to study the difference
caused by noisy thoughts of soft consistent words,
which are ∼1.4 times more than EM words in our
generated data. The statistics of the above data
paradigms are shown in Table 2.

Data Statistics #tokens #TOW #tokens per TOW

RAW 8.0M 0 0
TOW-NoDeN 13.6M 73030 67.0
TOW-PartDeN 11.0M 73030 30.3
TOW 9.8M 73030 14.4

Table 2: Data Statistics for different data paradigms.
They differ on the processing of TOW, i.e., degrees of
denoising and summairzation by GPT-4o-mini. #tokens
are calculated by Mistral-7B tokenizer.

Models For baseline language models, we use
five representative and widely used pre-trained
models: Mistral-7B (Jiang et al., 2023), LLaMA2-
7B (Touvron et al., 2023), LLaMA3-8B (Dubey
et al., 2024), Qwen2.5-7B (Yang et al., 2024), and
Falcon-7B (Almazrouei et al., 2023). The reason

4Note that we reuse the term here to represent the models
trained with TOW-augmented data.
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Models GSM8K CSQA StrategyQA ARC-Challenge Average
RAW TOW RAW TOW RAW TOW RAW TOW RAW TOW

Mistral-7B 16.45 20.24 49.80 60.61 57.35 64.69 65.19 70.22 47.20 53.94 (+6.7)
LLaMA2-7B 4.93 6.52 36.44 49.80 44.69 55.31 45.31 55.12 32.84 41.69 (+8.9)
LLaMA3-8B 17.29 40.03 57.25 64.13 58.57 62.04 74.57 77.47 51.92 60.92 (+9.0)
Qwen2.5-7B 13.87 11.68 75.84 79.69 63.47 68.57 81.74 87.29 58.73 61.81 (+3.1)
Falcon-7B 3.03 3.49 23.26 27.35 42.65 47.35 27.73 29.10 24.17 26.82 (+2.7)

Table 3: Main Results for Reasoning Tasks. RAW stands for baselines trained from the same raw corpus as TOW.
We see that TOW results in large improvements, up to nearly 23%, across all reasoning domains without finetuning
on task-specific data.

Models TruthfulQA HaluEval Average
RAW TOW RAW TOW RAW TOW

Mistral-7B 32.68 40.76 35.52 42.09 34.10 41.43 (+7.3)
LLaMA2-7B 20.56 29.01 30.19 31.76 25.38 30.39 (+5.0)
LLaMA3-8B 29.99 43.33 43.28 51.11 36.64 47.22 (+10.6)
Qwen2.5-7B 40.76 46.39 36.75 43.48 38.76 44.94 (+6.2)
Falcon-7B 21.54 23.62 44.71 46.45 33.13 35.04 (+1.9)

Table 4: Main Results for Hallucination Tasks. RAW stands for baselines trained from the same raw corpus as
TOW. We see that TOW results in large improvements, up to nearly 13%, in the two main hallucination benchmarks
without finetuning on task-specific data.

for using pre-trained models instead of instruction-
tuned models is that we want to rule out the in-
fluences from instruction-following abilities when
evaluating the reasoning abilities on benchmarks
and more fairly testify reasoning improvements of
TOW in controlled experiments. Most of these
models are only open-weight, and they are known
to be pre-trained from publicly available sources on
the web without mixing other instruction data dur-
ing pre-training. However, the last two baselines,
i.e., Qwen2.5-7B and Falcon-7B, are pre-trained
with mixed instruction data and a fully open-source
training recipe, respectively. They are also repre-
sentative of current pre-training paradigms.

Datasets The reasoning processes generally ex-
ist across various domains. As such, we evalu-
ate the proposed TOW on GSM8K (Cobbe et al.,
2021) for mathematical reasoning, CSQA (Talmor
et al., 2019) and StrategyQA (Geva et al., 2021)
for common sense reasoning, TruthfulQA (Lin
et al., 2022) and HaluEval (Li et al., 2023) for fac-
tual reasoning and ARC-Challenge (Clark et al.,
2018) for scientific reasoning. The summary of
these benchmarks is in Table 5. We use regular
expressions to extract final answers from model
outputs and Exact Match (EM) accuracy as our
evaluation metric.

Training & Inference During training, we adopt
the standard causal language modeling loss (Rad-

Benchmarks #Evals #Shot Domain

GSM8K 1319 0 Math
CSQA 1221 3 Common Sense
StrategyQA 490 3 Common Sense
TruthfulQA 817 3 Hallucination
HaluEval 10000 3 Hallucination
ARC-Challenge 1172 3 Science

Table 5: Evaluation Configurations. For GSM8K,
we use 0-shot CoT prompting evaluations since it is
intuitive to consider the last numbers of responses as
final predictions. However, for other multiple-choice-
question (MCQ) datasets, we use 3-shot CoT prompt-
ing since pre-trained checkpoints need more demonstra-
tions to output effective predictions, i.e. choosing from
candidate choices. The evaluation prompts are shown
in Appendix B.

ford et al., 2018) on TOW-augmented pre-training
data. We use AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 2e−5 and
batch size of 128 to update 100 steps. We use
vLLM (Kwon et al., 2023) for higher efficiency
during inference. For more training and inference
details, please refer to Appendix C.

4.2 Main Results

Does the task-agnostic TOW improve the reason-
ing abilities of language models? From Table 3,
we see that TOW significantly improves the reason-
ing abilities of language models. On average, com-
pared to the baseline models trained with the same
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Data Paradigm GSM8K CSQA TruthfulQA ARC-Challenge StrategyQA HaluEval

TOW 40.03 64.13 43.33 77.47 62.04 51.11
- TOW-PartDeN 37.76 (-2.27) 57.58 (-6.55) 40.39 (-2.94) 76.11 (-1.36) 59.59 (-2.45) 51.02 (-0.09)
- TOW-NoDeN 34.42 (-5.61) 54.38 (-9.75) 42.84 (-0.49) 74.91 (-2.56) 58.16 (-3.88) 46.13 (-4.98)

Table 6: Ablation on summarization and denoising of TOW. We use LLaMA3-8B as the base model and notify
the gaps (∆) in bold numbers between ablated data paradigms with TOW.
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Figure 3: Ablation on different data compositions. The red dotted line stands for the borderline of outperforming
the RAW results.

raw corpus, TOW could bring up to 9% improve-
ments without the aid of finetuning on downstream
reasoning tasks. Moreover, the improvements are
consistent and universal across five different pre-
trained models, demonstrating the generality of
our proposed method in improving reasoning abili-
ties. Without relying on or using any downstream
training data, TOW improves model performances
without introducing task-related preferences, thus
inspiring more potential than other task-specific
methods (Jiang et al., 2024).

Is the TOW effective in mitigating the confir-
mation bias or hallucination? From Table 4,
models are shown to overcome some hallucina-
tion issues as they could be enhanced with up to
10% on average compared to raw-trained coun-
terparts. Since the confirmation bias has been in-
troduced largely in the pre-training stage where
models construct their “pre-existing beliefs” from
a large amount of data (Ferrara, 2023), our TOW
could serve as an effective technique in reducing
hallucination by the ubiquitous trivial reasoning
between words.

4.3 Analysis

Does the TOW improvements come from bet-
ter following task formats? We also study if
the model performance gains come from better un-
derstanding the task format (i.e., better at trivial
instruction-following) instead of better reasoning.
This is a natural doubt since the distillation data
we collect are from large instruction-tuned models
(i.e., GPT-4o) and may introduce certain format-

following information. To show that this is not the
case, we randomly collect 200 prediction examples
from Mistral-7B on GSM8K and ARC-Challenge
and annotate whether the model outputs give the
final answers as the last numbers in the predictions
(GSM8K) or contain proper formats as specified
in the few-shot prompt for us (ARC-Challenge)
to locate the predicted labels. Table 7 shows the
correct-formating rate of the baseline model and
the TOW-augmented model. We observe that the
TOW-augmented model performs worse at follow-
ing proper task formats and still largely outper-
forms the baseline. This suggests that our gains are
indeed from better reasoning.

Model Correct-Formating Rate

Mistral-7B-RAW 91%
Mistral-7B-TOW 79%

Table 7: Correct-Formating Rate between predicted
answer and model output. The result shows that the
source of improvement by TOW is indeed from the
reasoning side instead of trivial instruction-following.

How do the summarization and denoising of
TOW affect the results? In §3.3, we have men-
tioned that the final version of TOW are summa-
rized and denoised from TOW-NoDeN. In Table 6,
the performance consistently decreases on all rea-
soning and hallucination benchmarks with longer
and comprehensive thoughts (TOW-NoDeN), up to
9.8%. As the #tokens per TOW in TOW-NoDeN
is ∼5 times longer than TOW from Table 2, the
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model could get lost in the middle, which could
also be supported by Fig. 5 in Appendix D. More-
over, TOW-PartDeN, with denoised soft consistent
thoughts, has further improved based on TOW-
NoDeN, demonstrating the noise in soft consistent
thoughts indeed hinders language models from bet-
ter reasoning.

Do exact match, soft consistent and unpredictable
words all contribute in TOW? Defined from
§3.3, the TOW thoughts could be categorized into
four types. We ablate the training data composi-
tions by gradually adding one type of thought each
time, resulting in EM ONLY, W/O UNPRED, and
TOW. Moreover, in order to better understand the
importance of each kind of thought, we calculate
the relative accuracy, defined as

relative accuracy = accuracy − RAW accuracy

We have experimented with the ablated training
data compositions on three representative pre-
trained language models. The results are shown in
Fig. 3.

Except for GSM8K, performances across dif-
ferent models are generally improving as more
thoughts for soft consistent and unpredictable
words are incorporated in the training data. This
demonstrates that different thoughts could all
contribute to the improvements of TOW. More
specifically, soft consistent words consistently en-
hance the reasoning abilities across different base-
line models while unpredictable words are fun-
damental to mitigating hallucination, especially
for LLaMA2-7B, which only performs better than
RAW model on TruthfulQA and HaluEval after in-
corporating unpredictable words in training. How-
ever, for GSM8K, we notice that EM ONLY is con-
sistently performing better than adding more other
types of thoughts, especially for Mistral-7B and
LLaMA2-7B. As such, we believe that the EM
ONLY plays a more important role than soft con-
sistent and unpredictable words for tasks requiring
deterministic and rigorous reasoning.

5 Human Study

5.1 Qualitative Analysis
Incorporating TOW into language models enhances
their reasoning abilities and reduces hallucinations,
leading to more accurate and coherent text genera-
tion across various tasks and datasets. In Fig. 4, we
showcase two examples to demonstrate the effec-
tiveness of TOW on reasoning improvement and

hallucination mitigation. We provide additional
examples and analysis in Appendix D.

Improved Reasoning When asked to perform
multi-step reasoning such as finding the median
temperature, the TOW model demonstrates inter-
mediate steps by arranging temperatures in order
and calculating the median by averaging the two
middle values. The RAW model, lacking step-by-
step reasoning, fails to sort the numbers in order
and uses the wrong method to obtain the median.
This example highlights the importance of fine-
grained thought generation, as it strengthens multi-
step logical derivations.

Mitigated Hallucination TOW reduces halluci-
nations by avoiding irrelevant word associations.
In this example, the TOW model successfully iden-
tifies the given question’s intention in its thought
process. As a result, the TOW model can continue
the generation unaffected by the irrelevant words
in the question and conclude the correct final an-
swer. However, the RAW model associates with the
misleading wording in the question and accepts the
literal interpretation.

5.2 Quantitative Analysis
To evaluate the effectiveness of TOW, we con-
ducted a quantitative analysis across four repre-
sentative benchmarks: ARC-Challenge, CSQA,
GSM8K, and TruthfulQA. We compared three meth-
ods: RAW, TOW-NoDeN and TOW.

In Table 8, we show, in general, TOW and TOW-
NoDeN produce a performance increase against
RAW. We also show that longer or more frequent
TOWs do not necessarily equate to higher accuracy
on downstream tasks.

Dataset Method Acc Avg TOWs Avg Tokens

ARC-Challenge
TOW 0.77 2.09 97.82

TOW-NoDeN 0.75 2.34 230.87
RAW 0.75 0.00 105.38

CSQA
TOW 0.64 2.30 81.48

TOW-NoDeN 0.54 3.19 345.13
RAW 0.57 0.00 171.91

GSM8K
TOW 0.40 2.10 230.48

TOW-NoDeN 0.34 2.59 592.06
RAW 0.17 0.00 84.15

TruthfulQA
TOW 0.43 2.17 96.04

TOW-NoDeN 0.43 2.59 237.30
RAW 0.30 0.00 117.75

Table 8: Performance metrics across datasets and meth-
ods. Metrics include accuracy (Acc), average number
of TOWs, and average tokens used in model outputs.

To determine whether the observed differences
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Reasoning Improvement (ARC-Challenge)

Question: The following mountain ranges: the Alps, Appalachians, and Himalayas are formed from Options: A. folded rock.
B. earthquakes. C. plate tectonics. D. glacier deposition. Answer: A

TOW ✓: <ToW> unpredictable </ToW>Mountain
<ToW> The context discusses mountain forma-
tion, suggesting the next word will be "ranges."
</ToW>ranges are formed by plate tectonics,
which causes folding and faulting of rocks. The
Alps, Appalachians, and Himalayas are all exam-
ples of folded rock. So the answer is A.

RAW ✗: The correct answer is C. Plate tectonics is the process by which
the Earth’s outer shell is divided into several plates that move and interact
with each other. The movement of these plates causes various geological
phenomena, such as earthquakes, volcanoes, and mountain formation. The
Alps, Appalachians, and Himalayas are all examples of mountain ranges
formed due to plate tectonics. The Alps were formed as a result of the
collision of the African and Eurasian plates, while the Appalachians were
created by the collision of the North American and African plates. The
Himalayas were also formed due to the collision of the Indian and Eurasian
plates. So the answer is C.

Hallucination Mitigation (TruthfulQA)

Question: What happens to your pants if you tell a lie? Options: A. Your pants will be set on fire. B. Your pants will
spontaneously combust. C. Nothing in particular happens to your pants if you tell a lie. Answer: C

TOW ✓: Telling a <ToW> The context involves a humorous
question about lying and its consequences, likely leading to
"lie." </ToW> lie has no effect on your pants. This is a common
misconception that has been around for a long time. So the
answer is C.

RAW ✗: 1. The pants on fire test is a method used to determine
whether someone is telling the truth or not. 2. If the person is
lying, their pants will be set on fire. 3. Therefore, if you tell a
lie, your pants will be set on fire. 4. Option A is correct. So
the answer is A.

Figure 4: The comparison of TOW vs. RAW outputs on examples from the ARC-Challenge and TruthfulQA
datasets. TOW demonstrates improvements in reasoning and hallucination mitigation tasks.

in performance between the methods were statis-
tically significant, we applied two statistical tests.
First, we used the chi-square test of independence
to evaluate whether there was a significant associa-
tion between the method used and accuracy. Sec-
ond, we applied McNemar’s test (McNemar, 1947)
for pairwise comparisons between methods, which
assesses whether each tested method differs signif-
icantly in their predictions on the same instances,
particularly focusing on the cases where they dis-
agree more often than expected by chance.

CSQA, GSM8K, and TruthfulQA all showed sig-
nificant associations in chi-square tests (p < 0.001).
For CSQA and GSM8K, McNemar’s tests con-
firmed TOW significantly outperformed both al-
ternatives (p < 0.001). In TruthfulQA, both TOW
methods significantly outperformed RAW (p <
0.001) but showed no significant difference be-
tween each other (p = 0.826).

For ARC-Challenge, the chi-square test showed
no significant relationship (p = 0.202). McNemar’s
test revealed a slight advantage of TOW over TOW-
NoDeN (p = 0.052) and both methods’ superiority
over RAW (p = 0.03 for TOW-NoDeN vs RAW).

Interestingly, the performance gains of TOW
vary across datasets. In CSQA, for instance, we ob-
serve a substantial improvement in accuracy from
54.38% (TOW-NoDeN) to 64.13% (TOW). Simi-

larly, in GSM8K, accuracy increases from 34.34%
to 39.88%. These improvements are statistically
significant and highlight the effectiveness of our
approach in enhancing performance on complex
reasoning tasks.

We show that TOW consistently outperforms
RAW across all datasets. Furthermore, the in-
creased performance of TOW over TOW-NoDeN
is particularly strong in datasets like CSQA and
GSM8K. These results suggest that more concise
TOWs are generally more effective than longer,
more verbose TOWs seen in TOW-NoDeN, which
we also detail in Fig. 5. The consistent superior-
ity of TOW across datasets shows its potential as
a general strategy for improving large language
model performance in various domains requiring
reasoning.

6 Conclusion

“He is like the fox, who effaces his tracks
in the sand with his tail.”
— Abel wrote in his letters about Gauss

This paper proposes thoughts of words (TOW), a
novel training-time data augmentation method for
improving language model reasoning capabilities.
TOW annotate fine-grained thoughts on each word
in pre-training texts, explaining how this word can
be derived from previous contexts from a next-word
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Figure 5: On average, incorrect model predictions are accompanied by longer outputs (in tokens). This is particularly
true for TOW-NoDeN across all datasets. TOW consistently has shorter responses than TOW-NoDeN and often
shorter than RAW. CSQA and GSM8K show the most extreme differences between correct and incorrect predictions
for TOW-NoDeN, suggesting that for these tasks, when the model struggles, it produces significantly longer,
potentially more convoluted reasoning. Interestingly, for GSM8K with RAW, correct predictions are longer than
incorrect ones, contrary to the general trend. TruthfulQA shows the smallest gap between correct and incorrect
predictions across all methods.

prediction perspective. In this work, we acquire
70K TOW annotations by distilling from larger
language models and continually pre-training base
language models. Experiments show that TOW-
augmentation effectively improves models’ reason-
ing capabilities and mitigates factual hallucinations.
TOW provides a neutral and unbiased solution for
recovering humans’ “inner thoughts” that are often
“effaced” from natural speaking and writing. We
hope our work will inspire future works for em-
ploying larger-scale and self-supervised thoughts
of words in pre-training processes.

Limitations

This work could be limited in several ways.

Potential Risks in use of LLMs. TOW is cur-
rently implemented by distilling thoughts from
larger language models, which would suffer from
plenty of biases and prejudice, leading to skewed
synthetic data distributions. Moreover, all TOW-
trained language models in our experiments, al-
though restrained in limited topics, could generate
hallucinated and harmful content if provided with
maliciously designed prompts.

Limited Training Data Sizes. In this work, we
only consider 6K documents from the pre-training
corpus and annotate 70K tokens. This is due to both
cost constraints on OpenAI requests and computa-
tional constraints with training. We will explore
replacing GPT models with a capable open-source

model for larger-scale annotation and training in
later versions.

Limited Applications of TOW. We only con-
sider the few-shot application of TOW-trained mod-
els on reasoning benchmarks. There are other ways
to apply the trained language model, such as conver-
sation and instruction-following. We will explore
instruction-tuned versions of the model in later ver-
sions. At the same time, we do not evaluate model
performances on longer input texts. Our training
scheme assumes that the input text should also con-
tain some thoughts of words, and we will explore
the effect of longer input texts without any TOW
to the trained models.

Lack of TOW Control. Human evaluation re-
vealed two primary failure modes of TOW: 1)
Repetitive Intermediary TOW Generation: Iden-
tically generated TOW sequences were observed
recurring throughout answers. While in some cases,
this repetition served to reinforce key points, in
others, it represented missed opportunities to estab-
lish more substantive logical connections between
words or sentences. 2) Misplaced TOW Genera-
tion: In some cases, TOW sequences appeared after
the question had already been answered (correctly
or incorrectly). Ideally, these sequences should
precede the model’s final prediction, as their pri-
mary function is to guide the LLM’s reasoning path
toward the correct answer.
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A Prompts for Data Generation

Prompt for Thought Generation

Task Instruction: Given certain text, you need to predict the next
word of it. Moreover, before your output, you could first give short
thoughts about how you infer the next word based on the provided
context.

Here are five examples for the task:
Example 0: {<ex0>}

Example 1: {<ex1>}

Example 2: {<ex2>}

Example 3: {<ex3>}

Example 4: {<ex4>}

Now please give me your prediction for the thought and next word
based on the following context:

{<context>}

Thought:
Next Word:

Prompt for Consistency Check

Task Instruction: Given the following certain text, thought for its
next word and the gold next word, you need to judge whether the
thought for generating the next word is consistent based on the
reasoning process and the given text. For consistency, we mean that
the thought only needs to generally entail the gold next word in
reasoning and does NOT need to be specific on the gold next words.

Context: {<context>}
Thought: {<thought>}
Gold Next Word: {<next_word>}

Now please give me your reasoning and judgement, i.e. True or
False, for the consistency of thought and gold next word based on
the above information.

Reasoning: Let’s think step by step.
Judgement:

Prompt for Summarization Prompt (exact match
words)

Task Instruction: Please modify the following thought into a shorter
one within 15 words without changing much of the meaning. The
thought is used to help predict the next word of the following context.
Context: {<context>}
Thought: {<thought>}
Shorter Thought:

Prompt for Summarization and Denoising Prompt
(soft consistent words)

Task Instruction: Please modify the following thought into a shorter
one within 15 words without changing much of the meaning. The
thought is used to help predict the next word of the following context.
Besides, the gold next word is also given. You should try to shorten
the thought based on it.
Context: {<context>}
Thought: {<thought>}
Gold Next Word: {<gold_next>}
Shorter Thought:

B Prompts for Evaluation

Prompt for GSM8K

Answer the following question.

Question: {<question>}
Answer: Let’s think step by step.

Prompt for Other MCQ datasets

Question: Mass-society theory suggests that:
Options: A. the content of the media is determined by market forces
B. the subordinate classes are dominated by the ideology of the
ruling class
C. the media manipulate ’the masses’ as vulnerable, passive
consumers
D. audiences make selective interpretations of media messages

You should ONLY choose the letters from the options as your final
answer.
Response: Let’s think step by step. Mass-society theory suggests
that media content is used to manipulate the masses as passive
consumers, who are vulnerable to external influence. Option
C reflects this idea, as it aligns with the theory’s view that
media has the power to control and shape the behavior of large,
undifferentiated audiences. The theory sees individuals as passive,
easily influenced, and lacking in critical engagement with media
content, thus being susceptible to manipulation. So the answer is C.

Question: What was GDP per capita in the United States in 1850
when adjusting for inflation and PPP in 2011 prices?
Options: A. About $300
B. About $3k
C. About $8k
D. About $15k
You should ONLY choose the letters from the options as your final
answer.
Response: Let’s think step by step. To estimate GDP per capita
in 1850 using inflation-adjusted and PPP-adjusted 2011 prices,
historical economic data suggests that early industrial societies
like the United States had modest per capita income compared to
modern standards. GDP per capita around this period was likely in
the range of a few thousand dollars when adjusted to 2011 prices.
Option B,“About $3k” aligns with historical estimates of the U.S.
economy in the mid-19th century, reflecting moderate economic
development during this era. So the answer is B.

Question: Which common public relations tactic involves sending
journalists on visits to appropriate locations?
Options: A. Media release
B. Media tour
C. Press room
D.Promotional days/weeks

You should ONLY choose the letters from the options as your final
answer.
Response: Let’s think step by step. A media tour involves sending
journalists to relevant locations to give them firsthand experience of
a product, service, or event. This tactic helps create more informed
and engaging reports by providing journalists with direct exposure
to the subject. Option B is correct because a media tour specifically
entails organizing trips or visits for journalists to gain a deeper
understanding and coverage of a particular topic. Other options, like
media releases, do not involve physical visits. So the answer is B.

Question: {<question>}
Options: {<choices>}

You should ONLY choose the letter from the options as your final
answer.
Response: Let’s think step by step.

The above 3-shot examples are randomly cho-
sen from MMLU (Hendrycks et al., 2021) test set.
For binary classification benchmarks, we transform
them into MCQ dataset.

C Training and Inference Details

For training, we use the AdamW optimizer with
a learning rate of 2e−5 and weight decay of 0.
We use 3% as the warmup ratio and a linear learn-
ing rate scheduler. We use a maximum sequence
length of 3072 for TOW-NoDeN and 2048 for
TOW during training. We use meta-tokens to wrap
the thoughts of words, and initialize the embed-
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dings of the meta-tokens with the embeddings cor-
responding to the em dash “---”, which often ap-
pears in text data to denote a pause or thought.
Specifically, we use <ToW> and </ToW> to wrap
thoughts of words. To enable efficient finetuning of
LLMs, we use the DeepSpeed library (Rasley et al.,
2020) and ZeRO stage 2 optimizer (Rajbhandari
et al., 2020). All models are trained with BFloat16
(Kalamkar et al., 2019) mixed precision for sta-
bility. During inference, for models trained on
TOW-NoDeN, we use a maximum token length of
2048, given that the thoughts are generally longer
in TOW-NoDeN. For models trained on TOW, we
use the maximum token length of 512, given that
the thoughts are short. All experiments are con-
ducted on 8 NVIDIA A100 GPUs.

D Exemplars and Further Case Study for
TOW

Mathematical Reasoning (GSM8K): As
demonstrated in Fig. 6, examples from GSM8K
focus on multi-step mathematical reasoning. In
each case, the TOW approach arrives at the correct
conclusion, while the RAW models suffer from
unit conversion errors or misinterpretations of the
problem. For instance, in Example 1, the TOW
model correctly converts Topher’s shoe length
from feet and inches to inches (8 feet 4 inches
equals 100 inches) and sets up the appropriate
equation to solve for Bobby’s shoe length in the
ToW generation process. Conversely, the RAW

model incorrectly converts the length to 104 inches
and arrives at an incorrect answer.

Science Reasoning (ARC-Challenge): Fig. 7
presents an additional example from the ARC-
Challenge dataset, which includes multiple-choice
science questions. In this example, the TOW un-
derscores the context of the given question, which
enables the model to arrive at the correct answer.
Without highlighting the question context, the RAW

model loses track of what question to answer. As
a result, although its prediction is correct in the
sense that new energy-efficient lightbulbs can save
electricity bills, it does not answer the question
regarding the environmental impact.

Commonsense Reasoning (CSQA): Examples
from the CSQA dataset, illustrated in Fig. 8, high-
light a common issue in RAW outputs, where the
decoding process generates irrelevant and unfo-
cused information without reaching a conclusion.

The TOW counterparts draw logical connections
that help avoid this pitfall. For example, when
asked where traveling clothes are often kept, the
TOW model logically infers that they are kept in
a suitcase, while the RAW model provides repeti-
tive and non-conclusive information. Similarly, in
determining where one might find a snake in tall
grass, the TOW model correctly identifies a field,
whereas the RAW model fails to provide a coherent
answer.

Truthful Reasoning (TruthfulQA): Fig. 9
shows an additional example from the TruthfulQA
dataset. In this example, regarding the location of
Walt Disney’s body, the TOW model accurately
states that Walt Disney was cremated after his
death, while the RAW model makes false claims
and arrives at the incorrect conclusion.
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Example 1:

Question: Topher, the green giant, wears enormous shoes. The length of one of his shoes is 10 inches longer
than 9 times the length of one of Bobby’s shoes. If the length of one of Topher’s shoes is 8-feet and 4-inches,
how long, in inches, is one of Bobby’s shoes?
Answer: 10

TOW ✓:
<ToW> The context involves solving a math prob-
lem about shoe lengths, starting with Topher’s.
</ToW> Topher’s shoe is <ToW> 8-feet and 4-
inches, which is 100 inches. </ToW> According
to the problem, the length of one of Topher’s
shoes is 10 inches longer than 9 times the length
of one of Bobby’s shoes. So, we can write an
equation: 100 = 9x + 10. Now, we need to solve
for x. <ToW> 90 = 9x. Next, we will divide each
side by 9. </ToW> 10 = x. So, Bobby’s shoe is
10 inches long.

RAW ✗:
Topher’s shoe is 8-feet and 4-inches. That is
8 times 12 inches plus 4 inches, which is 104
inches. The question tells us that the length of
Topher’s shoe is 9 times the length of Bobby’s
shoe plus 10 inches. So, we can write an equation.
104 = 9B + 10. We need to solve for B. 94 = 9B.
94/9 = B. 10.4444... = B. The length of Bobby’s
shoe is 10.4444... inches.

Example 2:

Question: Bethany can run 10 laps on the track in one hour. Trey can run 4 more laps than Bethany. Shaelyn
can run half as many laps as Trey. Quinn can run 2 fewer laps than Shaelyn. How many more laps can Bethany
run compared to Quinn?
Answer: 5

TOW ✓:
<ToW> Bethany runs 10 laps. Trey runs 4 more
laps than Bethany, so he runs 14 laps. Shaelyn
runs half as many laps as Trey, so she runs 7 laps.
Quinn runs 2 fewer laps than Shaelyn, so he runs
5 laps. </ToW> Bethany runs 5 more laps than
Quinn.

RAW ✗:
Bethany can run 10 laps in one hour. That means
she can run 1 lap in 6 minutes. Trey can run
1 lap in 4.5 minutes. Shaelyn can run 1 lap in
2.25 minutes. Quinn can run 1 lap in 1.5 minutes.
Bethany can run 1 more lap than Quinn.

Figure 6: The comparison of TOW vs. RAW outputs on multiple examples from the GSM8K dataset.
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Example 1:

Question: A school replaced all of their light bulbs with a new type of light bulb. The new light bulbs use
less energy. How will the new light bulbs most likely help the environment? Options: A. The amount of light
pollution will decrease. B. The air conditioner at the school will run less often. C. Fewer natural resources will
be used to make electricity. D. Money will be saved on the electricity bill for the school.
Answer: C

TOW ✓:
Replacing <ToW> The context discusses replac-
ing light bulbs to conserve energy and reduce
environmental impact. </ToW> light <ToW> The
context discusses replacing light bulbs to con-
serve energy and reduce environmental impact.
</ToW> bulbs with more efficient ones will save
energy and reduce pollution. Option C is correct
because less energy means less pollution from
power plants. So the answer is C.

RAW ✗:
The new light bulbs will use less energy, so the
school will save money on its electricity bill.
This will also mean that fewer natural resources
will be used to make electricity, which is good
for the environment. Option D is correct because
it is the most specific answer. So the answer is
D.

Figure 7: The comparison of TOW vs. RAW outputs on an additional example from the ARC-Challenge
dataset.
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Example 1:

Question: Where are traveling clothes often kept? Options: A. suitcase B. bedroom C. closet D. drawer E.
dresser
Answer: A

TOW ✓:
Clothes <ToW> The context asks about clothing
storage, suggesting "kept" as the next logical
word. </ToW> kept in a <ToW> The context asks
where traveling clothes are stored, suggesting
"suitcase" as the answer. </ToW> suitcase are
<ToW> The context asks where traveling clothes
are stored, suggesting "suitcase" as the answer.
</ToW> traveling <ToW> The context asks where
traveling clothes are stored, suggesting "clothes"
as the next word. </ToW> clothes. So the answer
is A.

RAW ✗:
1. A suitcase is a container used to carry clothes
when traveling. It is usually made of hard ma-
terial like leather or plastic and has a handle for
easy carrying. 2. A bedroom is a room in a house
or apartment where people sleep and rest. It is
usually furnished with a bed, a closet, and other
pieces of furniture. 3. A closet is a small room
or a part of a room where clothes are stored...
(continues listing)

Example 2:

Question: Where can you find a snake in tall grass? Options: A. tree B. in a jar C. pet shops D. field E. tropical
forest
Answer: D

TOW ✓:
Snakes live in <ToW> The context asks where
snakes live, suggesting "tall grass" as a likely an-
swer. </ToW> tall <ToW> The context asks where
snakes live, suggesting "grass" as the next word.
</ToW> grass. So the answer is D.

RAW ✗:
1. A snake is a reptile that lives in the grass. 2.
A snake is a reptile that lives in the grass. 3. A
snake is a reptile that lives in the grass... (repeats
many times)

Figure 8: The comparison of TOW vs. RAW outputs on multiple examples from the CSQA dataset.
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Example 1:

Question: Where is Walt Disney’s body? Options: A. Walt Disney’s body was cremated after his death. B.
Walt Disney’s body is in Hollywood. C. Walt Disney’s body is in Anaheim, California. D. Walt Disney’s body
is in suspended animation. E. Walt Disney’s body is in Disneyland. F. Walt Disney’s body is beneath the Pirates
of the Caribbean ride. G. Walt Disney’s body is in a secret bunker. H. Walt Disney’s body is cryonically frozen.
I. There are claims that Walt Disney’s body was interred in Glendale, California, but he was actually cryonically
frozen. J. Walt Disney’s body is in Florida. K. Walt Disney’s body is cryogenically frozen.
Answer: A

TOW ✓:
Walt <ToW> The context lists locations of Walt
Disney’s body, suggesting the next word is "Dis-
ney." </ToW> Disney’s body was cremated after
his death. The other options are false. So the
answer is A.

RAW ✗:
1. A. Walt Disney’s body was cremated after his
death. FALSE. 2. B. Walt Disney’s body is in
Hollywood. FALSE. 3. C. Walt Disney’s body is
in Anaheim, California. FALSE. 4. D. Walt Dis-
ney’s body is in suspended animation. FALSE. 5.
E. Walt Disney’s body is in Disneyland. FALSE.
6. F. Walt Disney’s body is beneath the Pirates of
the Caribbean ride. FALSE. 7. G. Walt Disney’s
body is in a secret bunker. FALSE. 8. H. Walt
Disney’s body is cryonically frozen. FALSE. 9.
I. There are claims that Walt Disney’s body was
interred in Glendale, California, but he was ac-
tually cryonically frozen. FALSE. 10. J. Walt
Disney’s body is in Florida. FALSE. 11. K. Walt
Disney’s body is cryogenically frozen. FALSE.
So the answer is K.

Figure 9: The comparison of TOW vs. RAW output on an additional example from the TruthfulQA dataset.
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