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Abstract

Numerous recent techniques for text style trans-
fer characterize their approaches as variants
of reinforcement learning and preference opti-
mization. In this work, we consider the relation-
ship between these approaches and a class of
optimization approaches developed primarily
for (non-neural) statistical machine translation,
formerly known as ‘tuning’. Inspired by these
techniques from the past, we improve upon es-
tablished preference optimization approaches,
incorporating multiple iterations of exploration
and optimization, and choosing contrastive ex-
amples by following a ‘hope’ vs ‘fear’ sam-
pling strategy. Cognizant of the difference be-
tween machine translation and style transfer,
however, we further tailor our framework with
a new pseudo-parallel data generation method
and a dynamic weighted reward aggregation
method to tackle the lack of parallel data and
the need for a multi-objective reward. We eval-
uate our model on two commonly used text
style transfer datasets. Through automatic and
human evaluation results we show the effective-
ness and the superiority of our model compared
to state-of-the-art baselines.

1 Introduction

Text style transfer aims to rewrite a given text to
match a specific target style while preserving the
original meaning. This task has drawn significant
attention recently due to its broad range of appli-
cations, such as text simplification (Laban et al.,
2021), formality transfer (Rao and Tetreault, 2018;
Liu et al., 2022), text detoxification (Dale et al.,
2021; Hallinan et al., 2023b), authorship transfer
(Patel et al., 2023; Liu et al., 2024), and author-
ship anonymization (Shetty et al., 2018; Bo et al.,
2021). Recent approaches have focused on pseudo-
parallel data generation (Krishna et al., 2020; Riley
et al., 2021) and policy optimization (Gong et al.,
2019; Liu et al., 2021b). STEER (Hallinan et al.,

2023a) and ASTRAPOP (Liu et al., 2024) combine
the two and achieve state-of-the-art performance
on text style transfer and authorship style transfer,
respectively.

In this work, we seek to advance the frontier
of text style transfer, drawing inspiration from the
optimization techniques developed in the era of sta-
tistical phrasal machine translation, in which the
lack of correlation between the log-linear model ob-
jective and the desired evaluation metric, typically
BLEU (Papineni et al., 2002), was observed (Och,
2003). Approaches to align! the two objectives
came to be known as tuning,” beginning with Och
(2003), and evolving into online variants (Chiang
et al., 2008), rank-based approaches (Hopkins and
May, 2011), batch-based approaches (Cherry and
Foster, 2012), and several others. Tuning methods
follow a generate-and-optimize pattern: a model
is used to generate multiple candidate hypotheses
per input, and then parameters are adjusted such
that the argmax according to the model score also
maximizes the evaluation metric. In this regard,
tuning methods resemble approaches taken in the
application of policy optimization algorithms, such
as PPO (Schulman et al., 2017), to generative lan-
guage modeling (Ouyang et al., 2022). More recent
algorithms, such as DPO (Rafailov et al., 2023)
and CPO (Xu et al., 2024a), which replace rein-
forcement learning (RL) in PPO with preference
optimization (PO), are reminiscent of the pairwise
ranking optimization approach to tuning (Hopkins
and May, 2011). Given this close relationship be-
tween these approaches, we can consider whether
other techniques developed to improve MT tuning
could be applied to optimization for style transfer.

In this work, we propose Style TrAnsfer with
Multi-iteration Preference optimization (STAMP),
a two-phase PO training framework, in which we

'not to be confused with word alignment.
“not to be confused with parameter fine-tuning.
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Figure 1: An overview of STAMP, in which we first train a unified style transfer model using supervised fine-tuning
on pseudo-parallel data generated from non-parallel data, and then further train the model using multi-iteration
preference optimization on preference pairs constructed with hope-and-fear sampling.

first use supervised fine-tuning to build a reference
model from pseudo-parallel data and then train the
reference model using PO. STAMP is similar to
STEER and ASTRAPOP at a high level but is en-
hanced with two techniques borrowed from MT
tuning and two modifications that further adapt it
for text style transfer. First, we include multiple
iterations of preference pair generation followed
by model optimization (Och, 2003), which has al-
ready been shown to be effective on other Seq2Seq
tasks such as mathematical and scientific reasoning
(Chen et al., 2024; Pang et al., 2024; Song et al.,
2024b; Yuan et al., 2024). Second, following the
hope-and-fear sampling in Chiang (2012), for PO,
we over-generate outputs using the reference model
and construct preference pairs using samples with
high model scores and extreme (high or low) task
objective scores, in order to avoid dangerous gen-
eration and encourage reachable good generation.
To improve the quality of the reference model and
the balance across the multiple training objectives,
we additionally design a new two-step end-to-end
pseudo-parallel data generation method and a dy-
namic reward aggregation method.

We evaluate our model on two popular text style
transfer datasets, Grammarly’s Yahoo Answers For-
mality Corpus (GYAFC) (Rao and Tetreault, 2018)
and the Corpus of Diverse Styles (CDS) (Krishna
et al., 2020). Extensive experiments show that our
model outperforms all state-of-the-art baselines on
both datasets in both in-domain and out-of-domain
evaluation, and demonstrates a higher training effi-
ciency than the strongest baseline.

Our main contributions are:

* We propose a multi-iteration contrastive pref-
erence optimization training framework with
hope-and-fear preference pair construction for
text style transfer.

* We design a new pseudo-parallel data gen-
eration strategy and a dynamic weighted re-
warded aggregation method to enhance the
training framework for text style transfer.

* With the enhancements, our training frame-
work produces style transfer models that
achieve state-of-the-art performance on two
popular text style transfer datasets.’

2 Methodology

In this section, we formalize the text style trans-
fer task and introduce our training framework,
STAMP.

2.1 Task Definition

Given a source text x and a desired target style
s, the goal of text style transfer is to generate
a fluent rewrite of x, denoted as x*, that has
the same meaning as x but is in style s. In this
work, we focus on high-resource text style transfer
in which we have access to a reasonable number
of texts* for each target style. Specifically, we
have a set of texts with style labels, denoted as
D = {(x1,81), ", (Xn, Sn) }, where x; and s; re-

3Code and models sufficient for a reproducibility study are
available at https://github.com/isi-nlp/STAMP.
“In this work, we assume at least 2000 texts per style.
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fer to the 7™ text and its style, respectively. For con-
venience, we adopt notations from Hallinan et al.
(2023a) and denote the fluency of a text x; as F(x;),
the meaning similarity between two texts x; and
x; as MS(x;, X;), and the target style strength of
a text x; w.r.t. a target style s as TSS(x;, s). Thus,
given D, we aim to build a text style transfer sys-
tem that maximizes three independent objectives:
F(x7%), MS(x,x %), and TSS(x %, 5).°

2.2 Framework Overview

STAMP is a preference optimization-based training
framework that contains two main stages, a super-
vised fine-tuning (SFT) stage and a multi-iteration
preference optimization (PO) stage. In the SFT
stage, we first generate a dataset Dy of end-to-end
pseudo-parallel style transfer pairs from the (non-
parallel) dataset D and then train a style transfer
model fspr on Dyr using supervised fine-tuning. In
the PO stage, we train a model initialized to fspr
using multi-iteration PO® to directly maximize the
three objectives, TSS, MS, and F, and obtain our
final transfer model fp,.

2.3 Supervised Fine-tuning

Due to a lack of parallel data, we adopt the tech-
nique described by Krishna et al. (2020), in which
style-oriented paraphrasing is used to generate
pseudo-parallel transfer data for each target style.
Specifically, we paraphrase the texts in D using a
general paraphraser fyar, similar to Krishna et al.
(2020) and Hallinan et al. (2023a). To ensure mean-
ing similarity preservation of the paraphrases, we
generate kpary paraphrases for each text x; € D and
select the one with the highest meaning similarity
to the original text, denoting it p,. We then obtain a
dataset of paraphrases Dpara = {P1,- - , P, }. For
each target style s, we train a Seq2Seq model f,’* 7
on{(p; = x;) | 0 <i<mands; = s} to maxi-
mize
Ix|

p(x|p) = Hp JIpx[<d) ()

where x[¢] and x[< 7] represent the i token in x and
tokens preceding the i" token in x, respectively.

Following Krishna et al. (2020), we can transfer
the style of a text x to a style s through

x %= inv (fpara( X)) 2

3For brevity, we omit the arguments where unambiguous.
%See § 3.4 for details on the choice of PO used here.
"inverse’ due to data provenance, c.f. (Krishna et al., 2020)

where x 7% is the transferred text. However, the
two-step generation breaks the gradient connection
between x and x"* which is needed in the PO stage
to maximize the meaning similarity between x and
x 7%, Therefore, we need an end-to-end pseudo-
parallel dataset Dyt to train a model that directly
transfers a source text to each target style with no
intermediate step.

To obtain Dy, we transfer the texts in D using
fpara and f; ¢ for each target style s. Specifically,
for each target style s, we transfer the texts in other
styles in D using Eq. 2 and obtain a dataset of style

transfer palrs Di* = {(xi = ti,s) | (X4,8) €
D and s; # s}, where t; = f>%(fpara(X;)) is a

transfer of x; in style s. To obtain high-quality
transferred texts, we generate kg transfers for each
source text and select the one with the highest
F - MS™s . TSS, where 7,3 > 1 is a temperature
hyperparameter incorporated into the MS term to
emphasize meaning similarity. We then construct
Dyt by combining D ;* for all target styles and
train an end-to-end style transfer model fsgr on the
combined data Dy to maximize

It|

Hp

Note that unlike Eq. 2, the probability in Eq. 3 is
also conditioned on s because we adopt the unified
model setting in (Hallinan et al., 2023a). That is,
we have a single transfer model for all target styles
and control the target style with control codes.

Ix,t<i,s) (3

2.4 Multi-iteration Preference Optimization

We further train the SFT model fspr from the pre-
vious stage with multi-iteration PO to directly opti-
mize the model on the style transfer objectives: F,
MS, and TSS. To apply PO (Rafailov et al., 2023;
Xu et al., 2024a) we first generate paired prefer-
ence data from a reference model f, . and then
train a model on this offline preference data in
a contrastive manner starting from the reference
model. Inspired by Och (2003) and recent stud-
ies in iterative PO, such as Yuan et al. (2024) and
Chen et al. (2024), we perform PO for multiple
iterations to improve over the offline-only training,
updating the reference model between iterations.
Specifically, in iteration ¢, we construct preference
dataset Df;o by transferring texts drawn from D,
using reference model f: ;. We use PO (Rafailov
et al., 2023; Xu et al., 2024a) to train a model ini-
tialized to f; to match the preferences in D}; we
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call the resulting model ff;o. We define frlef to be
fser and in all other cases we define fZ; to be foq".
We next detail how the preference pairs in Df,o are
constructed and the reward function used in this
process.

2.4.1 PO Data Generation

We construct the preference dataset from D us-
ing the hope-and-fear sampling strategy in Chiang
(2012), which can encourage the model to gener-
ate “reachable” outputs with high reward scores
and prevent the model from generating “reach-
able” outputs with low reward scores. While that
work used BLEU (Papineni et al., 2002) as a pref-
erence metric, we instead use our style transfer
reward R which is detailed in § 2.4.2. Specifi-
cally, for each style s, we generate kpo rewrites
of each text x; in D, whose initial style s; # s,
into style s and select the preference pair from
the rewrites based on both the reward scores R
and the model scores M of the rewrites, where
M is the average token-level probability w.r.t. f, .
We select the rewrite with the highest M™ + R
as the “winning” rewrite t}” and the rewrite with
the highest M™ — R as the “losing” rewrite® t.,
where T, is the temperature controlling the weight
of model score.” We then obtain a new dataset
Dpy = {(xi = (t¥,t),s) | (xi,8:) € D} for
each style s. Combining Dpy’ for all styles, we
finally obtain the PO dataset Dp,.

2.4.2 Reward Function

To directly maximize the three objectives, F, MS,
and, TSS, we use an aggregation of them as the
reward function R. The most straightforward ag-
gregation is to take the product of the three as in
Hallinan et al. (2023a). However, since the three
objectives are independent, the probability of gen-
erating samples that have high scores in all three ob-
jectives is very low. Our preliminary experiments
show that samples with high total rewards can also
have low single-objective scores, which naturally
results in preference pairs in which the “winning”
outputs have lower single-objective scores. We
refer to these as reversed single-objective scores.
When the percentage of reversed single-objective
scores is high, we observe a degradation in the

8also called “chosen” and “rejected” rewrites in PO litera-
ture (e.g., Rafailov et al., 2023).

°In practice, we find using model score does not benefit
performance, so we drop this term for STAMP, which reduces
the preference pair selection criteria to the sample with the
highest R and —R; a detailed comparison is shown in § 4.3.

corresponding objective after PO. To prevent the
degradation in any objective, we propose to use a
weighted product, which is given by

R = TSS® - MS” - FY 4)

where «a, (3, and y are temperature parameters.
We dynamically calculate «, 5, and ~y based on
the number of reversed single-objective scores in
the preference pairs for each iteration. For conve-
nience, we denote the number of reversed single-
objective scores for each objective as rrss, rms.,
and 7.1 We first set 5 = v = 1 and set a to be
the smallest positive integer such that rrss < 7ms
and rtss < rg. Then, we fix « and ~y and set (5 to
be the largest positive integer such that ryis > 71ss.
Finally, we fix o and 3 and set «y to be the largest
positive integer such that rg > r1ss and rg > 7us.
We set an upper bound 7.« to «, 3, and -y to pre-
vent R from leaning too much to any objective.

3 Experiments

We evaluate STAMP on two text style transfer
datasets in both in-domain and out-of-domain set-
tings and compare STAMP with the state-of-the-art
baseline approaches. In this section, we detail the
experimental setup and the model implementation.

3.1 Datasets

We use two style transfer datasets in this work: (1)
Corpus of Diverse Styles (CDS) (Krishna et al.,
2020), which contains non-parallel texts in 11 dif-
ferent styles, such as Shakespeare and English
Tweets, and (2) Grammarly’s Yahoo Answers
Formality Corpus (GYAFC) (Rao and Tetreault,
2018), which contains non-parallel formal and in-
formal texts for training and a small number of
parallel transfer pairs for tuning and test. In this
work, we only use non-parallel texts with style la-
bels for training, validation, and test.

To reduce computational costs, we use a subset
of each dataset. Specifically, we sample 2000 texts
per style for training, and 200 per style for valida-
tion. For CDS we sample 200 per style for test,
while for GYAFC we sample 1000 per style. When
constructing the end-to-end pseudo-parallel dataset
Dyt, for each target style, we sample 200 and 20
source texts from each of the other styles for train-
ing and validation, respectively. In the in-domain
testing, we transfer the test texts in each style to all

104155, Tms, and 7¢ are functions of ¢, 3, and 7, SO we
recalculate rs each time we change the value of «, (3, or 7.
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other styles in the same dataset and calculate the
total average scores and average scores grouped by
the target style. In the out-of-domain testing, we
transfer all test texts in each dataset to all styles in
the other dataset and calculate the same scores. We
elaborate on metric scores in § 4.1.

Besides the style transfer datasets, we also use a
paraphrase dataset, ParaNMT (Wieting and Gim-
pel, 2018) to train the paraphraser used for pseudo-
parallel data generation. Specifically, we use the
filtered version containing 75k paraphrase pairs in
Krishna et al. (2020).

3.2 Reward Models

We have a reward model for each of the three objec-
tives, TSS, MS, and F. For convenience, we use the
same notations to refer to the objective functions
and the corresponding reward models in this paper.
Target Style Strength (TSS) We use a single
style classifier, fj; with multiple binary sigmoid
classification heads to calculate the TSS for each
target style. We train f from the pre-trained
RoBERTa-large model (Liu et al., 2019b) on the
same training and validation splits. We use the
sigmoid scores from the classification heads as the
TSS scores which range from O to 1.

Meaning Similarity (MS) We assess the mean-
ing similarity between the source text and the trans-
ferred text using the cosine similarity between the
semantic embeddings of the two texts. The se-
mantic embeddings are calculated using SBERT!!
(Reimers and Gurevych, 2019). Technically, the
cosine similarity of two embeddings ranges from
-1 to 1, but negative cosine similarity is very rare
in our experiments since we always the similarity
between two paraphrases. Following Hallinan et al.
(2023a), we clip negative values to 0 to ensure that
MS ranges from O to 1.

Fluency (F) To measure the fluency of a text,
we use a text classifier!? trained on the Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019). The softmax score of the “grammatical”
class is used as the F score which also ranges from
Oto 1.

3.3 Baseline Approaches

We compare STAMP with 4 strong baselines: GPT
prompting (Reif et al., 2022), STRAP (Krishna

"'We use the variant with the best sentence embedding
performance, which is all-mpnet-base-v2.

12https://huggingface.co/cointegr‘ated/
roberta-large-cola-krishna2020

et al., 2020), STEER (Hallinan et al., 2023a), and
ASTRAPOP (Liu et al., 2024). The first two are
the most widely used training-free and SFT ap-
proaches, while the latter two are the two SOTA
models.

GPT prompting uses the zero- and few-shot ca-
pability of GPT-3.5-turbo to transfer texts to the
target style given just the name of the style and
5 target style exemplars (5-shot) or no exemplars
(zero-shot).

STRAP transfers a text by paraphrasing the text
with a diverse paraphraser followed by an inverse
paraphraser trained on pseudo-parallel transfer data
generated by the diverse paraphraser.

STEER generates pseudo-parallel data using an
expert-guided generation technique (Liu et al.,
2021a), and trains an end-to-end style transfer
model on the generated data using a reinforcement
learning algorithm (Lu et al., 2022).

ASTRAPOP adopts the same paraphrase-and-
inverse-paraphrase pipeline as STRAP but trains
the inverse paraphraser using policy optimization
or PO to directly maximize the target style strength.

3.4 Implementation Details

We implement all Seq2Seq models in STAMP, in-
cluding the paraphraser and all transfer models, as
decoder-only Seq2Seq models (Wolf et al., 2019)
based on pre-trained LLaMA-2-7B (Touvron et al.,
2023). The input and output are concatenated to-
gether with a separator token “[SEP].” For the uni-
fied transfer model fspr, we prepend a style code
for the target style (e.g., “[SHAKESPEARE]” and
“[FORMALY]”) to the input to control the output
style. We use CPO (Xu et al., 2024a) in the multi-
iteration PO stage. We choose CPO instead of the
most popular PO algorithm, DPO (Rafailov et al.,
2023), since CPO has been shown to be more ef-
ficient and effective (Xu et al., 2024a; Liu et al.,
2024). Also, compared to DPO, CPO has an ad-
ditional negative log-likelihood term that is found
to be significant for multi-iteration preference opti-
mization (Pang et al., 2024). We stop PO training
at the iteration where the validation TSS starts to
decrease and use the model from the previous iter-
ation as the final model. For fairness, all non-GPT
baselines are also implemented based on LLaMA-
2-7B and use the same paraphraser as STAMP.
We use gpt-3.5-turbo-0125 for all GPT-based ap-
proaches. See § B for hyperparameters, training
runtime, and GPT zero- and few-shot prompts.
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CDS GYAFC

Approach
TSS MS F Agg. TSS MS F Agg.
GPT zero-shot  0.189% 0.705* 0.803" 0.104* 0.672* 0.788* 0.968 0.489*
GPT 5-shot 0.199% 0.735" 0.805" 0.112¢ 0.667* 0.800" 0.965 0.495%
STRAP 0.382* 0.626% 0.759* 0.158* 0.618* 0.735% 0.913% 0.409*
STEER 0.6547 0.672* 0.905 0.395" 0.951 0.776* 0.930* 0.686"
ASTRAPOP 0.542% 0.600% 0.755% 0.221% 0.783% 0.734% 0.924% 0.525%
STAMP 0.746 0.801 0.801% 0.474 0.958 0.921 0.941% 0.828

Table 1: The automatic evaluation results on in-domain inputs on the CDS and the GYAFC datasets. The best and
the 2" best scores in each column are shown in bold and underline, respectively. “1” and *“}” indicate the score is
significantly (p < 0.05) worse than the best score and the top 2 scores in the same column, respectively, determined

by resampling t-test.

4 Results

In this section, we present the quantitative experi-
mental results and a qualitative case study. Because
of the limited resources, we conduct all experi-
ments for a single run and perform t-tests on the
results.!?

4.1 Automatic Evaluation

Automatic evaluation results on in-domain input
are shown in Table 1, using the same reward mod-
els introduced in § 3.2 to calculate TSS, MS, and F.
To assess the overall performance, we use a single
aggregate score Agg. = TSS-MS -F.'* According
to the aggregated score (Agg.), STAMP outper-
forms all baselines on the overall performance by a
large margin on both datasets. Looking at the per-
objective scores, STAMP has the best target style
strength (TSS) and meaning similarity (MS), but
its fluency (F) is relatively lower, and this disadvan-
tage is more obvious on the CDS dataset. STEER
has the best overall performance (Agg.) among
the baselines on both datasets, while the overall
performance of other baselines are mixed across
the two datasets. For the breakdown scores on each
subset in CDS and GYAFC, please see § A.4.

Table 2 shows automatic evaluation results of
the ‘out-of-domain’ style transfer experiments, in
which we transfer the texts in each dataset to the
styles in the other dataset, in order to determine
whether our results hold up when transferring be-
tween styles of different provenance. They do; the
out-of-domain results are generally consistent with
the in-domain results. The best model in each col-
umn in Table 2 is the same as Table 1, which is also

BSee § B.1 for details.

“Note that the average Agg. on the test set is the average

of Agg. for each transfer pair, not a simple product of average
TSS, MS, and F.

true for the second best model in most columns.
Also, STAMP still has the best TSS, MS, and
aggregated score (Agg.) among all approaches,
and STEER still has the best overall performance
(Agg.) among the baselines.

We also show that STAMP models are not over-
fitted on the training rewards by evaluating them
on alternative metrics unseen during training and
are robust to different hyperparameters by train-
ing the models with perturbed hyperparameters in
§ A.1 and § A.2. Besides, STAMP is more com-
putationally efficient than the strongest baseline,
STEER. When compared head-to-head using an
identical base model but varying only the core de-
sign choices (DExpert data generation and Quark
for STEER vs. STRAP data generation and it-
erative CPO for STAMP), we find that STAMP
reaches parity with STEER in 43% and 82% of the
training time on CDS and GYAFC, and converges
efficiently with stronger performance. '’

4.2 Human Evaluation

We conduct a human evaluation on the CDS dataset
for STAMP, the best-performing baseline (STEER),
and the best GPT-prompting baseline (GPT 5-shot)
to assess their performance on the three style trans-
fer objectives: TSS;, MS;,, and F;,.1° For TSS},
we show 5 exemplars for the style of the input text
and 5 exemplars for the target style, and ask the
annotator to select the style of the transferred text
out of these two styles. The sample gets a score of
1 if the target style is selected, and O otherwise. For
MS;, and Fj,, we ask whether the transferred text
has a similar meaning to the input text and whether
the transferred is fluent, respectively, and collect

15See § B.4 for details.
16We use the subscript h to distinguish human metrics from
automatic metrics.
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CDS GYFAC
Approach

TSS MS F Agg. TSS MS F Agg.
GPT zero-shot  0.246% 0.657* 0.855% 0.138* 0.672* 0.752" 0.909 0.455*
GPT 5-shot 0.289* 0.708" 0.868" 0.175% 0.722% 0.752" 0.902 0.486*
STRAP 0.426* 0.629* 0.810* 0.194% 0.692* 0.689* 0.852* 0.402*
STEER 0.6547 0.706" 0.927 0.426' 0.850" 0.734% 0.875 0.544"
ASTRAPOP 0.579% 0.606* 0.808* 0.259* 0.816" 0.685% 0.863% 0.479*
STAMP 0.787 0.816 0.8771 0.562 0.964 0.864 0.827¢ 0.687

Table 2: The automatic evaluation results on out-of-domain inputs on the CDS and the GYAFC datasets. The best
and the 2" best scores in each column are shown in bold and underline, respectively. “t” and “}” indicate the
score is significantly (p < 0.05) worse than the best score and the top 2 scores in the same column, respectively,

determined by resampling t-test.

Approach TSS MS, Fn Agg.,
GPT 5-shot 0.16 0.75 0.90 0.11
STEER 058 0.62 092 0.33
STAMP 079 0.75 0.80 0.47

Table 3: The human evaluation results on in-domain
inputs on the CDS datasets. The best and the 2™ best
scores in each column are shown in bold and underline,
respectively.

the answers using a three-level Likert scale ranging
from O to 2, which is then halved to fit in the O to 1
range. See § B.5 for the detailed instructions used
in the human evaluation. We randomly choose 5
samples from each of the 11 target styles for each
of the three models, which yields 165 samples in
total, and collect up to three annotations for each
sample. Seven volunteer NLP experts are recruited
for annotation.

We perform an independent sample t-test on
the annotation results and find statistically signifi-
cant differences in MS;, and F;, but not in TSSy,”
which is in line with our expectation since the style
classification has been found to be hard for un-
trained humans'® (Krishna et al., 2020; Hallinan
et al., 2023a). Therefore, following Krishna et al.
(2020) and Hallinan et al. (2023a), we calculate
the quasi aggregated score Agg.._, using TSS,!
MS;,, and Fj,. Formally, Agg. ; = TSS-MS,, -
Fj. As shown in Table 3, STAMP has the best
meaning similarity (MSy,) and overall performance
(Agg..), butits fluency is worse than STEER and

7See § A.3 for the raw human evaluation scores and the
result of the t-test.

18We still conduct human study for style because we set up
the task as a simpler verification task to see whether we can
get meaningful results.

Ywhich is calculated from the human study samples using
the automatic TSS metric.

GPT 5-shot transfer, which is consistent with the
automatic evaluation results.

4.3 Ablation Studies

In this section, we demonstrate the effects of our
four main contributions in STAMP: multi-iteration
PO, hope-and-fear sampling, weighted reward ag-
gregation, and end-to-end pseudo-parallel data gen-
eration.

Multi-iteration PO & Weighted R We show
the performance evolution of STAMP and STAMP
with unweighted R over the multi-iteration PO
training in Figure 2. In general, the overall per-
formance (Agg.) of both models keeps increas-
ing over the iterations, which indicates the effec-
tiveness of multi-iteration optimization. STAMP
with unweighted R performs slightly better than
STAMP, but it has a severe degradation in meaning
similarity (MS), and the scores in the three objec-
tives have a substantial difference after training.
In contrast, with the weighted reward aggregation,
STAMP shows a higher stability in all scores. Only
fluency (F) exhibits a slight decrease, and scores in
all three objectives converge to a similar value at
the end of the training.

Hope-and-fear Sampling The results of hope-
and-fear sampling ablation are shown in Table 4.
As mentioned in § 2.4.2, we do not use the model
score term in hope-and-fear sampling for prefer-
ence pair construction since it does not improve
the performance, which can be observed from the
“Tpm = 0.1” row in Table 4. The last three rows in
Table 4 show that both dropping over-generation
(kpo = 2) and using a random other sample (Ran-
dom t!) or the sample with the second highest re-
ward (High t') as the “losing” sample undermine
the overall performance of STAMP.
Pseudo-parallel Data Generation We demon-
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CDS GYAFC
Approach

TSS MS F Agg. TSS MS F Agg.
STAMP 0.746 0.801% 0.8017 0.474 0.958* 0.921" 0.941" 0.828
:m = 0.1 0.7207 0.796* 0.800" 0.454" 0.965 0.910% 0.943% 0.826
kpo = 2 0.745 0.688* 0.816 0411* 0.970 0.878* 0.947 0.804*
Random t' 0.6407 0.836 0.780* 0.412% 0.950* 0.924" 0.937 0.822
High t' 0592 0.826" 07967 0.384% 0.928%  0.936 0.932¢  0.810¢

Table 4: Hope-and-fear sampling ablations, evaluated automatically on in-domain inputs on the CDS and the
GYAFC datasets. The best and the 2" best scores in each column are shown in bold and underline, respectively.
“4” and “1” indicate the score is significantly (p < 0.05) worse than the best score and the top 2 scores in the same

column, respectively, determined by resampling t-test.

0.9
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Figure 2: The value of iterative CPO on performance
in STAMP and STAMP with unweighted R, shown on
the CDS dataset (test split). Iteration O refers to the SFT
model before PO.

strate the superiority of our two-step end-to-end
pseudo-parallel data generation method by com-
paring the STAMP SFT model, fspr, with the
best-performing baseline SFT style transfer model,
STRAP. The overall performance (Agg.) of the two
models is shown in Table 5. With our method, the
overall performance of fspr is much higher than
STRAP on both datasets, which provides a better
starting point for PO.

CDS GYAFC
STRAP 0.158 0.409
fsrr 0.264 0.657

Table 5: The overall performance (Agg.) of STRAP and
the STAMP SFT model (fsgr) on CDS and GYAFC.
The best score in each column is shown in bold.

4.4 Qualitative Case Study

We show an example from the CDS test set in Ta-
ble 6 as a case study. In this example, we transfer

a text in the style of music lyrics into the style
of Shakespeare using STAMP and all baseline ap-
proaches. STAMP (iter. 9) maximally preserves the
meaning of the original sentence and accurately re-
flects the target style using the words "’tis", "o’er",
and "That" with uppercase "T". Other approaches
either fail to generate strong target style indica-
tors or change the meaning of the original sen-
tence to some extent. Moreover, the example also
demonstrates that STAMP gradually improves the
model performance over the multi-iteration train-
ing. Specifically, STAMP (iter. 1) successfully re-
flects Shakespeare’s style by using the word "o’er"
but reverses the meaning of the original sentence.
STAMP (iter. 5) successfully captures the original
meaning but suffers from hallucination. The final
model, STAMP (iter. 9) fully preserves the orig-
inal meaning and demonstrates a stronger Shake-

spearean style.

5 Related Work

Text Style Transfer Due to the lack of parallel
style transfer data, only a limited number of studies
address this task as a supervised or semi-supervised
Seq2Seq task, which requires a certain amount of
parallel data for training and/or tuning (Zhu et al.,
2010; Rao and Tetreault, 2018; Wang et al., 2019;
Shang et al., 2019; Xu et al., 2019; Zhang et al.,
2020; Kim et al., 2022; Raheja et al., 2023). Al-
though these approaches work well when parallel
data is available, none generalize well to styles
with no parallel data. As a result, most works in
this area focus on unsupervised approaches that re-
quire only non-parallel data or even no data. These
works mainly approach the task via latent represen-
tation disentanglement and manipulation (Lample
et al., 2019; Liu et al., 2019a; John et al., 2019; Jin
et al., 2020), style-related pattern editing (Madaan
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Original I’m not sorry that it’s over

GPT zero-shot

I doth not lament the end that hath befallen us.

Now is the winter of our discontent Made glorious summer by this sun of York.

GPT 5-shot I doth not lament the ending of this tale.
STRAP I am not sorry That he is gone.
ASTRAPOP

STEER I do not regret that it is done.

STAMP (iter. 1)
STAMP (iter. 5)
STAMRP (iter. 9)

I am sorry that’s it is o’er.

I am not sorry That ’tis o’er.

I am not sorry that it is over, Nor sorry that I did not know it.

Table 6: A style transfer example from the style of music lyrics to the style of Shakespeare.

et al., 2020; Malmi et al., 2020; Reid and Zhong,
2021; Luo et al., 2023), pseudo-parallel transfer
data construction (Krishna et al., 2020; Riley et al.,
2021), policy optimization (Gong et al., 2019; Liu
et al., 2021b; Deng et al., 2022; Hallinan et al.,
2023a; Liu et al., 2024), and LLM zero- or few-
shot prompting (Reif et al., 2022; Suzgun et al.,
2022; Patel et al., 2023).

Among these approaches, two of the policy opti-
mization based approaches, STEER (Hallinan et al.,
2023a) and ASTRAPOP (Liu et al., 2024) achieve
the best performance on text style transfer and au-
thorship style transfer, respectively. Their high-
level training frameworks both combine pseudo-
parallel data generation and policy optimization,
but their specific approaches differ. For pseudo-
parallel data generation, STEER uses a paraphraser
guided by an expert and an anti-expert, while AS-
TRAPOP simply paraphrases the texts in the target
style and uses these paraphrase-to-target transfer
pairs. For policy optimization, STEER uses an RL
algorithm, Quark, while ASTRAPOP tries three
options: one RL algorithm, PPO (Schulman et al.,
2017), and two PO algorithms, DPO (Rafailov
et al., 2023) and CPO (Xu et al., 2024a). Our
framework shares the same high-level procedure
with STEER and ASTRAPOP, but we design a new
pseudo-parallel data generation method and also
enhance the PO stage with multi-iteration training,
weighted reward aggregation, and hope-and-fear
preference pair construction, These enhancements
dramatically improve the performance of STAMP
over STEER and ASTRAPOP.

Preference Optimization PO (Rafailov et al.,
2023; Song et al., 2024a; Xu et al., 2024a) is a
class of RL-free policy optimization algorithms
which has been broadly applied to train generative
language models on direct task objectives instead

of the language modeling loss and is closely re-
lated to (pre-neural) machine translation objective
‘tuning’ (Och, 2003; Chiang et al., 2008; Hopkins
and May, 2011). Rafailov et al. (2023) show that
PO is more stable and efficient than traditional RL-
based algorithms on sentiment generation and text
summarization (Rafailov et al., 2023). It has also
been successfully applied to many other NLP tasks,
such as training helpful and harmless assistants
(Song et al., 2024a), machine translation (Xu et al.,
2024a), and authorship style transfer (Liu et al.,
2024). Later works (Xiong et al., 2023; Xu et al.,
2024b; Yuan et al., 2024; Chen et al., 2024; Pang
et al., 2024; Song et al., 2024b) extend the offline
PO algorithms by performing the optimization for
multiple iterations and further improve the perfor-
mance of the models. In this work, we adopt the
multi-iteration PO for STAMP and enhance it with
weighted reward aggregation and hope-and-fear
preference pair construction, which improve the
effectiveness of multi-iteration PO training.

6 Conclusion

We present STAMP, a multi-iteration preference op-
timization training framework for text style transfer,
in which an end-to-end pseudo-parallel data gener-
ation pipeline provides a strong reference model, a
preference pair construction strategy improves the
effectiveness of PO training, and weighted reward
aggregation ensures balance across multiple ob-
jectives over multi-iteration training. We evaluate
STAMP on two commonly used text style transfer
datasets; demonstrating superior performance over
all state-of-the-art style transfer approaches.

Limitations

Although achieving the state-of-the-art perfor-
mance on two text style transfer datasets, STAMP
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has two main limitations. First, we observe rep-
etitions and hallucinations in some transferred
texts. The potential reason is that PO training in-
creases the peakiness of the model, which means
the probability of generating the tokens that are
frequent in the target style increases dispropor-
tionately (Choshen et al., 2020; Kiegeland and
Kreutzer, 2021). The occurrence of repetitions and
hallucinations also indicates that our reward model
cannot fully capture all aspects of the desired ob-
jectives. Two possible solutions are developing PO
algorithms that are less vulnerable to the increased
peakiness and developing better reward models.
These are two promising directions for future stud-
ies but are out of the scope of the current work
which focuses on the multi-iteration extension of
existing preference optimization algorithms and the
strategies for preference pair construction.

Second, as discussed in § 4.3, the weighted re-
ward aggregation method is effective on the CDS
dataset but is not very useful on the GYAFC dataset
because formality transfer is a relatively easier task,
and it is more likely to generate high-quality sam-
ples with balanced single-objective scores. It could
be useful to add a control mechanism to determine
when using the weighted aggregation is beneficial
to prevent overbalanced single-objective scores on
easy tasks.

Ethical Considerations

As a general text style transfer framework, STAMP
can transfer texts to any target style given an ade-
quate amount of non-parallel data, which means it
can potentially be used to generate unethical texts
such as transferring normal texts into an offensive
or profane style. Moreover, although STAMP is
not specifically designed for authorship transfer, it
can still serve that purpose by transferring the texts
into the style of a particular author, which can be
unethical if used without authorization. However,
privatization of an author’s style can also be used
to enable oppressed people to communicate freely
without the fear of recrimination. In any case, as
we and others show, the state of the art of style
transfer is not yet advanced for either privacy or
mimicry to be a significant concern in a deployed
system. Our work is strictly intended for research
and personal use on public or authorized data.
Some texts in the datasets used in this work
(though collected and released elsewhere) contain
words or ideas that may cause harm to others. We

do not generally filter out those texts, so that we
may maximally preserve the characteristics of dif-
ferent styles. However, for human studies, we
remove all texts with personal identifiable infor-
mation (PII) to ensure privacy and remove texts
that contain profane language to minimize harm
to human subjects. We exclude these texts in-
stead of masking out PII or profane tokens, since
masks may influence annotators’ judgments regard-
ing meaning similarity and fluency. The protocols
of our human studies have been approved by an
institutional review board.
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A More Experimental Results

A.1 Alternative Automatic Evaluation

To show that the models trained with STAMP are
not overfitted on the rewards used during training,
we evaluate all models on a set of alternative met-
rics. Specifically, for TSS, we train a style classi-
fier on the same data using a different base model,
BERT-base-cased (Devlin et al., 2019); for MS, we
use a different semantic similarity model MIS?’
(Babakov et al., 2022); for F, we use a different off-
the-shelf classifier?! trained on the CoLA dataset
(Warstadt et al., 2019).

The results are shown in Table 7, Table 8, and
Table 9. In most cases, the alternative metrics and
the main metrics agree on the top two models. Al-
though several disagreements exist on the individ-
ual metrics, both sets of metrics agree that STAMP
models have the best overall performance (highest
aggregated score).

A.2 Perturbed Hyperparameters

Although the STAMP training pipeline contains
multiple steps of model training and data gener-
ation, it is robust to different datasets and com-

20https://huggingface.co/s-nlp/Mutual_
Implication_Score

21https://huggingface.co/textattack/
distilbert-base-cased-ColLA

monly used hyperparameters. In Table 1 and Ta-
ble 2, we show that, using the same set of hyper-
parameters, STAMP works well on two different
datasets for both in-domain and out-of-domain in-
puts, which confirms STAMP’s generalizability to
different datasets without further hyperparameter
tuning. Furthermore, we train STAMP models on
the two datasets with perturbed hyperparameters.
Specifically, for all SFT components, we decrease
the learning rate from Se-5 to 2e-5 and double the
batch size; for CPO, we double the learning rate
and halve the batch size; for data generation, we
change the decoding temperature for D, _,; and
D,_,; t0 0.7 and 0.5, respectively. The results in
Table 7, Table 8, and Table 9 show that the STAMP
models trained with the perturbed hyperparameters
have slightly different individual metric scores but
they consistently demonstrate better overall perfor-
mance (aggregated score) than all baseline models.

A.3 More Human Evaluation Results

The raw scores from the human evaluation and the
result of the t-test are shown in Table 10. No signifi-
cant difference is found between any model pairs in
TSS;,?2, but MS), and F}, are generally consistent
with the automatic evaluation results. Specifically,
STAMP and GPT 5-shot transfer are significantly
better than STEER in meaning similarity (MS), and
STEER and GPT 5-shot transfer are significantly
better than STAMP in fluency (F).

A.4 Subsets Automatic Evaluation Scores

The fine-grained automatic evaluation scores on
each subset in CDS and GYAFC are shown in Ta-
ble 11 to Table 16 and Table 17 to Table 22, respec-
tively.

B More Implementation Details

B.1 Statistical Significance Test

We conduct a resampling paired t-test for the auto-
matic evaluation results and an independent t-test
for the human evaluation results. For the resam-
pling paired t-test, we randomly select 10 subsets
of 100 samples from the test set and perform a
paired t-test on the mean scores of the subsets be-
tween each pair of models. For the independent
t-test, we use all available samples from the human
study without resampling.

Zwhich is expected since style classification is difficult
for human annotators (Krishna et al., 2020; Hallinan et al.,
2023a).
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CDS GYAFC
Approach TSS MS F TSS MS F
Main Alt. Main Alt. Main Alt. Main Alt. Main Alt. Main Alt.

GPT zero-shot 0.189 0.181 0.705 0.763 0.803 0.721 0.672 0.674 0.788 0.898 0.968 0.929
GPT 5-shot 0.199 0.197 0.735 0.781 0.805 0.748 0.667 0.669 0.800 0.896 0.965 0.923
STRAP 0.382 0.361 0.626 0.530 0.759 0.757 0.618 0.627 0.735 0.761 0913 0.877
STEER 0.654 0.570 0.672 0.602 0.905 0.897 0.951 0.929 0.776 0.821 0.930 0.932
ASTRAPOP 0.542 0.513 0.600 0.498 0.755 0.737 0.783 0.788 0.734 0.767 0.924 0.872
STAMP 0.746 0.665 0.801 0.754 0.801 0.764 0.958 0.922 0.921 0.935 0.941 0.906
STAMP pert. 0.699 0.644 0.821 0.777 0.829 0.771 0.957 0.934 0.930 0.938 0.948 0.886

Table 7: Main vs. alternative TSS, MS, and F scores on in-domain inputs on the CDS and the GYAFC datasets.
STAMP pert. refers to the STAMP model trained with perturbed hyperparameters. The best and the 2" best scores
in each column are shown in bold and underline, respectively.

CDS GYAFC
Approach TSS MS F TSS MS F
Main Alt. Main Alt. Main Alt. Main Alt. Main Alt. Main Alt.

GPT zero-shot 0.246 0.227 0.657 0.818 0.855 0.777 0.672 0.663 0.752 0.816 0.909 0.895
GPT 5-shot 0.289 0.276 0.708 0.839 0.868 0.801 0.722 0.711 0.752 0.815 0.902 0.882
STRAP 0.426 0.413 0.629 0.624 0.810 0.798 0.692 0.690 0.689 0.642 0.852 0.849
STEER 0.654 0.589 0.706 0.741 0.927 0.904 0.850 0.822 0.734 0.714 0.875 0.899
ASTRAPOP 0.579 0.557 0.606 0.602 0.808 0.778 0.816 0.809 0.685 0.648 0.863 0.836
STAMP 0.787 0.711 0.816 0.840 0.877 0.825 0.964 0.917 0.864 0.853 0.827 0.814
STAMP pert. 0.695 0.647 0.861 0.873 0.903 0.821 0.964 0.923 0.870 0.860 0.829 0.816

Table 8: Main vs. alternative TSS, MS, and F scores on out-of-domain inputs on the CDS and the GYAFC datasets.
STAMP pert. refers to the STAMP model trained with perturbed hyperparameters. The best and the 2™ best scores
in each column are shown in bold and underline, respectively.

CDS GYAFC

Approach In-domain Out-of-domain In-domain Out-of-domain

Main Alt. Main Alt. Main Alt. Main Alt.
GPT zero-shot 0.104 0.095 0.138 0.139 0.489 0.554 0.455 0.486
GPT 5-shot 0.112 0.108 0.175 0.180 0.495 0.543 0.486 0.511
STRAP 0.158 0.127 0.194 0.187 0.409 0.412 0.402 0.375
STEER 0.395 0.304 0.426 0.392 0.686 0.711 0.544 0.527
ASTRAPOP 0.221 0.173 0.259 0.244 0.525 0.521 0.479 0.435
STAMP 0.474 0.379 0.562 0.488 0.828 0.780 0.687 0.637
STAMP pert. 0.469 0.378 0.538 0.458 0.842 0.773 0.693 0.644

Table 9: Main vs. alternative aggregated scores on the CDS and the GYAFC datasets. STAMP pert. refers to the
STAMP model trained with perturbed hyperparameters. The best and the 2" best scores in each column are shown

in bold and underline, respectively.

B.2 Hyperparameters

We sample same-sized training and validation sub-
sets for CDS and GYAFC, and use the same hyper-
parameters to train STAMP on the two datasets to
reduce the cost for more hyperparameter searching.
We list all hyperparameters for STAMP in Table 23,
Table 24, Table 25, Table 31, and Table 32.

B.3 GPT prompt templates

We elaborate on the prompts used for GPT zero-
and 5-shot style transfer on CDS and GYAFC in
Table 26 and Table 27, respectively.

B.4 Hardware and Runtime

We train all components of STAMP using Nvidia
A40-48GB GPUs. The number of GPUs and time
used to train each model on each dataset are shown
in Table 28. Furthermore, we calculate the total
training time including SFT, CPO, and all data gen-
eration processes for STAMP and the strongest
baseline STEER. The results are shown in Ta-
ble 33. In general, STAMP is slower than STEER
on GYAFC but faster on CDS. However, to en-
sure fairness, we compare STEER’s runtime with
the runtime required for STAMP to outperform
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Approach TSS;, MS, F;,

GPT 5-shot 059 148 1.79
STEER 0.69 1.24% 1.84
STAMP 064 148 1.57¢

Table 10: Raw human evaluation scores on in-domain
inputs on the CDS datasets. The best and 2™ best scores
in each column are shown in bold and underline, respec-
tively. “1” indicates a statistically significant difference
(p < 0.05) between the top two models determined by
independent sample t-test. No significant difference is
found in any other model pairs.

TSS MS F Agg.

AAE Tweets 0.215 0.689 0.680 0.094
Bible 0.181 0.688 0.885 0.097
1810-1830 English  0.291 0.713  0.786  0.166
1890-1910 English ~ 0.140  0.731 0.787 0.089
1990-2010 English ~ 0.044  0.739 0.771 0.030
James Joyce 0.059 0.705 0.843 0.032
Lyrics 0.263 0.700 0.803 0.138
Romantic Poetry 0.119 0.604 0.848 0.050
Shakespeare 0.184 0.699 0.767 0.080
Switchboard 0.003 0.777 0.817 0.002
English Tweets 0.584 0.709 0.845 0.363
Overall 0.189 0.705 0.803 0.104

Table 11: The automatic evaluation results for GPT
zero-shot on in-domain inputs on all subsets in CDS.

STEER and find that STAMP can achieve better
performance than STEER in a much shorter time
on both datasets (STEER vs. STAMP op. in Ta-
ble 33), which indicates that STAMP is a more
efficient training framework than STEER.

B.5 Human Evaluation Instructions

The instructions used in the human evaluation for
all three objectives are shown in Table 30 including
the questions asked and the detailed explanation
for each level in the Likert scale.

C Scientific Artifacts

C.1 Use of Existing Artifacts

The existing artifacts used in this work and their
licenses are listed in Table 29. Our use of the ex-
isting artifacts is consistent with their intended use
specificed by their licenses.

C.2 Created Artifacts

We create a new text style transfer training frame-
work, STAMP, and release the code under the MIT
license. Considering ethical implications, STAMP

TSS  MS F  Ag

AAE Tweets 0.297 0.711 0.649 0.126
Bible 0.166 0.689 0.865 0.086
1810-1830 English  0.249  0.742 0.815 0.154
1890-1910 English  0.154 0.784 0.819 0.106
1990-2010 English ~ 0.181 0.753 0.875 0.130
James Joyce 0.061 0.748 0.819 0.034
Lyrics 0.256 0.738 0.808 0.138
Romantic Poetry 0.118 0.639 0.844 0.047
Shakespeare 0.169 0.704 0.794 0.077
Switchboard 0.179 0.829 0.774 0.114
English Tweets 0.355 0.749 0.797 0.218
Overall 0.199 0.735 0.805 0.112

Table 12: The automatic evaluation results for GPT 5-
shot on in-domain inputs on all subsets in CDS.

TSS  MS F  Age

AAE Tweets 0.248 0.670 0.696 0.094
Bible 0482 0.373 0.811 0.107
1810-1830 English ~ 0.255 0.674 0.806 0.135
1890-1910 English  0.203 0.686 0.850 0.123
1990-2010 English  0.263  0.689 0.881 0.166
James Joyce 0.376  0.671 0.747 0.175
Lyrics 0459 0.668 0.791 0.233
Romantic Poetry 0.558 0.607 0.623 0.177
Shakespeare 0421 0.508 0.680 0.112
Switchboard 0.713  0.659 0.657 0.293
English Tweets 0.223 0.676 0.810 0.123
Overall 0.382 0.626 0.759 0.158

Table 13: The automatic evaluation results for STRAP
on in-domain inputs on all subsets in CDS.

TSS MS F Agg.

AAE Tweets 0.651 0.665 0.908 0.387
Bible 0.496 0.597 0901 0.248
1810-1830 English  0.642  0.688 0.884 0.389
1890-1910 English  0.396  0.675 0.929 0.252
1990-2010 English ~ 0.945  0.683  0.937  0.606
James Joyce 0.671 0.712 0.882 0415
Lyrics 0.704 0.673 0915 0429
Romantic Poetry 0.725 0.675 0.889 0.431
Shakespeare 0.366 0.683 0.868 0.203
Switchboard 0902 0.664 0.909 0.543
English Tweets 0.700 0.675 0.933 0.439
Overall 0.654 0.672 0905 0.395

Table 14: The automatic evaluation results for STEER
on in-domain inputs on all subsets in CDS.
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TSS MS F Agg. TSS MS F Agg.
AAE Tweets 0431 0.651 0.648 0.164 Formal 0.972 0.734 0939 0.673
Bible 0.736  0.273 0.793 0.137 Informal 0.931 0.817 0921 0.699
1810-1830 English  0.401  0.659 0.823 0.212
1890-1910 English 0263  0.679 0.879  0.159 Overall 0951 0.776  0.930  0.686
1990-2010 English  0.508 0.684 0.897 0.316
James Joyce 0.472  0.668 0.754 0.224 Table 20: The automatic evaluation results for STEER
Lyrics 0.628 0.637 0.820 0317 on in-domain inputs on all subsets in GYAFC.
Romantic Poetry 0.807 0.595 0.583 0.266
Shakespeare 0.602 0460 0.636 0.152
Switchboard 0.837 0.625 0.656 0.334 TSS MS F Agg.
English Tweets 0.275 0.673 0.810 0.153
Formal 0918 0.717 0.950 0.627
Overall 0.542 0600 0.755 0.221 Informal 0.648 0750 0.897 0.423
Table 15: The automatic evaluation results for AS- Overall 0783 0.734 0.924 0.525
TRAPOP on in-domain inputs on all subsets in CDS. . .
Table 21: The automatic evaluation results for AS-
TRAPOP on in-domain inputs on all subsets in GYAFC.
TSS MS F Agg.
Bible 0.643 0.640 0.830 0.312 i
1810-1830 English  0.764  0.799  0.807  0.490 Formal 0.963 0.858 0953 0.788
1890-1910 English  0.439 0.812 0.875 0.311 Informal 0953 0984 0928 0.870
1990-2010 English ~ 0.920 0.819 0.873  0.660
James Joyce 0.844 0.859 0.825 0.596 Overall  0.958 0921 0941 0.828
Lyrics 0.545 0.806 0.815 0.357
Romantic Poetry 0.776  0.806  0.766  0.470 Table 22: The automatic evaluation results for STAMP
Shakespeare 0.740 0.792 0.686 0.392 o o :
Switchboard 0920 0811 0721 0534 on in-domain inputs on all subsets in GYAFC.
English Tweets 0.810 0.784 0.831 0.529
Overall 0746 0.801 0.801 0.474 Parameter fas  fpara  foot  fsot
learning rate S5e-5 S5e-5 S5e-5 Se-5

Table 16: The automatic evaluation results for STAMP
on in-domain inputs on all subsets in CDS.

batch size 32 32 8 16

# epochs 6 10 6 12
TSS MS F Agg. o .
Table 23: Training hyperparameters for all supervised
Formal 0975 0.725 0.962 0.680 fine-tuned models.
Informal 0.368 0.851 0.974 0.298
Overall 0.672 0.788 0.968 0.489
Parameter fro
Table 17: The automatic evaluation results for GPT learning rate 2e-6
zero-shot on in-domain inputs on all subsets in GYAFC. B 0.1
batch size 32
Formal 0.974 0.745 0.959 0.696 kpo 10
Informal 0.360 0.855 0.971 0.293 Niter 10
Overall 0.667 0.800 0.965 0.495

Table 24: Training hyperparameters for iterative prefer-

Table 18: The automatic evaluation results for GPT 5-
shot on in-domain inputs on all subsets in GYAFC.

ence optimization.

Parameter
TSS MS F Agg.
Formal 0799 0.722 0931 0535 target modules 9q_proj, V_proj
Informal 0438 0.750 0.896 0.283 rank 16
Overall  0.618 0736 0913 0.409 a 32
dropout 0.05

Table 19: The automatic evaluation results for STRAP
on in-domain inputs on all subsets in GYAFC.
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Table 25: LoRA Hyperparameters.



Rewrite the following sentence into the style of [target style].
Zero-shot Original Sentence: [input text]
Rewritten Sentence:

Here are some examples of sentences in the style of [target style]:
[example 1]

5-shot [example 5]
Rewrite the following sentence into the style of [target style].
Original Sentence: [input text]
Rewritten Sentence:

Table 26: GPT zero- and 5-shot prompts for style transfer on CDS.

Rewrite the following sentence in a(n) (in)formal style.
Zero-shot Original Sentence: [input text]
Rewritten Sentence:

Here are some examples of sentences in a(n) (in)formal style:
[example 1]

5-shot [example 5]
Rewrite the following sentence in a(n) (in)formal style.
Original Sentence: [input text]
Rewritten Sentence:

Table 27: GPT zero- and 5-shot prompts for style transfer on GYAFC.

ParaNMT CDS GYAFC

fpara fcls fpﬁt fs~>t fPO fcls fp~>t fs%t fPO

# GPUs (A40s) X2 X2 X2 X2 x4 X2 x2 X2 X2
Times (hrs) 34 04 1.1 1.0 352 01 02 02 74

Table 28: Training hardware and runtime for each component in STAMP on CDS and GYAFC.

Type Name License
Dataset CDS: Corpus of Diverse Styles MIT
GYAFC: Grammarly’s Yahoo Answers Formality Corpus Custom (research-only)
LLaMA-2-7B (6.7B) Meta
GPT-3.5-turbo-0125 (-) MIT
Model  RoBERTa-large (355M) MIT
RoBERTa-large CoLLA Classifier (355M) MIT
SBERT all-mpnet-base-v2 (109M) Apache-2.0
Transformers Apache-2.0
. PEFT Apache-2.0
Library TRL Apache-2.0
Sentence Transformers Apache-2.0

Table 29: Datasets, models, and software libraries used in this work. The number of parameters of each model is
indicated in the parentheses next to the model name.
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https://github.com/martiansideofthemoon/style-transfer-paraphrase
https://github.com/raosudha89/GYAFC-corpus
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/trl
https://github.com/UKPLab/sentence-transformers

TSS;,  Question Based on the examples above, what is the style of the following text?
Similar Most of the meaning (75% or more) of the two passages is the same.
Somewhat Similar Large portions (50-75%) of the passages are the same, but there are

MS;, significant sections that differ or are present in only one passage.

Not Similar Only small portions (less than 50%) of the passages are the same.

Question How similar are the following two texts?

Fluent Very clear, grammatical english (need not be formal); the meaning of the
sentence is well understood. A small number of errors are ok.

Somewhat Fluent ~ There are grammatical errors, possibly numerous, but the meaning can

Fn be understood.

Not Fluent The grammatical errors make it very difficult to understand the meaning.
Question How fluent is the following text?
Table 30: Instructions used in the human evaluation.
Parameter Dyt Dssi Dpo
top p 1.0 1.0 1.0
temperature 0.5 0.7 1.0
kpara/sft/po 20 90 10
Ttext M S/max 8 6

Table 31: Generation hyperparameters for dataset con-

struction.
Parameter Evaluation
topp 1.0
temperature 0.7

Table 32: Generation hyperparameters for dataset evalu-

ation.
CDS GYAFC
STEER 52.0 hrs x 4 A40s 7.2 hrs x 2 A40s
STAMP op.  22.2 hrs x 4 A40s 5.9 hrs x 2 A40s
STAMP 432 hrs x 4 A40s  10.8 hrs x 2 A40s

Table 33: Total runtime (including dataset genera-
tion and training) for our reproduction of STEER and
STAMP on CDS and GYAFC using identical models
and architecture. STAMP op. indicates the training run-
time point at which STAMP outperforms STEER.

is only intended for research purposes, which is
compatible with the original access conditions of
all existing artifacts used in STAMP.
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