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Abstract

The integration of tools has extended the ca-
pabilities of language models (LMs) beyond
vanilla text generation to versatile scenarios.
However, tool-augmented language models
(TaLMs) often assume ‘perfect’ information
access and tool availability, which may not
hold in the real world. To systematically study
TaLMs’ imperfections, we introduce the FAIL-
TALMS benchmark, featuring two major fail-
ures: under-specified user queries and non-
available tools. FAIL-TALMS contains 1,749
examples using 906 tools across 21 categories,
including single- and multi-tool usage. We
evaluate top-performing proprietary and open-
source models, and find all current models ex-
cept for Claude struggle to recognize missing
tools or information. Further, to study possible
mitigation of the failures, we enable real-time
human interaction, named the Ask-and-Help
(AAH) method, to provide missing information
or replace non-functional tools. While AAH
can help models solve tasks more correctly
when queries are under-specified, it brings min-
imal benefit when complex tools are broken.1

1 Introduction

Tools can greatly enhance language models (LMs)
by facilitating their problem-solving process (Qin
et al., 2023a; Mialon et al., 2023) and extending
their abilities (Wang et al., 2024a). Given a user
query, a tool-augmented language model (TaLM)
can selectively call tools to gather more informa-
tion and perform computation activities to accom-
plish the user’s request. Such TaLMs have been
applied in various scenarios, including interacting
with versatile knowledge bases (Lazaridou et al.,
2022), real-world data (Xu et al., 2023), and even
multi-modal information (Gupta and Kembhavi,
2022; Wang et al., 2024b). On the other hand,
tools can deprecate over time (Qin et al., 2023b),

*Co-First Author; see Contribution Statement 7 for details.
1https://github.com/EduardoTrevino/fail-talms
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Figure 1: Illustration of two major TaLM issues. Left:
The user provides under-specified queries, which may
cause models to hallucinate or make false assumptions
about the missing information, e.g., translate the “name”
string instead of the user’s actual name. Right: Neces-
sary tools are unavailable, e.g., missing check_flight
causes TaLMs to lack the ability to solve the task.

suddenly break (Guo et al., 2024), or even return
unpredictably false outputs (Sun et al., 2024).

Nonetheless, many approaches assume two ideal-
ized conditions for TaLM systems: (i) user queries
are always sufficiently detailed for models to solve
the task, and (ii) all necessary tools are available.
In practice, however, these assumptions often do
not hold, leading to failures like those depicted in
Figure 1. In the first example, the user query is
under-specified, and the model, while successfully
calling the translation tool, lacks the necessary in-
put, i.e., the user’s actual name. As a result, the
model incorrectly translates the phrase “my name”,
rather than the intended name. In the second case,
the necessary check_flight tool to solve the task
is unavailable, as denoted by the red cross. In these
cases, existing TaLMs often hallucinate contexts or
terminate without signaling failure or seeking alter-
native strategies, leading to sub-optimal behaviors.

To systematically study these practical failures
and enable more robust TaLM systems, we intro-
duce FAIL-TALMS — a benchmark designed to
examine TaLMs under information insufficiency
and tool unavailability (§3). We gather 906 real-
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world tools across 21 categories directly from their
host sources, and construct execution environments
for all tools along with verifying test cases. Un-
like existing benchmarks with limited tool calls
via third-party platforms, our tool environment al-
lows real-time and reproducible testing. With this
collection of tools, we created 575 examples with
perfect information and tool availability. We then
transformed them into 599 and 575 examples with
under-specified queries and unavailable tools, by
removing key information from the queries and
masking out necessary tools from the provided
list, to study the two major failure modes men-
tioned above. Overall, FAIL-TALMS contains
1,749 queries across 906 tools from 21 categories.

We propose three evaluation metrics to study
model performance: pass rate to measure task suc-
cess, awareness of missing tools or information,
and further, unexpected outcomes to capture when
TaLM correctly yet unexpectedly solves a task.

We experiment with a series of top-performing
LMs (§4): open-weight LLAMA 3 models from
8B, 70B to 405B, and proprietary models includ-
ing CLAUDE and GPT. Our experiments reveal
that most models struggle to identify the lack of
tools or information needed to solve a task, except
for CLAUDE with a 56% awareness rate, 28–54%
higher than other models. Nonetheless, high aware-
ness does not translate to higher pass rates. For
example, GPT-4o achieves 4% higher pass rate
than Claude-3.5-sonnet, despite scoring 44% lower
in awareness.

Finally, to examine whether simple mitigation
measures could address these issues, we study if a
method enabling TaLMs to interact with humans,
dubbed “Ask-and-Help” (AAH), could help obtain
missing information or fulfill the function of un-
available tools (§5). We measure interaction ra-
tio to see how often TaLM interacts with humans.
AAH substantially improves pass rate particularly
when user queries are under-specified, where the
models actively interact with humans 21–61% of
the time to gather missing information. However,
this human assistance does not bring improvements
when tools are unavailable, regardless of the tool
functions are replaceable by humans or not, indi-
cating room for better methodologies.

2 Problem Statement

A tool-augmented language model (TaLM) con-
sists of (1) a backbone language model M and

(2) a set of tools T = {t1, . . . , tn}. Each tool
ti is a callable function (e.g., calculator(expr),
document_retriever(query,docs)). Given a
natural language (NL) query q, the TaLM selects
a series of tools T q ⊆ T to solve the query. For
each chosen tool ti ∈ T q, the TaLM produces a
tool-calling program pqi = M(q, T ) that is exe-
cuted then yielding output eqi . Finally, the TaLM
produces the final answer rq to query q based on
all tool outputs {eqi }.

However, this classic TaLM pipeline may not
successfully execute in practice due to two primary
issues:

Under-specified Queries When the user query
q is under-specified, either the subset of relevant
tools T q cannot be successfully identified, i.e.,
Mdet(q, T ) ̸⇒ T q, or the set of tool-calling pro-
grams P q = {pqi } cannot be properly constructed
due to insufficient information to determine the
input arguments of tools.

Unavailable Tools Even when there is sufficient
information, the tool may be unavailable due to
reasons such as deprecated functions or server ex-
ecution errors (e.g., server timeout or connection
failure). In such cases, the tool execution fails or
returns incorrect results, i.e., exec(p) ̸→ e, leading
to invalid or inaccurate tool execution outputs.

3 The FAIL-TALMS Benchmark

In this section, we first introduce the tool collection
(§3.1) and benchmark curation processes (§3.2),
present the data overview (§3.3), then establish the
set of evaluation metrics (§3.4).

3.1 Tool Collection and Validation
Tool Collection We use Mixed Analytics2 and
collect 1,106 authorization-free tools, each with an
URL, documentation of functionality and argument
descriptions, and exemplar use cases.

Tool Validation To verify the successful execu-
tions of collected tools, we transform each tool
instance into a callable Python function and syn-
thesize multiple unit tests for it. More specifically,
we provide the above-gathered information of each
tool to GPT-4o and prompt it (see exact prompt in
§A.1) to generate (i) Python file sending requests
to the tool URL, and (ii) a JSON schema with the
tool’s metadata, i.e., tool representation, and (iii)

2https://mixedanalytics.com/blog/
list-actually-free-open-no-auth-needed-apis/
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Figure 2: Visualization of the benchmark and tool environment construction (top), as well as the inference pipeline
with awareness querying and human interaction phases (bottom).

unit tests for each tool. See examples of (i)–(iii) in
§A.2, §A.3, and §A.4.

After tool environment construction, we validate
if tools can (i) successfully execute and produce
valid output and (ii) correctly pass all synthesized
unit tests. We only keep tools that encounter no
issues in (i) and (ii). Further, we maintain test
cases to check tool availability in real-time, with an
average response time of 1.47 seconds. We filter
out tests having response times over 20 seconds to
enable fast tool responses and test efficiency during
inference. After this process, we collected a total
of 906 valid tools.

3.2 Benchmark Creation

Given the tools, we now create queries that ask to
solve certain tasks by using one or multiple tools.

3.2.1 The Standard ‘Perfect’ Setting
The standard ‘perfect’ setting adopted by most tool
benchmarks assumes fully specified queries and the
availability of all necessary tools to solve a given
task. We refer to this ideal baseline scenario as the
perfect setting, which serves as the foundation for
generating the remaining data settings.

To generate a ‘perfect’ example with query and
involved tools, we first construct a set of tool com-
binations to instantiate NL queries from, by pairing
every tool with all other tools within the same cate-
gory. This systematic approach ensures the usage
of every possible tool combinations, instead of bi-
asing over any specific tool.

To create an NL query for each given tool combi-
nation, we provide the tool information as collected
in §3.1, as well as a one-shot (query, tools) example

as in §A.5 to demonstrates a query and two tools
necessary to solve the query. We instruct GPT-4o to
generate queries in realistic usage with content re-
lated to the tools’ functions, and include the model
prompt in §A.6.

After this step, we perform an additional human
validation step. During this step, human review-
ers manually examine the generated queries and
tool combinations to ensure that the queries are
coherent, the arguments provided are valid, and
the tool usage is contextually appropriate. We gen-
erate queries for all possible pairs of unique tool
combinations in a given category, which yields 575
(query, tools) examples. This serves as the foun-
dation for creating the rest of the benchmark, as
illustrated in the perfect setting in Figure 2 the Ex-
ample Generation module.

3.2.2 Under-Specified Queries

In real-world scenarios, queries are not always
fully specified, and crucial details may be omitted.
Hence, we create this data split to study whether
the model can identify the missing information
needed to construct tool calls. We refer to such
queries, which maintain their semantic intent but
lack essential details, as under-specified queries.

To create this setting, we modify the perfect
queries by manually masking out key informa-
tion required to define the input arguments for
the relevant tools. For example, the standard
query “What is the weather in Pittsburgh?” calls
for the tool Weather(location: str) → str,
which needs the location “Pittsburgh” as an argu-
ment. By removing “Pittsburgh,” the query be-
comes “What is the weather?”, which still implies
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the use of the Weather tool but omits the specific
location. We manually remove these critical ar-
guments from the perfect queries, yielding a total
of 599 under-specified queries. We generate more
under-specified queries than perfect ones because
a query may have more than one argument and can
therefore be masked in multiple ways.

3.2.3 Unavailable Tools
In practice, tools required by TaLMs may not al-
ways be reliable, for example, tools can be suscep-
tible to depreciation or errors (e.g., 404) especially
when provided by third-party platforms with ac-
cess limitations (Guo et al., 2024). This data split
investigates how models perform when tools turn
unexpectedly unavailable. Similarly, we manually
decide which tools to remove and verify the qual-
ity of the modifications. Moreover, we study the
distinction among tools, particularly in whether
they can be easily replaced by an average human.
We categorize data into two scenarios — human-
replaceable tools and non-replaceable tools.
Human-replaceable tools features tools whose
functions can be easily replaced by a normal human
with minimal effort, such as calculating the value of
1 + 1 with a calculator tool, or saying a random
joke with the joke tool. Human-replaceable tools
often have relatively easy functions.
Non-replaceable tools usually possess more com-
plex functionalities that humans cannot easily
replicate, such as complex calculations (e.g.,
calculator(45465 * 5487)) or simulating a
rocket launch using the rocket_simulator tool.

For both unavailable tool scenarios, we manu-
ally classify a tool into human-replaceable or non-
replaceable by asking ’Can human replace the tool
with minimal effort?’ If yes, the tool is placed
into the human-replaceable setting; otherwise, it is
placed in the non-replaceable setting. We yield 261
and 314 examples with unavailable tools that are
human-replaceable and non-replaceable, respec-
tively. In experiments, we provide all tools except
the selected unavailable ones to the TaLM.

No Tools TaLMs may know certain unprovided
tools, which we are unaware of due to their pro-
prietary training data (Zhuang et al., 2023; Huang
et al., 2024), we introduce a no-tool setting, where
only NL query is provided. This setting serves
as a baseline for measuring the model’s inherent
knowledge. Under this setting we only provide the
perfect setting queries to TaLM without any tool in-

formation. We run the same number of 575 queries
as in the perfect set.

3.3 Benchmark Analysis
As shown in Figure 4, our FAIL-TALMS bench-
mark spans 21 categories with 906 tools, most
prominently featuring game, finance, and science,
among other domains. Among the total of 1,749
examples, we have 575 perfect examples, 599
with under-specified queries, and 575 examples
with unavailable tools — 261 of them are human-
replaceable, and 314 are non-replaceable. See
§B for detailed distribution of human- and non-
replaceable tools in individual categories.
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Figure 3: Category statistics of FAIL-TALMS queries.

3.4 Evaluation Metrics
We introduce the evaluation metrics regarding task
success, awareness of missing components, among
other dimensions.

3.4.1 Correctness: Pass Rate
We adopt the pass rate metric from Qin et al.
(2023b), which calculates the proportion of suc-
cessful tasks. Specifically, we pass in the initial
user query, the tool outputs, and the final TaLM
response to a GPT-4o model, and ask it to evaluate
if the final response solves the user query. GPT-4o
grades responses binarily as “Pass” (1) or “Fail”
(0). The final score is calculated by a majority vote
across 5 GPT-4o graders. Refer to §C.1 for the
detailed prompts and §D for human validation of
GPT evaluation quality.

3.4.2 Awareness of Missing Components
Besides task completion, we also assess if TaLMs
can identify the missing information or tools.

Information Awareness For under-specified
queries, we evaluate whether the TaLM can de-
tect insufficient information. We prompt the TaLM
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to determine if the query provides enough informa-
tion to complete the task by responding yes, idk
(I don’t know), or no. A successful identification
of insufficient information occurs when the model
answers either idk or no. Formally, we define:

Info Awareness =
Number of idk’s and no’s
Total number of examples

Tool Awareness When required tools are unavail-
able or non-functioning,3 we measure the TaLM’s
ability to recognize this limitation. To evaluate this,
we prompt the model with: “Do you have the right
tools to complete the task?” and ask for a yes, idk,
or no response. Similar to Information Awareness,
successful identification of tool unavailability oc-
curs when the model answers either idk or no. Un-
like Information Awareness, however, this metric
specifically targets the model’s recognition of tool-
based limitations rather than informational gaps.
For the non-replaceable setting, we thus have:

Tool Awareness =
Number of idk’s and no’s
Total number of examples

See §C.2 for detailed prompts and evaluations.

3.4.3 Unexpected Success
In addition to cases where LMs correctly identify
missing components and fail gracefully, an inter-
esting scenario is when TaLMs unexpectedly solve
the task correctly, despite lacking certain required
information or tools.

Across examples with under-specified queries
and unavailable tools, TaLMs are expected to re-
spond idk or no to awareness questions. However,
if the TaLM responds yes (to either information
or tool awareness) and achieves a pass rate of 1,
this outcome is noteworthy. We thus compute the
unexpected success by:

Unexpected Success =
yes and pass rate = 1

Total number of examples

3.4.4 Skipped Queries
A query is skipped if the model responds no to
an awareness question. We explicitly prompt the
TaLM to respond no if it confidently believes that it
lacks the necessary tools or information to solve a
given task, and inform it that this decision will skip
the task. We calculate the ratio of skipped examples
among all examples. A lower score indicates fewer
skipped queries, and higher model confidence.

3Non-functioning tools are those that cannot fulfill the
requested operation, either because they are not accessible or
lack the functionality needed for the task at hand.

4 Experiments and Results

In this section, we introduce the experimental setup
(§4.1) and TaLM pefromance without AAH (§4.2)
and with (§5) human assistance via AAH.

4.1 Experimental Setup

We evaluated five models including the openweight
Qwen-72B-Instruct and Llama models of various
sizes (8B, 70B, and 405B); we also benchmark
multiple closed API models: GPT-4o and Claude-
3.5-Sonnet. We use the default temperature of t
= 1.0 and sample n = 1 responses. We evaluate
models on each split in FAIL-TALMS with the
metrics specified in §3.4.

We report all results on FAIL-TALMS in Table 1.

4.2 Standalone TaLMs

Standard ‘Perfect’ Baseline In the standard
‘perfect’ setting, all models exhibited high aware-
ness from 94–100%, correctly identifying that they
had all the necessary information and tools to
solve the tasks. Despite this high self-awareness,
pass rates are lower than perfect — GPT-4o at
68%, Claude at 67%, Qwen at 54%, Llama 405
at 53%, Llama 70B at 31%, and Llama 8B at 28%;
which correlate well with their general abilities in
problem-solving.

Awareness of Missing Components Across
settings with either under-specified queries or
unavailable tools, Claude achieves substantially
higher awareness of missing information — an
average of 42%, which is 23–40% higher than
other models, in particular, even 24% higher
than the top-performing GPT-4o. Similarly, in
both non-replaceable and replaceable tool settings,
Claude significantly outperforms other models and
achieves a 70% awareness, which is 34-68% higher
than other models and 64% higher than GPT-4o.

Among Llama models, the medium-sized 70B
model exhibits the highest awareness in the under-
specified query split of 19%, which is 17% and
8% higher than its 8B and even 405B counterparts.
This trend continues in the unavailable tool setting,
where the 70B model attains 36% awareness, and
gets 34% higher than both the 8B and 405B models.
In comparison, the other open-source candidate,
Qwen, obtains relatively low awareness around 3%
with unavailable tools, mirroring the difficulty in
recognizing missing components in weaker Llama
models.
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Setting Claude-3.5-sonnet GPT4o Qwen-72B-Instruct

PR Aware Unexp Skip PR Aware Unexp Skip PR Aware Unexp Skip

Perfect 0.67 0.94 0.00 0.00 0.68 1.00 0.00 0.00 0.54 0.94 0.00 0.00
Under-specified 0.31 0.42 0.24 0.08 0.36 0.18 0.33 0.05 0.40 0.08 0.31 0.05
Unavailable tools 0.25 0.70 0.03 - 0.28 0.06 0.05 - 0.15 0.03 0.04 -

non-replaceable 0.09 0.85 0.04 0.09 0.11 0.09 0.09 0.06 0.06 0.05 0.05 0.03
replaceable 0.41 0.54 0.01 - 0.44 0.03 0.01 - 0.23 0.00 0.02 -

No-tools 0.10 - 0.00 0.00 0.29 - 0.01 0.00 0.09 - 0.01 0.00

Setting Llama 8B Llama 70B Llama 405B

PR Aware Unexp Skip PR Aware Unexp Skip PR Aware Unexp Skip

Perfect 0.28 1.00 0.00 0.01 0.31 0.99 0.01 0.01 0.53 1.00 0.00 0.00
Under-specified 0.14 0.02 0.13 0.00 0.29 0.19 0.29 0.11 0.25 0.11 0.25 0.06
Unavailable tools 0.11 0.02 0.02 - 0.07 0.36 0.10 - 0.24 0.02 0.07 -

non-replaceable 0.03 0.02 0.03 0.00 0.04 0.55 1.00 0.38 0.12 0.02 0.12 0.02
replaceable 0.19 0.01 0.01 - 0.10 0.17 0.19 - 0.36 0.02 0.01 -

No-tools 0.00 - 0.00 0.00 0.37 - 0.02 0.00 0.28 - 0.06 0.00

Table 1: Performance of Claude, GPT, Qwen, and Llama models (8B, 70B, 405B) on FAIL-TALMS under uncertain
and partial information settings. PR stands for pass rate, Aware refers to information/tool awareness, Unexp stands
for unexpected outcomes, and Skip refers to skipped queries.

Is Awareness Related to Pass Rate? In the
under-specified setting, all TaLMs except Claude,
predominantly responded yes during the awareness
assessment 82%–98% of the time, as shown in 1.
This suggests the Llama, Qwen, and GPT-4o mod-
els often confidently proceed despite uncertainty
being present. Therefore there is no clear correla-
tion between awareness and pass rate, and more of
a characteristic of individual models.

Similarly in the unavailable tools setting shown
in Table 1, Claude identifies 64% more of the miss-
ing tools than GPT-4o, yet scores 3% lower in pass
rate than GPT-4o, suggesting a better judgment in
knowledge sufficiency yet less success in solving
the task under sub-optimal settings.

Comparing Llama models with varied sizes, in-
creasing model size from 8B to 70B increases the
awareness score by 34%, yet further increasing
model size to 405B drags down the awareness score
by 8%, indicating decreased abilities to identify
insufficient information, and behavior proceeding
with the task even with insufficient content. De-
spite this loss in awareness, the pass rate increases
up to 24% with the largest 405B model.

Overall, strong models such as GPT-4o and
Llama-405B may overestimate their capabilities,
engaging in tasks they cannot solve, while Claude
and smaller Llama models often approach unsolv-
able tasks more cautiously.

Comparing Human Replaceable and Non-
Replaceable Tools Compared to non-replaceable
tools, all models provided with human-replaceable

tools show decreases in tool awareness by 1–34%.
In the meantime, models present substantial in-
creases in pass rate by 6–36%. Despite insufficient
information, the nature of human-replaceable tools
deceives the model into thinking they have suffi-
cient information and thus can more easily solve
the task. We conjecture this is due to the easier
functionalities human-replaceable tools have, e.g.,
get_weather(location), compared to complex
tools such as rocket_simulator() which humans
cannot easily replace.

Unexpected Success When Queries are Under-
Specified Unexpected success should be minimal
in all settings. This hypothesis holds in examples
with unavailable tools, where all models achieve
less than 5% of the cases correct. However, when
user queries are under-specified, we surprisingly
observe that all models obtain a substantial amount
of unexpected successes, most prominently with
GPT-4o solving 33% of the cases correctly.

We investigate this intriguing phenomenon and
found models often refer to normal pragmatics and
accidentally correctly assume the missing informa-
tion to solve the task. For instance, given a user
query “How is the stock performance today?” with
the company name under-specified. However, the
model may pragmatically assume the missing ref-
erence to be S&P 500 Index, since it is the most
widely followed U.S. market benchmark. Despite
the ambiguity, the model pragmatically fills in the
missing information and solves the task correctly
yet unexpectedly.
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5 Human-Assisted TaLMs

5.1 The Ask-and-Help (AAH) Setting
One approach to alleviate TaLM failures under is-
sues presented in FAIL-TALMS is to obtain assis-
tance from humans. Therefore, to examine how
much human intervention can alleviate TaLM fail-
ures, we also experiment in a setting where TaLMs
can request human assistance as an interactive tool.
We refer to this setup as Ask-and-Help (AAH).

The TaLM can choose to invoke AAH at any
time during inference, by querying humans as call-
ing a tool with a textual argument a, e.g., “What
is your name” for the example in Figure 1 (top).
The human then responds to a with additional in-
formation or solutions, e.g., “Mike”, which would
be returned to the TaLM, much like the response
from a traditional tool call. The TaLM then gen-
erates its final response based on human-provided
information and other tool-calling or intermediate
reasoning outputs. Since the pass rate is calculated
using the final response of the TaLM, and AAH

occurs within its normal tool calling process, our
interpretation of our other metrics does not change
from the basic setup.

Additional Evaluation: Interaction Ratio We
also measure the number of examples where TaLM
chooses to interact with humans via AAH, showing
its awareness and willingness to seek help.

5.2 TaLM Performance with AAH

We explored the impact of offering TaLMs the abil-
ity to interact with a human via the AAH method
on FAIL-TALMS. Effective use of AAH depends
on the model’s ability to recognize when assistance
is needed and to interact appropriately.

Interaction Improves Under-Specified Tasks
After being augmented with AAH, the human-
replaceable setting is now equipped with sufficient
information. Correspondingly, strong models, in-
cluding GPT-4o, Claude, and Llama 405B show
slight increases in PR with the human interaction by
1–2% as in Table 1 and Table 2. However, smaller
models do not observably improve with human as-
sistance, even with the missing tools that can be
easily replaced by humans.

In contrast, the performance of AAH-assisted
TaLM on the under-specified query setting shows
significant pass rate improvements, by 25%, 30%,
and 28% on GPT-4o, Claude, and Llama-405B. For
Llama models with varying sizes, we also observe

larger improvements as the model size grows, in-
creasing from 10% at 8B to 28% at 405B. Notably,
the pass rate of Llama-405B with under-specified
queries matched its perfect setting— a 53% pass
rate. Moreover, Llama-70B surpasses its perfect
setting pass rate by 2%. Similarly, Qwen also
shows moderate gains 6–8% following the trend
observed in the smaller Llama models.

For awareness, all models except Llama 405B
increase by 3–9%, suggesting that enabling human
interaction may affect models’ self-uncertainty as-
sessment, leading to increased awareness of miss-
ing information. Lastly, the unexpected success in-
creases by 7–28% across all TaLMs except Llama
70B, because without human assistance, success in
this setting is otherwise unexpected.

Human Interaction versus Awareness All mod-
els generally interact with humans via AAH. Par-
ticularly when given under-specified queries, GPT
and Claude models show substantially higher inter-
action rates than other models or than on other data
splits, suggesting that they are eager to utilize hu-
man assistance to resolve incomplete information,
as seen in Table 2.

Across all models and settings, we do not find
clear associations between the awareness of miss-
ing components, versus the interaction rate to AAH.
Rather, interactivity and awareness are more depen-
dent on the model itself. In the non-replaceable
setting, Claude’s awareness remained high at 85%,
but its interaction rate was only 27%, indicating
limited use of human assistance despite recogniz-
ing high uncertainty.

Despite recognizing high uncertainty (i.e., an
85% awareness), Claude does not proportionally in-
crease its use of AAH nor achieve a higher pass rate
via interaction, suggesting misalignment between
self-uncertainty and the decision to seek help.

6 Related Works

TaLM Benchmarks Most benchmarks about
tool-augmented LMs collect tools from existing
platforms that allow offline (Yang et al., 2023; Xu
et al., 2023) or online executions (Li et al., 2023;
Chen et al., 2024), yet may bring degradation is-
sues, where many tools become outdated over time
(Guo et al., 2024). More recent datasets empha-
size tool diversity and realistic use cases (Qin et al.,
2023b; Patil et al., 2023; Li et al., 2023; Tang et al.,
2023), yet still assume perfect information and tool
availability. In contrast, our work studies failures
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Setting Claude-3.5-sonnet GPT4o Qwen-72B-Instruct

PR Aware Unexp Inter PR Aware Unexp Inter PR Aware Unexp Inter

Perfect 0.67 0.94 0.00 - 0.68 1.00 0.00 - 0.54 0.98 0.00 -

Under-specified 0.61 0.51 0.31 0.61 0.61 0.21 0.47 0.58 0.48 0.15 0.34 0.29

Unavailable tools 0.25 0.68 0.03 0.23 0.28 0.04 0.06 0.12 0.15 0.03 0.05 0.14
non-replaceable 0.07 0.85 0.03 0.27 0.10 0.05 0.10 0.09 0.05 0.03 0.05 0.15
replaceable 0.43 0.51 0.03 0.19 0.45 0.02 0.02 0.15 0.29 0.00 0.05 0.13

No-tools 0.10 - 0.00 - 0.029 - 0.01 - 0.09 - 0.01 -

Setting Llama 8B Llama 70B Llama 405B

PR Aware Unexp Inter PR Aware Unexp Inter PR Aware Unexp Inter

Perfect 0.28 1.00 0.00 - 0.31 0.99 0.01 - 0.53 1.00 0.00 -

Under-specified 0.24 0.01 0.24 0.24 0.33 0.25 0.24 0.21 0.53 0.02 0.53 0.25

Unavailable tools 0.08 0.02 0.02 0.23 0.05 0.13 0.05 0.21 0.20 0.05 0.09 0.20
non-replaceable 0.03 0.03 0.03 0.26 0.05 0.21 0.05 0.18 0.16 0.09 0.15 0.16
replaceable 0.13 0.01 0.00 0.19 0.04 0.04 0.05 0.24 0.38 0.01 0.02 0.24

No-tools 0.00 - 0.00 0.00 0.37 - 0.00 - 0.28 - 0.06 -

Table 2: Performance of Claude, GPT, Qwen, and Llama models (8B, 70B, 405B) on FAIL-TALMS under uncertain
and partial information settings with AAH assistance. Inter refers to interaction rate.

with under-specified queries and unavailable tools,
and alleviates them via human interaction.

Tool Failures in Practice Many TaLM works as-
sume a perfect tool execution environment and user
query specification, which no longer holds when
used in practice. On the one hand, NL queries are
often under-specified (Min et al., 2020), necessi-
tating models to ask more information to proceed
with the task. On the other hand, tools can depre-
cate over time (Qin et al., 2023b), suddenly broken
(Guo et al., 2024), or even return unpredictably
false outputs (Sun et al., 2024). Some works pro-
pose to use LM as a neural simulator of tool execu-
tion (Kim et al., 2023; Guo et al., 2024) to maintain
the perfect tool-availability assumption. Our work,
instead, directly reveals and tackles both practical
issues and proposes AAH as an attempted solution.

Human-Model Interactive Problem Solving
Many TaLM are designed to operate autonomously
(Wang et al., 2024b) without seeking help from
other sources such as human users. However, as the
tasks become more complex and the environment
runs more dynamically (Guo et al., 2024), it some-
times becomes theoretically impossible for the
TaLM to finish the task itself. Human-in-the-loop
comes as a useful technique (Mosqueira-Rey et al.,
2023), especially in risk-critical tasks where hu-
man feedback or supervision is required. We thus
employ this human interaction as an exploratory
approach to alleviate our identified TaLM failures.

7 Conclusion

In this paper, we introduced FAIL-TALMS, a com-
prehensive benchmark designed to evaluate tool-
augmented language models (TaLMs) under re-
alistic conditions where user queries are under-
specified or necessary tools are unavailable, con-
sisting of 1,749 queries using 906 authorization-
free tools across 21 categories. Our experiments
with both proprietary models (GPT, Claude) and
open-weights models (LLaMa series) revealed that
most TaLMs struggle to recognize missing infor-
mation or unavailable tools. To address this, we
examine the Ask-and-Help (AAH) method, allow-
ing TaLMs to interact with humans in real time
to obtain missing information or substitute non-
functional tools. While we find AAH improves the
pass rate on under-specified queries, it has minimal
impact when complex tools are unavailable.

Limitations

While FAIL-TALMS provides a substantial founda-
tion for evaluating the practical failures of TaLMs,
we primarily focus on two failure modes: under-
specified queries and unavailable tools. Other
potential risk issues, such as adversarial inputs,
are not addressed and could be explored in future
work. The AAH method involves human interac-
tion, which may not be scalable or practical in
all deployment scenarios due to concerns about la-
tency, cost, or privacy. Implementing such a system
in real-world applications would require careful
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consideration of these factors.
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A Benchmark Construction

In this section, we highlight exact details of the
components required during the construction of the
benchmark.

A.1 Tool Environment Construction
In this section, we describe the prompt we provide
GPT-4o for constructing the tool environment. The
instruction generates a tool request Python code,
tool unit test cases, and a tool representation which
includes metadata in JSON format based on a tools
documentation. It iterates over all tool documen-
tations files and, for each tool, it generates these
three files. All tools utilized are covered under the
following licenses: Creative Commons, MIT Li-
cense, GNU General Public License (GPL) 2.0 or
later, Open Data Commons Open Database License,
Database Contents License, openFDA, Apache 2.0
License, Massachusetts Department of Transporta-
tion Developers License Agreement, GNU GPLv3,
and ISC License.
System Prompt
You are a helpful assistant designed to

generate Python code, test cases, and
metadata JSON files based on a tool
documentation. Your task is to create
Python functions to interact with all
relevant tool URL's that a human might need
based on the tool's documentation.

Ensure that the function names are properly
formatted and include necessary parameters.
Additionally, generate corresponding test
cases to verify the tool's functionality,
and create a JSON file with metadata about
the tool.

Prompt
The following is documentation for a tool

called "{tool_name}". Your task is to
create a Python file "tool.py" to make
requests to all the relevant tools that a
human needs the functionality for based on
the tool's documentation provided. Note:
the tools function names should be
lowercase and never start with a number.

Please ensure there are defaults in place
(especially IDs or resource tags, etc.,
that are specific to the tool's URL).
Additionally, ensure you create Test Cases
separately to verify the tool's URL's work
"tool_test.py".

Finally, create a metadata JSON file that
provides metadata about the tool and all of
its available endpoints "{tool_name}.json".

Here is an example tool file for a tool named
artchicago: {seed_api_example}

Here is an example corresponding JSON file.
Note how the names of the tool's in the
`tool_list` match the function names in the
Python code calling the tool URL:
{seed_json_example}

Now, please do this for the tool named
"{tool_name}". To capture your output
generation, be sure to bold the titles,
i.e., ### api.py then ```python or ```json
before the code block:

"""{documentation_content}"""

A.2 Tool Request
The following is an example of a tool request
python file.
import requests
from typing import Optional, List

BASE_URL = "https://api.irail.be"

def stations(format: str = "json", lang: str =
"en", ):
"""
Retrieve a list of all stations.

:param format: The response format (json,
xml, jsonp).

:param lang: The language of any text or
names in the response.

"""
url = f"{BASE_URL}/stations/"
params = {

'format': format,
'lang': lang,

}
response = requests.get(url, params=params)
try:

return response.json()
except Exception as e:

return {"error": str(e), "response":
response.text}

def liveboard(station: str, id: Optional[str] =
None, date: Optional[str] = None, time:
Optional[str] = None,

arrdep: str = "departure", lang:
str = "en", format: str =
"json", alerts: bool = False,

):
"""
Retrieve a liveboard for a specified station.

:param station: The name of the station to
query.

:param id: Optional station ID.
:param date: Date for query, formatted as

ddmmyy.
:param time: Time for query, formatted as

hhmm.
:param arrdep: Whether to retrieve

departures or arrivals.
:param lang: The language of the response.
:param format: The output format (json, xml,

jsonp).
:param alerts: Whether to include alerts.
"""
url = f"{BASE_URL}/liveboard/"
params = {

'station': station,
'id': id,
'date': date,
'time': time,
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'arrdep': arrdep,
'lang': lang,
'format': format,
'alerts': alerts

}
response = requests.get(url, params=params)
try:

return response.json()
except Exception as e:

return {"error": str(e), "response":
response.text}

def connections(from_station: str, to_station:
str, date: str, time: str, timesel: str =
"departure",

format: str = "json", lang: str =
"en", typeOfTransport: str =
"automatic", alerts: bool =
False,

results: int = 6, ):
"""
Get routes between two stations, including

realtime data on delays.

:param from_station: The departure station.
:param to_station: The destination station.
:param date: Date for the query, formatted

as ddmmyy.
:param time: Time for the query, formatted

as hhmm.
:param timesel: Whether results should show

arrivals or departures.
:param format: The response format.
:param lang: The language of the response.
:param typeOfTransport: Types of transport

to include.
:param alerts: Include alerts or not.
:param results: Number of results to return.
"""
url = f"{BASE_URL}/connections/"
params = {

'from': from_station,
'to': to_station,
'date': date,
'time': time,
'timesel': timesel,
'format': format,
'lang': lang,
'typeOfTransport': typeOfTransport,
'alerts': alerts,
'results': results

}
response = requests.get(url, params=params)
try:

return response.json()
except Exception as e:

return {"error": str(e), "response":
response.text}

def vehicle(id: str, date: Optional[str] =
None, format: str = "json", lang: str =
"en", alerts: bool = False,

):
"""
Retrieve information about a vehicle

including stops and delays.

:param id: The ID of the vehicle.

:param date: Date for the query, formatted
as ddmmyy.

:param format: The response format.
:param lang: The language of the response.
:param alerts: Include alerts or not.
"""
url = f"{BASE_URL}/vehicle/"
params = {

'id': id,
'date': date,
'format': format,
'lang': lang,
'alerts': alerts

}
response = requests.get(url, params=params)
try:

return response.json()
except Exception as e:

return {"error": str(e), "response":
response.text}

def composition(id: str, format: str = "json",
data: str = "", lang: str = "en",

):
"""
Retrieve the composition of a train, i.e.,

carriages and locomotives.

:param id: The ID of the train.
:param format: The response format.
:param data: To get all raw unfiltered data

use 'all'.
:param lang: The language of the response.
"""
url = f"{BASE_URL}/composition/"
params = {

'id': id,
'format': format,
'data': data,
'lang': lang

}
response = requests.get(url, params=params)
try:

return response.json()
except Exception as e:

return {"error": str(e), "response":
response.text}

def disturbances(format: str = "json",
lineBreakCharacter: str = "", lang: str =
"en",

):
"""
Retrieve information about current

disturbances.

:param format: The response format.
:param lineBreakCharacter: Character for

line breaks in text.
:param lang: The language of the response.
"""
url = f"{BASE_URL}/disturbances/"
params = {

'format': format,
'lineBreakCharacter': lineBreakCharacter,
'lang': lang

}
response = requests.get(url, params=params)
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try:
return response.json()

except Exception as e:
return {"error": str(e), "response":

response.text}

A.3 Tool Representation

{
"tool_name": "irail",
"tool_description": "Tool to access railway

time schedules in Belgium, including
stations, liveboards, connections,
vehicles, disturbances, and more.",

"title": "iRail API",
"pricing": "FREE",
"score": {

"avgServiceLevel": 95,
"avgLatency": 150,
"avgSuccessRate": 98,
"popularityScore": 9.0,
"__typename": "Score"

},
"home_url": "https://api.irail.be",
"host": "api.irail.be",
"api_list": [

{
"name": "stations",
"url":

"https://api.irail.be/stations/",
"description": "Retrieve a list of

all stations.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"}

],
"statuscode": 200

},
{

"name": "liveboard",
"url":

"https://api.irail.be/liveboard/",
"description": "Retrieve liveboard

for a station including arrivals
and departures.",

"method": "GET",
"required_parameters": [

{"name": "station", "type":
"STRING", "description":
"Station name"}

],
"optional_parameters": [

{"name": "id", "type": "STRING",
"description": "Station ID"},

{"name": "date", "type":
"STRING", "description":
"Date for query"},

{"name": "time", "type":
"STRING", "description":
"Time for query"},

{"name": "arrdep", "type":
"STRING", "description":

"Arrivals or departures",
"default": "departure"},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"},

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "alerts", "type":
"BOOLEAN", "description":
"Include alerts", "default":
"false"}

],
"statuscode": 200

},
{

"name": "connections",
"url": "https://api.irail.be/c"
"description": "Get routes between

two stations.",
"method": "GET",
"required_parameters": [

{"name": "from", "type":
"STRING", "description":
"Departure station"},

{"name": "to", "type": "STRING",
"description": "Destination
station"}

],
"optional_parameters": [

{"name": "date", "type":
"STRING", "description":
"Date for query"},

{"name": "time", "type":
"STRING", "description":
"Time for query"},

{"name": "timesel", "type":
"STRING", "description":
"Arrivals or departures",
"default": "departure"},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"},

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "typeOfTransport",
"type": "STRING",
"description": "Type of
transport", "default":
"automatic"},

{"name": "alerts", "type":
"BOOLEAN", "description":
"Include alerts", "default":
"false"},

{"name": "results", "type":
"INTEGER", "description":
"Number of results",
"default": 6}

],
"statuscode": 200

},
{

"name": "vehicle",
"url":

"https://api.irail.be/vehicle/",
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"description": "Retrieve information
about a vehicle.",

"method": "GET",
"required_parameters": [

{"name": "id", "type": "STRING",
"description": "Vehicle ID"}

],
"optional_parameters": [

{"name": "date", "type":
"STRING", "description":
"Date for query"},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"},

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "alerts", "type":
"BOOLEAN", "description":
"Include alerts", "default":
"false"}

],
"statuscode": 200

},
{

"name": "composition",
"url":

"https://api.irail.be/composition/",
"description": "Retrieve the

composition of a train.",
"method": "GET",
"required_parameters": [

{"name": "id", "type": "STRING",
"description": "Train ID"}

],
"optional_parameters": [

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "data", "type":
"STRING", "description":
"Raw or filtered data",
"default": ""},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"}

],
"statuscode": 200

},
{

"name": "disturbances",
"url":

"https://api.irail.be/disturbances/",
"description": "Retrieve information

about current disturbances.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [

{"name": "format", "type":
"STRING", "description":
"Response format",
"default": "json"},

{"name": "lineBreakCharacter",
"type": "STRING",
"description": "Line break
character", "default": ""},

{"name": "lang", "type":
"STRING", "description":
"Language of response",
"default": "en"}

],
"statuscode": 200

}
]

}

A.4 Python Unit Test Example

import unittest
from api import stations, liveboard,

connections, vehicle, composition,
disturbances

class TestIRailAPI(unittest.TestCase):

def test_stations(self):
response = stations()
self.assertIn('station', response)

def test_liveboard(self):
response = liveboard('Gent-Sint-Pieters')
self.assertIn('station', response)

def test_connections(self):
response =

connections('Gent-Sint-Pieters',
'Mechelen', '23082024', '1130')

self.assertIn('connection', response)

def test_vehicle(self):
response = vehicle('BE.NMBS.IC3033')
self.assertIn('vehicle', response)

def test_composition(self):
response = composition('S51507')
self.assertIn('composition', response)

def test_disturbances(self):
response = disturbances()
self.assertIn('disturbance', response)

if __name__ == '__main__':
unittest.main()

A.5 Query-tool Example

Below is an example of a query-tool interaction
involving tools from the Met Museum and the Art
Institute of Chicago.

[
{
"tool_list": [

{
"category_name": "Art",
"tool_name": "metmuseum",
"function_name": "search_objects",
"tool_description": "Search for

objects in the Met's collection",
"required_parameters": [

{
"name": "q",
"type": "STRING",
"description": "Search term",
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"default": "Impressionist
paintings"

}
],
"optional_parameters": [

{
"name": "departmentId",
"type": "INTEGER",
"description": "ID of the

department",
"default": "11"

}
],
"method": "GET",
"template_response": {

"total": "int",
"objectIDs": ["int"]

}
},

{
"category_name": "Art",
"tool_name": "artchicago",
"function_name": "artworks_search",
"tool_description": "Search artworks

in the Art Institute of Chicago
data in the aggregator. Artworks
in the groups of essentials are
boosted so they'll show up
higher in results.",

"required_parameters": [
{

"name": "q",
"type": "STRING",
"description": "Your search

query.",
"default": "monet"

}
],
"optional_parameters": [

{
"name": "size",
"type": "INTEGER",
"description": "Number of

results to return.
Pagination via
Elasticsearch
conventions.",

"default": "10"
},
{

"name": "sort",
"type": "STRING",
"description": "Used in

conjunction with query to
sort results.",

"default": ""
}

],
"method": "GET",
"template_response": {

"pagination": {
"total": "int",
"limit": "int",
"offset": "int",
"total_pages": "int",
"current_page": "int"

},
"data": [

{
"id": "int",

"title": "str",
"artist_display": "str",
"place_of_origin": "str",
"date_display": "str",
"medium_display": "str",
"dimensions": "str",
"thumbnail": {

"alt_text": "str",
"width": "int",
"height": "int",
"iiif_url": "str"

}
}

]
}

}
],
"query": "I want to find Impressionist

paintings in the European Paintings
department in the Met's collection.
Additionally, can you find artworks
related to Monet in the Art Institute
of Chicago?",

"query_id": 2
}

]

A.6 Perfect Queries Prompt

Perfect queries are constructed by combining dif-
ferent components in the Tool Environment. The
code processes the Tool Requests, which are
Python files that handle interactions with tools,
and Tool Representations, which contain impor-
tant information about the tools, such as required
parameters, optional parameters, and expected re-
sponses. The code systematically pairs tools from
the same category and generates. We prompt
gpt-4o-2024-08-06 to generate a query combin-
ing these tools.
Prompt
Below I have attached 2 Tools "{tool1}" and

"{tool2}", which are Python files that make
requests to the tools from the
"{category_folder}" category, and their
corresponding metadata JSON files that
provide additional information about the
tools, as well as unit tests that have been
run on these tools. Utilize the parameters
used in these unit tests, and the
information about the tools to help you
with your task. Your task is to create a
tool-question JSON file that asks a
question a human would ask. Note: For the
tool-question JSON file, be sure to include
the name of the tool function from the
Python files inside the{tool_list}; they
should be the same name and format as the
function provided in the Python code.

"{tool_1}" tool: {tool_1_python_request}
"{tool_1}" unittest: {tool_1_python_unittest}
"{tool_1}" tool metadata:

{tool_1_json_representation}

"{tool_2}" tool: {tool_2_python_request}
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"{tool_2}" unittest:{tool_2_python_unittest}
"{tool_2}" tool metadata:

{tool_2_json_representation}
tool-question JSON example: {query-tool_example}

B Statistical Details of FAIL-TALMS

We study the distinction of human-replaceable and
non-replaceable tools in §3.3. Here we present the
detailed distribution of these two types of tools
across the 21 categories involved in our FAIL-
TALMS.

C Model-based Evaluation

C.1 Pass Rate

The pass rate metric evaluates whether the assis-
tant’s response successfully fulfills the user’s in-
struction. The evaluation is performed by a grader
model that assesses the assistant’s reply and deter-
mines a pass or fail outcome. To ensure reliability,
the evaluation is conducted multiple times (up to
5 attempts), and a majority voting mechanism is
used to decide the final result. If the majority of
evaluations result in a pass, the assistant’s response
is considered a pass; otherwise, it’s a fail.

Prompt:
System Message:
You are a grader. You will be given a user's

instruction, assistant's answer, and the
API's accessed along with their responses.
Based on the answer given, determine if the
instruction was completed or not. Always
begin your response with either 'Pass' or
'Fail'.

Prompt:
Below I have attached a user's instruction,

assistant's answer, and attached API's
accessed with their responses. Did the
assistant's answer complete the instruction
given? Begin your response with either
'Pass' or 'Fail'.

Query: {query_text}
Answer: {assistant_reply}

API's accessed and responses:
{function_context}

C.2 Information Awareness Prompt

The system is tasked with determining whether
it can gather, infer, or has enough information to
answer the user’s query based on the following
factors:

1. Existing knowledge of the world, independent
of the tools.

2. The functionality of the available tools that
the system has access to.

3. A combination of both existing knowledge
and tool functionality.

When evaluating the query, the system considers
whether:

• The query provides enough information for a
direct answer.

• The available tools can assist in obtaining or
clarifying the necessary information.

• A combination of the tool’s functionality and
existing knowledge can help infer, gather, or
produce the necessary information.

Based on this evaluation, the system responds as
follows:

• Yes: The system has all the information
needed or can gather or infer it using either
existing knowledge, available tools, or both.
In this case, the system will attempt to answer.

• IDK: The system is uncertain but willing to
attempt an answer using its knowledge, tools,
or a combination of both.

• No: The system cannot answer the query with
the available knowledge, tools, or any combi-
nation of both, and it will skip answering.

In all responses, the system must begin with Yes,
IDK, or No, followed by a brief explanation of the
reasoning. If the response is No, the system skips
the query. If the response is Yes or IDK, the system
will attempt to provide an answer.

Prompt:
System message:
Your task is to determine if you can gather,

infer, or have all the information needed
to answer the user's query using:

1. Your existing knowledge (regardless of the
tools).

2. The functionality of the available tools you
have access to.

3. A combination of both.

When evaluating the query, consider whether:
The query provides enough information for you

to answer directly.
The available tools can help you obtain the

necessary information or clarify the query.
Or if a combination of a tool's functionality

and your existing knowledge helps you
infer, gather, or have the necessary
information you need to answer.
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Figure 4: Distribution of human-replaceable and non-replaceable tools in each category in FAIL-TALMS.

Based on this evaluation:
Respond with 'Yes' if you can gather, infer, or

have all the information needed to answer
the query using your knowledge, the tools,
or both.

Respond with 'IDK' if you are unsure but are
willing to attempt an answer.

Respond with 'No' if you cannot answer the
query at all, even with your knowledge and
the tools available. This means the query
is completely unanswerable given the
current resources.

Important: Always start your response with
'Yes,' 'No,' or 'IDK,' followed by a brief
explanation of your reasoning. If you
respond with 'No,' you will skip attempting
to answer the query. If you respond with
'Yes' or 'IDK,' you are willing to try to
answer.

Prompt:
Based on the user's query, your knowledge of

the world, and the functionality of the
available tools, determine if you can
gather, infer, or have all the information
needed to answer the request. Remember:
Start with 'Yes,' 'No,' or 'IDK,' followed
by an explanation. 'Yes' means you have
enough information, you can infer it, or
can obtain it using the tools, and you will
attempt to answer. 'IDK' means you are
uncertain but willing to try using your
knowledge, tools, or a combination of both.
'No' means you cannot answer the query with
your knowledge, the available tools, or a
combination of both and you will skip it.
Query: {query}, Your knowledge of the
world, Available Tools and Their
Functionalities: {functions}

Tool Awareness Prompt The system is tasked
with determining whether it has the necessary tools,
knowledge, or a combination of both to answer
the user’s query. The evaluation is based on the
following considerations:

1. The system’s existing knowledge, indepen-
dent of the available tools.

2. The functionality of the tools accessible to the

system.

3. A combination of both the existing knowledge
and tool functionality.

When evaluating the query, the system considers
whether:

• The functionality of the tools can help obtain
the necessary answer.

• The system’s existing knowledge allows for
directly answering the query.

• A combination of tool functionality and ex-
isting knowledge is sufficient to provide an
answer.

Based on this evaluation, the system will respond
as follows:

• Yes: The system has sufficient knowledge,
tools, or a combination of both, and will at-
tempt to answer.

• IDK: The system is uncertain but willing to
try answering using its knowledge, tools, or
both.

• No: The system cannot answer the query, even
with the available knowledge, tools, or a com-
bination of both, and will skip attempting to
answer.

In all cases, the system must begin its response
with Yes, IDK, or No, followed by a brief explana-
tion. If the response is No, the system will skip the
query. For Yes or IDK, the system will proceed to
answer the query.

Prompt:
System Message:
Your task is to determine whether you can

answer the user's query using:
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1. Your existing knowledge (regardless of the
tools).

2. The functionality of the available tools you
have access to.

3. A combination of both.

When evaluating the query, consider whether:
The functionality of the tools can help you

obtain the answer.
Your existing knowledge allows you to answer

directly.
Or if a combination of a tool's functionality

and your existing knowledge helps you
obtain the answer.

Based on this evaluation:
Respond with 'Yes' if you can answer the query

using your knowledge, the tools, or a
combination of both.

Respond with 'IDK' if you are unsure but are
willing to attempt an answer.

Respond with 'No' if you cannot answer the
query at all, even with your knowledge and
the tools available, or a combination of
both. This means the query is completely
unanswerable given the current resources,
and you will skip attempting to answer the
query.

Important: Always start your response with
'Yes,' 'No,' or 'IDK,' followed by a brief
explanation of your reasoning. If you
respond with 'No,' you will skip attempting
to answer the query. If you respond with
'Yes' or 'IDK,' you are willing to try to
answer.

Prompt:
Based on the available tools' functionality and

your knowledge of the world, determine
whether you have the necessary tools,
knowledge, or a combination of both to
answer the query. Start with 'Yes,' 'No,'
or 'IDK,' followed by an explanation. 'Yes'
means you have the knowledge, tools, or a
combination of both, and you will attempt
to answer. 'IDK' means you are uncertain
but willing to try to answer. 'No' means
you cannot answer the query with your
knowledge, the available tools, or a
combination of both, and you will skip it.
Query: {query}, Your knowledge of the
world, Available Tools: {functions}

D Human Agreement with Model-Based
Evaluation

In §3.4 we propose to use model-based evaluation
to examine the correctness of model-generated re-
sponses, i.e., pass rate. To validate the reliabil-
ity of GPT-4o’s pass rate evaluation, we analyzed
95 examples randomly sampled from GPT-4o’s re-
sponses on the perfect setting and compare the pass
rate results between human evaluators and GPT-4o.
The comparison showed an 83.2% agreement in
the correctness of model-generated final responses

between GPT-4o and human evaluators. This high
level of agreement indicates that GPT-4o provides
evaluation results similar to those of humans, mak-
ing it a credible evaluator capable of simulating
human assessment of pass rates.

E Confidence Estimation of Results

While our benchmark contains a total of 1,749 ex-
amples, we conduct power analysis and result confi-
dence estimations to further verify its effectiveness
in supporting the conclusions drawn in our experi-
ment sections.

First, we conducted significance testing and
power analysis to determine the minimum number
of examples required to detect meaningful differ-
ences between our experimented models with ade-
quate statistical power. We found that at most 92
queries are sufficient to achieve reliable detection
of meaningful differences between configurations
with medium effect size (w = 0.5), a significance
level of α = 0.005, and a statistical power of 0.90.
Our dataset contains 261—599 examples in each
data split, which is sufficiently higher than 92, sug-
gesting that it can guarantee reliable and significant
results.

Moreover, to enhance the transparency and ro-
bustness of our evaluation results, we have in-
cluded confidence intervals for our key metrics
(pass rate, awareness, unexpected outcomes, and
skipped queries) across all settings and models.
Specifically, we calculate the 95% confidence inter-
vals using the Wilson score interval for proportions
and report them in Table 3.
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Metric Model Setting Value (%) N Confidence Interval (%)

Pass Rate
GPT-4o under-specified 36.0 599 [32.2, 39.9]

Claude-3.5-sonnet perfect 67.0 575 [63.1, 70.8]
LLaMa-70B unavailable tools (non-replaceable) 12.0 314 [ 8.6, 16.2]

Awareness
GPT-4o under-specified 18.0 599 [15.0, 21.3]

Claude-3.5-sonnet under-specified 42.0 599 [38.1, 46.0]
LLaMa-70B unavailable tools 36.0 575 [32.1, 40.1]

Table 3: Confidence intervals of model performance.
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