
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 255–273

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

PRACTIQ: A Practical Conversational text-to-SQL dataset with
Ambiguous and Unanswerable Queries

Mingwen Dong†∗ Nischal Ashok Kumar‡*

Yiqun Hu†, Anuj Chauhan†, Chung-Wei Hang†, Shuaichen Chang†, Lin Pan†,
Wuwei Lan†, Henghui Zhu†, Jiarong Jiang†, Patrick Ng†, Zhiguo Wang†

‡University of Massachusetts at Amherst, †Amazon Web Services
nashokkumar@cs.umass.edu, {mingwd, jiarongj, zhiguow}@amazon.com

Abstract

Previous text-to-SQL datasets and systems
have primarily focused on user questions with
clear intentions that can be answered. How-
ever, real user questions can often be ambigu-
ous with multiple interpretations or unanswer-
able due to a lack of relevant data. In this work,
we construct a practical conversational text-to-
SQL dataset called PRACTIQ, consisting of am-
biguous and unanswerable questions inspired
by real-world user questions. We first identi-
fied four categories of ambiguous questions and
four categories of unanswerable questions by
studying existing text-to-SQL datasets. Then,
we generate conversations with four turns: the
initial user question, an assistant response seek-
ing clarification, the user’s clarification, and
the assistant’s clarified SQL response with the
natural language explanation of the execution
results. For some ambiguous queries, we also
directly generate helpful SQL responses, that
consider multiple aspects of ambiguity, instead
of requesting user clarification. To benchmark
the performance on ambiguous, unanswerable,
and answerable questions, we implemented
large language model (LLM)-based baselines
using various LLMs. Our approach involves
two steps: question category classification and
clarification SQL prediction. Our experiments
reveal that state-of-the-art systems struggle to
handle ambiguous and unanswerable questions
effectively. We will release our code for data
generation and experiments on GitHub1.

1 Introduction

Text-to-SQL systems aim to convert natural lan-
guage questions into SQL queries that can be used
to query a database. The systems serve as an inter-
face between users and databases to allow the users

*Co-first authors with equal contribution. Work done while
Nischal Ashok Kumar was an intern at AWS.

1https://github.com/amazon-science/
conversational-ambiguous-unanswerable-text2sql

access to information from the databases through
their natural language questions. The advent of
Large Language Models (LLMs) (Bubeck et al.,
2023) has significantly enhanced the capabilities of
text-to-SQL systems, such as DIN-SQL (Pourreza
and Rafiei, 2024), achieving state-of-the-art (SoTA)
performance on standard benchmarks2, including
Spider (Yu et al., 2018) and BIRD (Li et al., 2024).

Although the SoTA text-to-SQL systems per-
form well on clean benchmarks that contain only
answerable user queries, they are still not well-
equipped to deal with practical real-world data
which have ambiguous or unanswerable questions
(Wang et al., 2023a). The poor performance of
SoTA text-to-SQL systems is primarily due to the
unavailability of practical text-to-SQL data that
can be used for training (Wang et al., 2023a). Al-
though previous research finds that a large ratio of
user questions are unanswerable, these are often ex-
cluded in the previous datasets as addressing them
requires more than SQL annotations (Lee et al.,
2021). To bridge this gap, we introduce PRACTIQ
which is a practical conversational text-to-SQL
dataset with ambiguous and unanswerable queries.
As illustrated in Table 2, a question is ambiguous
if it has multiple valid interpretations given the
database schema and the question is unanswerable
if the corresponding database does not contain the
data that the question is asking for. In the real
world, given a user question, a text-to-SQL assis-
tant has to first determine whether the question is
answerable, ambiguous, or unanswerable to decide
whether to ask for clarification questions or respond
with the correct SQL.

We begin by examining existing text-to-SQL
datasets (Yu et al., 2018; Li et al., 2024; Yu et al.,
2019a) and identify four ambiguous and four unan-
swerable categories inspired by real-world practical
user questions. Subsequently, we generate ambigu-

2As of August 2023
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Table Visitor

ID, Name,
Age

Text-to-SQL data

U: Find the name and age of
visitors whose ID starts with 'B'

A: SELECT Name, Age from
Visitors WHERE ID LIKE 'B%';

Age

Age_at_Entry Current_Age

LLM

Table Visitor

ID, Name,
Age_at_Entry,
Current_Age

Text-to-SQL data

U: Find the name and age of
visitors whose ID starts with 'B'

A: I find two matching columns
for Age - Age_at_Entry and
Current_age

U: <Fill Here>

A: SELECT Name,
Age_at_Entry from Visitors
WHERE ID LIKE 'B%';

Text-to-SQL data

U: Find the name and age of
visitors whose ID starts with 'B'

A: I find two matching columns
for Age - Age_at_Entry and
Current_age

U: I am interested in the age
they entered.

A: SELECT Name,
Age_at_Entry from Visitors
WHERE ID LIKE 'B%';

Text-to-SQL data

U: Find the name and age of visitors
whose ID starts with 'B'

A: I find two matching columns for Age
- Age_at_Entry and Current_age

U: I am interested in the age they
entered.

A: SELECT Name, Age_at_Entry from
Visitors WHERE ID LIKE 'B%';

A: [('Jack', 25), ('Jane', 24)]

Text-to-SQL data

U: Find the name and age of visitors whose ID starts with
'B'

A: For the visitor's age, would you like their age at entry or
their current age?

U: I am interested in the age they entered.

A: SELECT Name, Age_at_Entry from Visitors WHERE ID
LIKE 'B%';

A: [('Jack', 25), ('Jane', 24)]

A: The name and age at entry of visitors whose ID starts
with 'B' are Jack with age 25 and Jane with age 24.

Stage 1 - Database
Modification

Stage 2 - Reverse
Generation

Stage 3 - Refine
Conversation

SQL
Engine LLM

Text-to-SQL data

U: Find the name and age of
visitors whose ID starts with 'B'

A: SELECT Name,
Age_at_Entry, Current_Age
from Visitors WHERE ID LIKE
'B%';

Stage 2 -Helpful
SQL Generation

Text-to-SQL data

U: Find the name and age of visitors
whose ID starts with 'B'

A: SELECT Name, Age_at_Entry,
Current_Age from Visitors WHERE ID
LIKE 'B%';

A: [('Jack', 25, 28), ('Jane', 24, 27)]

Text-to-SQL data

U: Find the name and age of visitors whose ID starts with 'B'

A: SELECT Name, Age_at_Entry, Current_Age from Visitors
WHERE ID LIKE 'B%';

A: [('Jack', 25, 28), ('Jane', 24, 27)]

A: The name, age at entry and current age of visitors whose
ID starts with 'B' are Jack with age at entry 25 and current
age 28 and Jane with age at entry 24 and current age 27.Stage 3 - Refine

Conversation

Modified Schema

SQL
Engine

LLM

LLM

Figure 1: An example of our conversational dataset construction consists of three stages: database modification,
SQL modification along with clarification response generation, and refining the conversation. The top box depicts
our data construction for an ambiguous question that requires clarification questions, while the bottom box illustrates
an ambiguous question with direct helpful SQL responses. Here ‘U’ refers to a user and ‘A’ refers to a text-to-SQL
assistant.

ous and unanswerable examples corresponding to
these categories by parsing the SQLs and modify-
ing the databases (Spider 3 is used in the current
work, but the framework can be easily adapted
to other text-to-SQL datasets). We then leverage
an LLM to convert the data into conversations be-
tween the user and a text-to-SQL assistant that in-
cludes user initial questions, assistant clarification
questions, user clarification responses, assistant
SQL responses, SQL execution results, and natural
language explanations of the execution results (as
shown in Figure 1). In addition to having conver-
sations where the assistant asks for clarification
questions, we also generated more helpful SQL
responses that included the results of all possible
responses for some ambiguous question categories.
To assess the quality of our generated dataset we
define annotation criteria for two tasks, question
category classification, and conversation quality
evaluation, and conduct human annotation on the
generated data to show that our dataset is of high
quality. Finally, we propose prompt-based base-
lines to benchmark our dataset on the text-to-SQL
generation task, which involves two tasks, classi-
fying the category of the user question, and then
generating the clarification SQL based on the user
question. We experiment with several SoTA LLMs
and show that the current text-to-SQL systems still

3We only used “train_spider.json” and “dev.json” from
Spider in our dataset construction and related experiments.
We did NOT use any data from “train_others.json” or “yelp”.

need improvements on real-world queries that in-
clude ambiguous or unanswerable questions.

Our contributions can be summarized as follows:

• We study existing text-to-SQL datasets and iden-
tify four ambiguous and four unanswerable ques-
tion categories inspired by real-world user ques-
tions. We implemented a framework and pro-
grammatically generated PRACTIQ, a compre-
hensive and fine-grained ambiguous and unan-
swerable text-to-SQL dataset consisting of 2800
conversations.

• We extend the ambiguous/unanswerable data into
conversations between a user and an assistant.
The conversation typically includes a user ini-
tial question, a helpful assistant response seeking
user clarification, a user clarification response,
the assistant SQL response, SQL execution re-
sults, and a natural language explanation.

• To the best of our knowledge, our work is the first
to study text-to-SQL systems when user queries
can be answerable, ambiguous, or unanswerable
in a conversational setting. We benchmark vari-
ous SoTA LLMs on PRACTIQ on two sub-tasks:
question category classification, and clarification
SQL prediction. Our results show that the am-
biguous and unanswerable questions are chal-
lenging even for methods leveraging SoTA LLMs
indicating the need to improve LLMs’ handling
of real-world practical text-to-SQL data.
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Table 1: Table showing the comparison of our work with existing datasets on ambiguity and unanswerablility in
text-to-SQL task. Dsignifies that the category is present in the dataset. ✗ signifies that the category is not present in
the dataset. * signifies that the category is defined and data is generated, but ambiguities are defined from a different
perspective.

Ambiguous
SELECT
Column

Ambig. Val-
ues Within
Column

Ambiguous
WHERE
Column

Ambiguous
Filter Crite-
ria

Nonexistent
SELECT
Column

Nonexistent
WHERE
Column

Nonexistent
Filter Value

Unsupported
Join

Conversational

NoisySP (Wang et al., 2023a) D ✗ ∼ ∼ D ∼ ∼ ✗ ✗

AmbiQT (Bhaskar et al.,
2023)

D ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

AMBROSIA (Saparina and
Lapata, 2024)

* * * * ✗ ✗ ✗ ✗ ✗

PRACTIQ (ours) D D D D D D D D D

Table 2: Definition and Example of Ambiguous and Unanswerable Categories. Note that the question and database
schema are simplified for illustration purposes.

Category Definition Example

Ambiguous SE-
LECT Column

Question with multiple valid
SQLs that differ in the
columns used in the SE-
LECT clause.

Database Schema:
Stadium: Stadium Name, Standing Capacity, Seating Capacity, Average_Num_Games_Played

Question: What is the maximum capacity of all stadiums?
Ambiguity: There are two Ambiguous SELECT Columns - standing capacity and seating capacity.

Ambiguous Values
Within Column

Questions that can map to se-
lecting rows that correspond
to multiple different values
in the table

Database Schema:
Classroom: Subject, Teacher Name, Number of Students Enrolled

Question: Who is the Chemistry teacher?
Ambiguity: The table contains two possible chemistry values in the Subject column: Organic Chemistry and Physical
Chemistry.

Ambiguous
WHERE Columns

Questions that can map to se-
lecting rows that correspond
to the same value in multiple
different columns

Database Schema:
Properties: property_type_code, property_type_version, properties description, property_name, room count;

Question: What are the names of properties whose property type is a multiple of 5?
Ambiguity: Both property_type_code & property_type_version column contain cell value 5.

Ambiguous Filter
Criteria

Questions containing terms
that definition/mapping of
values in the database

Database Schema:
Thrombosis_Prediction: patient age, date, patient_id, examined_or_not

Question: How many underage patients were examined during the three years from 1990 to 1993?
Ambiguity: Underage is ambiguous: it means younger than a certain age but what specific age can differ and require
definition.

Nonexistent
SELECT Column

The column that contains the
results asked in the question
do not exist in the database

Database Schema:
Olympics: Medal, Name of Sportsman, Sport, Event

Question: What was the nickname of the gold medal winner in the men’s heavyweight greco-roman wrestling event of the
1932 Summer Olympics?
Unanswerability: The table does not contain any information on nicknames.

Nonexistent
WHERE Column

Column(s) asked for filter-
ing the information in the
question do not exist in the
database

Database Schema:
Teams: Team Name, Ground, Town Name, Previous Standing

Question: Which team of the Cornwall League 1 comes from a town that is known for its tin mining?
Unanswerability: The table does not have any information about tin mining and there are no columns containing information
that defines tin mining (different from Ambiguous Filter Criteria ambiguous).

Nonexistent Filter
Value

Questions that ask for
value(s) not present in the
database

Database Schema:
Teams: Team Name, Ground, Town Name, Previous Standing

Question: What is the ground name of New York Yankees?
Unanswerability: The table does not have any information about the New York Yankees in the team name column.

Unsupported Join Questions that ask infor-
mation covering tables in
the database that cannot be
joined (are not connected by
foreign keys)

Database Schema:
Tables - Students, Teachers, Grades,..., and Library, and Books; Here students, teachers, and grades columns are connected

using foreign keys but not to library and books.
Question: Which student borrowed the book titled “ABC” from the library “XYZ”?
Unanswerability: To answer this question, we need to join the student table with library-books tables. This JOIN operation
is not possible as there are no overlapping columns or foreign keys that connect the two tables.

2 Related Work

2.1 Standard text-to-SQL datasets

Most text-to-SQL datasets, such as Spider (Yu et al.,
2018), BIRD (Wang et al., 2023a), and WikiSQL
(Zhong et al., 2017), consist of non-conversational,
answerable questions with clear intent. SPARC
and CoSQL are conversational but only have a
very limited number of ambiguous or unanswerable
questions (Finegan-Dollak et al., 2018; Yu et al.,
2019b,a). E.g., CoSQL contains around 10k anno-

tated SQL queries from 3k dialogues spread across
200 complex databases, but there are only approx-
imately 190 unanswerable questions and only 34
(approximately 18%) of them request a user clari-
fication to resolve the issue in the next turn. Also,
the responses by the text-to-SQL system to such
questions are not always helpful. For example, re-
sponses like “Sorry, I can’t answer this question
using SQL.” do not specify the exact reason why
the question cannot be answered, which can dis-
courage the users from asking follow-up questions.
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The ambiguous/unanswerable questions in CoSQL
are not categorized into fine categories, probably
due to the small size of such questions (12% of the
whole dataset). Our work fills this gap by gener-
ating a large number of ambiguous/unanswerable
questions using eight different methods. With the
advent of LLMs, there has been a wider focus on
conversational dialogue-oriented systems that can
engage with users helpfully to solve a particular
task ((Wang et al., 2023b), (Zhang et al., 2023),
(Deng et al., 2023)). We convert our data into
conversational forms leveraging reverse generation
(generating SQL first and then generating user clar-
ification responses) using an LLM (see Figure 1).

2.2 Ambiguity and Unanswerability in
text-to-SQL systems

Recent research has identified the presence of am-
biguous and unanswerable questions in practical
text-to-SQL systems. However, they primarily fo-
cused on creating ambiguous or unanswerable data
to train question classifiers (Zhang et al., 2020)
or covered only a limited range of ambiguous/u-
nanswerable categories (Wang et al., 2023a). Con-
currently, Bhaskar et al. (2023) introduced Am-
biQT, a benchmark containing ambiguous text-to-
SQL queries spanning four ambiguous categories,
and suggested generating multiple SQL queries to
encompass the correct SQL. More recently, AM-
BROSIA defined and generated ambiguous text-to-
SQL data based on scope ambiguity, attachment
ambiguity, and vagueness but did not cover unan-
swerable categories (Saparina and Lapata, 2024).
Text2Analysis (He et al., 2024) focuses on struc-
tured data and also includes unclear queries, how-
ever, its queries focus more on advanced analysis
skills rather than text-to-SQL. Our dataset differs
in several key aspects. First, we address more com-
prehensive and fine-grained categories considering
both ambiguous and unanswerable queries. Sec-
ond, PRACTIQ extends the generated data into a
conversational format, reflecting the resolution of
the problem in the original user query through in-
teractions, resembling practical settings. Lastly, we
handle cases with ambiguous inputs that can be
addressed without explicitly needing a user clar-
ification by directly generating helpful SQL and
natural language responses covering all ambiguous
columns in the database for the Ambiguous SE-
LECT Column and Ambiguous WHERE Column
questions. Table 1 compares the ambiguous and
unanswerable categories defined in our work with

existing datasets, highlighting the range of broader
categories covered in PRACTIQ. By addressing
the limitations of existing datasets and providing
a comprehensive and conversational dataset, our
work aims to support the development of practical
text-to-SQL applications that can handle ambigu-
ous and unanswerable queries more effectively.

3 Question Categorization & Dataset
Construction

We analyzed public text-to-SQL datasets like Spi-
der (Yu et al., 2018), BIRD (Li et al., 2024), CoSQL
(Yu et al., 2019a) and proposed four ambiguous
and four unanswerable categories, as shown in
Table 2. The ambiguous categories include Am-
biguous SELECT Column, Ambiguous WHERE
Columns, Ambiguous Values Within Columns, and
Ambiguous Filter Criteria. Ambiguous questions
have multiple possible interpretations and subse-
quently multiple correct SQL responses given the
database schema. The unanswerable categories in-
clude Nonexistent SELECT Column, Nonexistent
WHERE Column, Nonexistent Filter Value, and
Unsupported Join. Unanswerable questions are
those for which a valid SQL cannot be produced
given the database schema.

The data generation process consists of three
main stages, as shown in Figure 1. We describe
the main procedure and illustrate it with a detailed
explanation for one category. For convenience, we
use "assistant" to indicate the text-to-SQL system
in the remaining text. Please see Appendix E for a
detailed explanation of the data generation process
for each category.

3.1 Stage 1: SQL parsing & Database
modification

We first extract the columns and cell values by pars-
ing the SQL queries using a custom parser on top of
SQLGLOT4. Then, we select a column or cell value
of interest and modify the database schemas using
an LLM so that the question becomes ambiguous
or unanswerable. Since users are often unaware of
database details, modifying the databases instead of
the user questions, when plausible, is a natural way
to create ambiguous and unanswerable questions.
For example, for Ambiguous SELECT Column
questions, we asked the LLM to generate two al-
ternative columns to replace the original column
mentioned in the question, such that either column

4https://github.com/tobymao/sqlglot
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is a valid interpretation of the question (see Prompt
4 for details). For Nonexistent Filter Value ques-
tions, we remove the mentioned cell values from
the database, making the question unanswerable.
For example, given the user question "What is the
maximum capacity of all stadiums?" and the origi-
nal database schema with the column "Capacity",
we prompt the LLM to generate two semantically
similar but non-equivalent columns, "Standing Ca-
pacity" and "Seating Capacity". We then remove
the original "Capacity" column and add the newly
generated columns to the database.

3.2 Stage 2: SQL modification and
clarification response generation

Based on the user question, the modified database,
and the original SQL, we generate the text-to-SQL
assistant’s initial response to the ambiguous/unan-
swerable question, the following user clarification
response, and the assistant’s SQL response to the
clarified question. First, we generate the assistant’s
response to the initial user question using either
a template-based method or a prompting method.
For example, for Ambiguous SELECT Column
questions, the template is "I find two conflicting
information in the data. Which one would you like
to know about? Ambiguous_SELECT_Column_1
or Ambiguous_SELECT_Column_2".

Next, we follow a reverse-generation process
(Hu et al., 2023) to first generate the assistant’s
final SQL response and then generate the user’s
clarification question. The assistant’s final SQL
response is generated by modifying the original
SQL programmatically. Then, we prompt the LLM
to fill in the user’s clarification response based on
the conversation context (initial user question, as-
sistant’s clarification question, and final SQL re-
sponses). For example, for the Ambiguous SE-
LECT Column question, we generate the assis-
tant’s clarified SQL by replacing the column in
the SELECT clause of the original SQL with one
of the ambiguous SELECT columns generated
in the above stage. Then, given the user’s ini-
tial question, the assistant’s clarification question,
"empty_user_clarification_response", and the assis-
tant’s final SQL response, we prompt the LLM to
fill in the "empty_user_clarification_response" so
that the user clarification response matches the as-
sistant’s SQL response and rest of the conversation
(see Prompt 5 for details). This process ensures
that the assistant’s clarified SQL is more accurate
and executable, as we are not prompting the LLM

to generate it, which could lead to incorrect SQL.
Finally, we execute the constructed clarification
SQLs against the modified databases and discard
examples that are not executable. After the reverse
generation and filtering, each sample includes the
user’s initial question, the assistant’s clarification
question, the user’s clarification response, the as-
sistant’s SQL response, and its corresponding exe-
cution results.

3.2.1 Generating helpful SQL for ambiguous
questions

Because it is not always helpful for the assistant
to ask clarification questions for ambiguous/unan-
swerable queries, we also generate helpful SQL
responses to the Ambiguous SELECT Column and
Ambiguous WHERE Column queries and reversely
generate the corresponding assistant’s explanation
of why the SQL response is helpful. For Am-
biguous SELECT Column queries, we sometimes
can simply return all valid interpretations of the
columns in the SQL. For example, suppose the
question "What is the maximum capacity of all sta-
diums?" is ambiguous because capacity can map to
either "Standing Capacity" or "Seating Capacity".
In that case, we can return both capacity columns,
reducing the number of turns for the user to get the
information they need. We only generate such help-
ful SQL responses for the Ambiguous SELECT
Column and Ambiguous WHERE Column cate-
gories, but this can be extended to other categories
in the future.

3.3 Stage 3: Refining the conversation &
Quality Control

Leveraging an LLM, as a post-processing step
(Wang et al., 2023b), we use a 3-shot prompt to
improve the naturalness and coherence of the con-
versation and add a natural language explanation
of the final SQL execution results (see Prompt 6 &
7 for details). We randomly select 3 examples of
the original conversation (as obtained from Stage
2), rewrite it more naturally and coherently, and
add a natural language explanation of the execution
results.

In addition to the main steps for generating the
data, we employ a separate evaluation step after
each generation step to control the data quality
besides optimizing the generation prompt. The fil-
tering step uses both LLM and execution checks.
The LLM is often used to evaluate the quality of
the data generated from the previous step or rank
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different candidates if multiple candidates have
been generated. For example, for an ambiguous
SELECT column question, suppose we have gener-
ated "Standing Capacity" or "Seating Capacity" as
alternative columns for the question "What is the
maximum capacity of all stadiums?". We will have
a separate prompt and a few-shot examples for the
LLM to evaluate whether these two columns are
good candidates and make the question ambigu-
ous. For execution checks, whenever we make a
database change or generate modified SQLs, we
execute these SQLs against the modified database
to ensure the SQLs are executable.

Lastly, after generating data for each category,
we prompted a LLM to perform binary classifica-
tion on whether the provided question and modified
database pair belonged to the designed category or
not. This classification was based on the definition
of the category and several human-curated exam-
ples (see Prompt 8 for details). We only retained
the examples that passed this binary classification,
ensuring that the generated data accurately repre-
sented the intended ambiguous or unanswerable
category.

3.4 Dataset Statistics
Table 3 shows the statistics of the dataset generated
using the Spider dev set with Claude 3 sonnet. Note
that the employed methodology can be seamlessly
adapted to other text-to-SQL datasets like BIRD,
WikiSQL, or any other synthetically generated an-
swerable text-to-SQL corpora combined with any
LLM (e.g., Llama3.1 or mixtral). The generated
dataset consists of 1,802 ambiguous and unanswer-
able questions spanning various categories. Ad-
ditionally, we collected 1,034 answerable queries
from the Spider dev dataset and augmented them
with natural language explanations derived from
their execution results. Consequently, our dataset
encompasses 2,812 conversations in total.

3.5 Human Annotation
We performed human annotations on two tasks:
question category classification and overall con-
versation quality evaluation (see Appendix B for
details). Four SQL experts with at least a bach-
elor’s degree in Computer Science or equivalent
work experience in the United States served as an-
notators.

For the question category classification task, we
sampled 20 question-database pairs for each cate-
gory. Annotators classified these pairs in two ways:

1. Binary classification: Annotators classified
whether the pair belonged to the respective category
based on the definition (Table 2).

2. 9-way classification: Annotators classified
the pair into one of the nine categories based on the
definition (Table 2).

Table 3 shows that the average binary classifi-
cation accuracy was 93.75%. Figure 2 indicates
that the average 9-way classification accuracy was
88.33% (see Figure 3 for more details). These hu-
man annotation results suggest that our dataset is
of good quality.

For the conversation quality evaluation, we de-
fine three criteria:

factuality: measures how well the SQL query
provided by the assistant correctly answers the user
question;

helpfulness: measures how helpful the assis-
tant’s responses are in fully understanding the
user’s intent;

naturalness: rates how natural and fluent the
conversation is.

We sample 10 conversations per category to in-
clude 90 conversations. Each conversation is an-
notated by 2 different SQL experts with the same
qualifications as mentioned above. The annotators
rate each category on a Likert scale between 1 and
5, where 1 denotes perfect quality and 5 denotes
the worst quality for every criterion.

The human annotation results (Table 4) show
that our dataset is of high quality, with good natu-
ralness, helpfulness, and factuality score (see Ap-
pendix B.2 for more details).

Table 3: Dataset statistics and human annotation accu-
racy on 20 samples per question type. "#Ex" column
shows the number of examples generated for each cate-
gory. "Acc" column shows average binary classification
accuracy from human expert.

Category #Ex Acc

Ambiguous SELECT Column 171 90%
Ambiguous WHERE Column 105 90%
Ambiguous Filter Criteria 303 100%
Ambiguous Values Within Column 122 80%

Nonexistent SELECT Column 482 95%
Nonexistent WHERE Column 236 95%
Unsupported Join 213 100%
Nonexistent Filter Value 170 100%

Answerable (Spider Dev Set) 1034 100%

Total 2812 -
Avg (excl. answerable) - 93.75%
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Table 4: Summary of Human Annotation Scores for
Naturalness, Factuality, and Helpfulness.

Category Mean Std Krippendorff’s Alpha
Naturalness 1.57 0.87 0.8207
Factuality 1.15 0.53 0.6829
Helpfulness 1.41 0.74 0.7602

4 Evaluation Task and Baselines

In this section, we describe the two evaluation tasks
and corresponding metrics.

1. Question category classification: classify
whether the question is answerable or one of
the 8 ambiguous/unanswerable categories (9-
way classification). We use classification ac-
curacy for the ambiguous and unanswerable
categories to measure the classification perfor-
mance.

2. Clarification SQL Generation: predict the
final SQL given the assistant’s clarification
question and user’s clarification response. We
use execution accuracy to measure the model
performance (Li et al., 2024).

4.1 Question Category Classification
We employ a few-shot prompting strategy for the
question category classification task, experiment-
ing with various numbers of shots (0-3) and dif-
ferent LLMs via the litellm5 library as a baseline
method. The prompt contains the definition of
every category along with a variable number of in-
context examples per category (see Prompt 9 & 11
for details). Each example includes an input com-
prising the initial user question and relevant cell val-
ues retrieved via a fuzzy matching approach, as de-
scribed in (Lin et al., 2020; Wang et al., 2020) (de-
noted by “lexicalOnly”). The in-context demonstra-
tions contain human-curated step-by-step thoughts
and classification of the question categories (Wei
et al., 2022). To evaluate the impact of cell value
retrieval on classification accuracy, we include a
setting where oracle (perfect) cell values are pro-
vided to the model (denoted by “lexicalAndOra-
cle”). This setting allows us to assess how well the
model performs if cell value retrieval is perfect.

4.2 SQL Prediction
We use the DIN-SQL prompt-based framework, a
SoTA method on the Spider dataset for predicting
the final clarification SQL (Pourreza and Rafiei,

5https://github.com/BerriAI/litellm

Figure 2: Figure showing the classification accuracy of
different models using different number of shots.

2024). The framework takes as input user ques-
tions and the corresponding database schema and
contains four modules that decompose the task of
SQL generation into several sub-tasks following a
chain-of-thought (Wei et al., 2022) approach for
SQL generation.

5 Results and Discussions

Figure 2 shows the question category classification
accuracy of different LLMs using varying numbers
of examples. Claude 3.5 Sonnet6 achieves the best
accuracy of 77.4% (75.9% excluding answerable
category) across all categories when Oracle cell val-
ues are included in the schema and 3 examples per
question type are provided. Without oracle cell val-
ues, the accuracy drops to 74.3% (72.4% excluding
answerable). Mixtral-large-v27 performs similarly
to Claude 3 Sonnet when at least 1 example is pro-
vided per category but outperforms other models
in the zero-shot setting, except Claude 3.5 Son-
net. For the average accuracy across all categories,
having lexical cell values improves performance
by 0.7%, although the results are mixed. Across
the three subcategories where cell values play a
significant role (ambiguous VALUES within col-
umn, ambiguous WHERE column, and ambiguous
filter criteria), having oracle cell values boosts clas-
sification accuracy by 1.5%. These results show
that improving cell value retrieval can be an impor-
tant thing for detecting ambiguous/unanswerable
questions in a practical text-to-SQL system, which

6https://www.anthropic.com/news/
claude-3-5-sonnet

7https://mistral.ai/news/mistral-large-2407/
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Table 5: Execution accuracy of SQLs predicted with DIN-SQL using different LLMs on various categories of
ambiguous, unanswerable, and answerable questions. The "All" column shows the overall average accuracy across
all categories, while the "Avg. Excluding Answerable" column shows the average accuracy excluding the answerable
questions from the Spider dataset.

Model Ambig.
Filter
Criteria

Ambig.
SELECT
Column

Ambig. Val-
ues Within
Column

Ambig.
WHERE
Column

Nonexist.
Filter
Value

Nonexist.
SELECT
Column

Nonexist.
WHERE
Column

Unsupported
Join

Answerable Average Avg. Excluding
Answerable

Claude 3.5 Sonnet 77.23% 67.25% 68.03% 77.14% 74.12% 64.73% 65.11% 76.53% 79.21% 72.15% 71.27%
Claude 3 Sonnet 61.72% 58.48% 53.28% 59.05% 64.71% 55.19% 51.06% 77.46% 64.12% 60.56% 60.12%
Llama-3.1 70B 68.65% 71.35% 63.11% 71.43% 65.88% 67.01% 69.36% 63.85% 76.31% 68.55% 67.58%
Llama-3.1 8B 48.84% 55.56% 45.90% 59.05% 54.71% 48.76% 46.81% 56.34% 56.58% 52.50% 52.00%
Mixtral-large-v2 75.91% 74.27% 69.67% 75.24% 71.76% 66.18% 65.53% 77.00% 78.72% 72.70% 71.95%

previous research has not focused much on.
The open-source Llama-3.1 70B (Touvron et al.,

2023) model performs better than Mixtral-8x7b
(Jiang et al., 2024) and Claude 3 Haiku but ex-
hibits repeated text output when 2 or more ex-
amples are provided, causing its performance to
drop below 20%8. These results indicate that de-
tecting fine-grained ambiguity/unanswerability in
questions given a database remains challenging for
most LLMs (accuracy < 60%), except for the pow-
erful model Claude 3.5 Sonnet.

Table 5 shows our baseline method’s (DIN-SQL)
performance on SQL prediction of various LLMs
given the interaction between the user and the as-
sistant. Overall, Mixtral-large-v2 and Claude 3.5
Sonnet achieve the highest average accuracy of
71.95% and 72.15% on the ambiguous/unanswer-
able questions. Claude 3.5 sonnet achieves the high-
est performance of 79.21% on the answerable ques-
tions (original Spider dev set). The open-source
model Llama-3.1 70B performs competitively on
the answerable questions achieving 76.31% ac-
curacy, only 2.9% lower than Claude 3.5 sonnet.
However, it performs only at 67.58% accuracy on
ambiguous/unanswerable questions, lagging 3.7%
behind Claude 3.5 sonnet. The gap can be as large
as 9% for some specific ambiguous question cat-
egories, indicating room for improvement. Our
framework can be used to generate training data
to improve open-source models’ capabilities in
both SQL prediction and detecting ambiguous/u-
nanswerable questions.

6 Conclusion and Future work

In this work, we study current public text-to-
SQL datasets and define four ambiguous and four
unanswerable categories. We propose a frame-
work to construct a practical conversational text-to-
SQL dataset, PRACTIQ, using both carefully con-

8With 3 examples per category, the results are similar, and
the evaluation was stopped early for Llama-3.1 70B.

structed rules and Large Language Models (LLMs).
We use the Spider dev dataset for constructing
PRACTIQ and generate around 2,800 conversa-
tional data samples. We evaluate our dataset on
two core tasks, question category classification,
and SQL prediction, and benchmark it using sev-
eral SoTA LLMs.

Our results show that although some SoTA
LLMs are approaching human-level accuracy, they
are far from being perfect. For open-source models,
the gap from human performance is much larger,
indicating areas for further improvement. Our pro-
posed framework provides a technique for gener-
ating additional practical text-to-SQL data on ex-
isting text-to-SQL datasets like WikiSQL, Spider
Train, BIRD, or any other general synthetic single-
turn answerable text-to-SQL data. This practical
enhancement of the datasets can be used to further
train open-source models to enhance their capabil-
ities in handling practical text-to-SQL tasks (Liu
et al., 2024).

In a broader sense, our work presents a simple
agentic workflow to generate synthetic data, which
can be further used to improve LLMs. In the future,
we can fine-tune open-source models with data
generated using our framework to improve their
capabilities. We can also experiment with agentic
workflows to benchmark our dataset, and determine
whether a question is ambiguous, unanswerable, or
answerable, and accordingly provide more accurate
and helpful responses.

Limitations

While our dataset was generated using program-
matic methods and LLMs, the data quality can be
further improved by employing agentic workflows.
Due to time constraints, we were unable to generate
additional data to fine-tune open-source LLMs and
evaluate whether fine-tuning can improve their abil-
ity to detect ambiguous/unanswerable questions
and perform other reasoning tasks. We leave the
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exploration of fine-tuning open-source LLMs and
the potential improvements in their capabilities as
future work. We also encourage the research com-
munity to contribute to this effort by generating
additional data using our proposed framework or
exploring alternative approaches to enhance the
quality and diversity of the dataset.

Ethics Statement

Since we prompt LLMs on a large scale through a
rate-based API for both dataset creation as well as
evaluation the project may not be very environment
friendly and may inevitably cause the emission of
more CO2.
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A Dataset Examples

Table 6 and Table 7 show ambiguous and unanswer-
able examples from our dataset respectively.

B Human Annotation

B.1 Question Category Classification
For question category classification, we sampled 20
questions from each category and ask SQL experts
to classify whether the category is correct or not
given the pair of modified question and database
(that includes values from the tables retrieved for
the filter criteria) as input (binary classification).
We employ 2 SQL experts for the question category
classification annotation task. Each of the annota-
tors has at least a bachelor’s degree in computer
science. The annotators work as engineers/scien-
tists in a private firm in the United States. The
annotators performed their annotation task as a part
of their service for which they were not specifically
paid. To help with the annotations, we provide the
definitions and a few examples of questions for
each category.

Figure 3 shows the confusion matrix of the ques-
tion category classification task of the human anno-
tation. We see that in most cases the true label and
the predicted labels are the same (diagonal entries
in the matrix). Annotators classify ambiguous fil-
ter criteria, ambiguous where column, non-existent
select column, unsupported join, and answerable
categories with high accuracy. Nonexistent filter
value is often classified as answerable mostly be-
cause annotators feel that the missing value is actu-
ally present in the schema and might not have been
retrieved in the example provided. On the contrary,
some answerable data is classified as ambiguous
filter criteria, as the filter values might not have
been retrieved properly causing the annotators to
believe that the data belongs to ambiguous filter
criteria. Nonexistent Where Column data is some-
times classified as Nonexistent Select Column as
the annotators might believe that the column in the
Select clause is missing for such examples. Am-
biguous Values within Column is sometimes clas-
sified as Nonexistent Filter Value indicating that
the ambiguous cell values are not retrieved and the
annotators believe that the exact value is missing
even though the value can be similar to multiple
values in the database. Ambiguous Values within
Column is also sometimes classified as Answerable
because the annotators might mistakenly believe
that the value required to answer the question is

present in the database. Ambiguous Select Column
is sometimes classified as answerable because the
annotators might think that there exists another col-
umn apart from the column that is removed which
can be used to answer the user question.

B.2 Conversation Quality Evaluation
We sampled 90 conversations across ambiguous,
unanswerable, and answerable categories from dif-
ferent databases for human annotation. Two SQL
experts annotated each conversation on three crite-
ria: factuality (correctness of SQL and natural lan-
guage response), helpfulness (assistant’s responses
in understanding user intent), and naturalness (con-
versation flow) using a 1-5 Likert scale, where 1
denotes perfect/best quality and 5 denotes the worst
quality.

Table 4 shows the mean, standard deviation,
and Krippendorff’s Alpha for inter-annotator agree-
ment. The high mean scores close to 1 (1.15-1.5)
and substantial agreement (Alpha 0.68-0.82) indi-
cate high-quality, natural conversations with factual
and helpful responses. For Naturalness, we observe
that annotators have a substantial agreement (Krip-
pendorff’s Alpha = 0.82), indicating that the con-
versations are generally perceived as natural and
fluent. For Factuality, the annotators demonstrate
moderate agreement (Krippendorff’s Alpha = 0.68),
suggesting that the conversations are consistently
viewed as highly factual, which implies that the
SQL queries in our dataset are of high quality. For
Helpfulness, the annotators show good agreement
(Krippendorff’s Alpha = 0.76), indicating that the
conversations are mostly helpful. Overall,

Table 8 presents category-wise annotation scores.
Answerable data from Spider has a mean of 1
across criteria, confirming its high quality. Natural-
ness scores closer to 2 for most categories indicate
mostly natural conversations, with 1 being perfectly
natural. Categories like Ambiguous Filter Criteria,
Nonexistent Filter Value, and Nonexistent Where
Column have the most natural conversations (mean
scores closer to 1), likely due to the close relation
between user follow-up and assistant responses.

Factuality scores close to 1 across categories
demonstrate accurate SQL generation and result
descriptions through our reverse generation pro-
cess, with 1 being perfectly factual. Helpfulness
scores around 1.5 suggest mostly helpful assistant
responses in understanding user intent, with 1 be-
ing perfectly helpful. Higher standard deviations
for certain categories (e.g., Ambiguous Where Col-
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Table 6: Table showing examples of the ambiguous category. Here U denotes the user and A denotes the assistant.

Ambiguous SELECT Column Schema Table visitor, columns = [*,ID,Name,Level_of_membership,Age_at_Entry,Current_Age]
Table visit, columns = [*,Museum_ID,visitor_ID,Num_of_Ticket,Total_spent]
Foreign_keys = [visit.visitor_ID = visitor.ID]

Conversation U: Find the name and age of the visitor who bought the most tickets at once.
A: For the visitor’s age, would you like the Age at Entry or Current Age?
U: I’m looking for the age when they entered, so the Age at Entry.
A: SELECT t1.name , t1.Age_at_Entry FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id ORDER BY

t2.num_of_ticket DESC LIMIT 1

Ambiguous Values Within Column Schema Table Templates, columns = [*,Template_ID,Version_Number,Template_Type_Code, Date_Effective_From,
Date_Effective_To, Template_Details]

Relevant
Values

"templates.Template_Type_Code": ["useful CV 2", "useful CV 1", ’CV", "useful professional CV"]

Conversation U: How many templates have template type code useful CV?
A: The value ’useful CV’ matches multiple template type codes including ’useful CV 1’, ’useful CV 2’, and ’useful

professional CV’. Could you please specify which one you need the count for?
U: How many templates have the template type code ’useful CV 2’?
A: SELECT count(*) FROM Templates WHERE template_type_code = ’useful CV 2’

Ambiguous WHERE Column Schema Table battle, columns = [*,id,name,date,bulgarian_commander,latin_commander,result]
Table ship, columns = [*,lost_in_battle,id,name,tonnage,ship_type,disposition_of_ship,Port_of_Origin,Destination]
Foreign_keys = [ship.lost_in_battle = battle.id]

Relevant
Values

"ship.Port_of_Origin": ["English Channel"]; "ship.Destination": ["English Channel"]

Conversation U: Show names, results and bulgarian commanders of the battles with no ships lost in the ’English Channel’.
A: I see ’English Channel’ in two columns: Port of Origin and Destination. Can you clarify which you need?
U: I meant the Port of Origin.
A: SELECT name , result , bulgarian_commander FROM battle EXCEPT SELECT T1.name , T1.result ,

T1.bulgarian_commander FROM battle AS T1 JOIN ship AS T2 ON T1.id = T2.lost_in_battle WHERE
T2.Port_of_Origin = ’English Channel’

Ambiguous Filter Criteria Schema Table bond, columns = [*,bond_id,molecule_id,bond_type]
Table molecule, columns = [*,molecule_id,label]
Foreign_keys =[bond.molecule_id = molecule.molecule_id]

Conversation U: What proportion of single bonds are carcinogenic?
A: Could you clarify the meanings of ’single bond’ and ’carcinogenic’ in the context of your question?
U: ’single bond’ refers to bond_type = ’-’. ’carcinogenic’ means label = ’+’. To calculate proportion: DIVIDE(SUM(label

= ’+’), COUNT(bond_id)) where bond_type = ’-’.
A: SELECT CAST(COUNT(CASE WHEN T2.label = ’+’ THEN T1.bond_id ELSE NULL END) AS REAL) * 100

/ COUNT(T1.bond_id) FROM bond AS T1 INNER JOIN molecule AS T2 ON T1.molecule_id = T2.molecule_id
WHERE T1.bond_type = ’-’

umn, Ambiguous Values Within Column) indicate
annotator disagreements due to varying relevance
of ambiguous interpretations to user queries across
examples.

Overall, the human annotation results validate
the high quality, naturalness, factuality, and help-
fulness of the generated conversational data.

C DIN-SQL Performance on Ambiguous
and Unanswerable Queries

As a probing task, we run DIN-SQL on a subset of
our dataset containing ambiguous and unanswer-
able questions and analyze the results. The input
to the DIN-SQL framework is an ambiguous/ unan-
swerable user query without the assistant response
or the follow-up clarified user query. As expected,
the model performs poorly on such data because
the DIN-SQL framework is not designed to handle
ambiguous and unanswerable user queries. During
the schema linking, the model often hallucinates
columns that do not exist in the database, poten-
tially because the examples in the few-shot include
only answerable questions.

Table 9 shows the results of the DIN-SQL frame-
work on ambiguous/ unanswerable user queries.
Based on the results we make the following obser-
vations:

• For Ambiguous SELECT Column, we experi-
ment with a total of 53 samples corresponding
to different databases. We see that in two
cases the framework hallucinates, i.e., it as-
sumes that the removed column is actually
present in the schema. In two other cases (In-
correct SQL) the framework predicts a com-
pletely different SQL that does not include the
new Ambiguous SELECT Column names. In
most cases 49/53, the framework predicts a
partially correct SQL, i.e., it includes one of
the Ambiguous SELECT Column names in
its final prediction.

• For Ambiguous WHERE Column, we see that
all the predicted SQLs contain one of the am-
biguous columns and none of them are either
hallucinating or missing the new columns.

• For Nonexistent SELECT Column, we see
that 23 (45%) cases lead to hallucination, i.e.
the framework assumes that the removed col-
umn name is present in the schema and in-
cludes the column name in the final predicted
SQL. 28 (55%) cases predict an incorrect SQL
(whose execution does not match the ground-
truth execution results).

• For Nonexistent WHERE Column we see that
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Table 7: Table showing examples of the unanswerable category. Here U denotes the user and A denotes the assistant.

Nonexistent SELECT Column Schema Table airports, columns = [*,City,AirportCode,Country,CountryAbbrev]
Conversation U: What is the airport name for airport ’AKO’?

A: The airport name is not available in the schema.
U: Can you provide the country for the airport code ’AKO’ instead?
A: SELECT Country FROM AIRPORTS WHERE AirportCode = ’AKO’

Unsupported Join Schema Table albums, columns = [’*’, ’albumId’, ’singerId’, ’albumName’, ’yearReleased’] Table songs, columns = [’*’, ’albu-
mId’, ’songId’, ’songName’] Table singer, columns = [*,Singer_ID,Name,Birth_Year,Net_Worth_Millions,Citizenship]
Table song, columns = [*,Song_ID,Title,Singer_ID,Sales,Highest_Position] Foreign_keys = [song.Singer_ID =
singer.Singer_ID, songs.albumId = albums.albumId]

Conversation U: What is the name of the singer whose album is ’Thriller’?
A: The albums and singer tables are not joined in the schema, so the original query cannot be executed. Could you please

rephrase your question?
U: What is the count of singers?
A: SELECT count(*) FROM singer

Nonexistent Filter Value Schema Table car_makers, columns = [*,Id,Maker,FullName,Country] Table model_list, columns = [*,ModelId,Maker,Model]
Foreign_keys = [model_list.Maker = car_makers.Id]

Relevant
Values

"car_makers.FullName": ["General Motors", "Nissan Motors", "Kia Motors", "Ford Motor Company", "Triumph"]

Conversation U: How many car models were produced by the maker with full name American Motor Company?
A: The full name "American Motor Company"does not exist in the car makers table. Could you please ask about another

full name?
U: What about "Triumph" instead?
A: SELECT count(*) FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON T1.Id = T2.Maker WHERE

T1.FullName = "Triumph";
Nonexistent WHERE Column Schema Table country, columns = [*, Code, Name, Region, SurfaceArea, IndepYear, Population, LifeExpectancy, GNP, GNPOld,

LocalName, GovernmentForm, HeadOfState, Capital, Code2]
Conversation U: What is the total surface area of the continents Asia and Europe?

A: There is no data on continents in the database.
U: What is the total surface area of the countries in the Caribbean region?
A: SELECT sum(SurfaceArea) FROM country WHERE Region = "Caribbean"

Table 8: Category-wise human annotation results for factuality, helpfulness, and naturalness. For every category, 1
denotes the best quality and 5 the worst.

Category Naturalness Factuality Helpfulness
Mean Std Mean Std Mean Std

Ambiguous SELECT Column 1.9 0.876 1.0 0.000 1.5 0.527
Ambiguous WHERE Column 1.9 0.994 1.1 0.316 1.6 1.075
Ambiguous Values Within Column 2.0 1.414 1.4 1.265 1.6 1.075
Ambiguous Filter Criteria 1.3 0.483 1.0 0.000 1.4 0.699
Nonexistent Filter Value 1.1 0.316 1.2 0.632 1.1 0.316
Nonexistent WHERE Column 1.35 0.412 1.2 0.483 1.35 0.474
Unsupported Join 1.7 0.919 1.1 0.316 1.5 0.972
Nonexistent SELECT Column 1.85 1.029 1.35 0.412 1.6 0.810
Answerable 1.0 0.000 1.0 0.000 1.0 0.000

Table 9: Table showing DIN-SQL performance on am-
biguous and unanswerable queries

Category Hallucination
(%)

Incorrect
SQL (%)

Partially
Correct
(%)

Ambiguous SELECT
Column

3.8 3.8 92.4

Ambiguous WHERE
Column

0 0 100

Nonexistent SELECT
Column

45 55 0

Nonexistent WHERE
Column

22 78 0

Unsupported Join 56 44 0

only 7/31 (22%) of cases lead to hallucination,
i.e., the framework assumes that the removed
column is still present in the schema and the
rest 24/31 (78%) are predicted as incorrect
SQLs.

• In the case of Unsupported Join we see that
28/50 (56%) of the SQLs are predicted with
syntax errors/hallucinations where the frame-
work assumes the presence of certain columns

that do not exist in the schema to facilitate a
JOIN operation to answer the question. 22/50
cases (44%) have logical errors, in the pre-
dicted SQL i.e., they contain JOIN columns
that do not have any foreign key relationship.

D Prompts

E Dataset Construction for each
ambiguous/unanswerable category

In this section, we describe the detailed procedure
for constructing data for each ambiguous/unanswer-
able category as described in the Ambiguous SE-
LECT Column.

E.1 Ambiguous WHERE Column

In stage 1, we collect the column names appear-
ing in the Where clause of the SQLs of all ques-
tions in the Spider dataset. Like in the Ambigu-
ous SELECT Column case, we then provide those
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Figure 3: Figure showing the Confusion Matrix of Question Category Classification of the Human Annotation.

Figure 4: System prompt for generating replacement columns for Ambiguous SELECT Column data generation.

You will be provided with a database schema containing multiple tables and their columns.
The schema will be presented in a markdown format, along with 3 sample values for each column enclosed within <schema/> XML tags.
Additionally , you will be given a column of interest and its corresponding table within <column/> XML tags, a user question , and a corresponding SQL query.

Your task is to come up with two synonyms or phrases that have the same meaning as the original column of interest .
The goal is to remove the original column of interest and add the two new columns with similar values , making the user question ambiguous.
The synonyms should not be simple changes in case , pluralization , tense , etc . Instead , they should be alternative ways of expressing the same concept.

First , write your thought process within <scratch /> XML tags, following these steps :
1. Review the provided column of interest , its corresponding table , the user question , and the SQL query to understand the context .

a . Identify the word/phrase mention that corresponds to the column of interest from the user question .
2. Brainstorm 5 potential synonyms or phrases for the column of interest . The synonyms or phrases shall have similar lexical overlap with the word/phrase mention in the
question .

3. Evaluate each synonym/phrase and select the two best options that accurately capture the meaning of the original column, considering the following criteria :
a . The synonyms and phrases should be similar to other columns within the schema in terms of wording, length , and style .
b. A synonym or phrase is good if it is a valid and clear /obvious interpretation of the user question and results in a new SQL query that uses that interpretation .
c . Write out why a synonym is a good explanation of the question and what the resulting new SQL will be if you think it is a good synonym.
Clearly explain how the synonym maps to the user question .
d. If it is not a good synonym, explain why.

Then, write the two synonym columns within a Python list in the < result /> XML tags.
Each item within the list should be a dictionary containing the ' table ' and ' column' keys, mapping to the respective table and column names.
The final two synonyms should have similar likelihoods of being the correct interpretations of what the original user question is referring to assuming the original
column is interest is removed from the database .

The two synonyms or phrases shall have similar lexcial overlap with the mention in the question .
If you cannot find any suitable synonyms, output an empty Python list in the < result /> XML tags.
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Figure 5: System prompt for generating user clarification response for Ambiguous SELECT Column data generation.

You will be presented with a database schema containing multiple tables and their columns.
The schema will be provided in a markdown format, along with 3 sample values for each column enclosed within <schema/> XML tags.
After the schema, you will see a conversation between a USER and a DB EXPERT within <conversation/> XML tags.
However, the follow−up question from the user before the final SQL query will be missing .

Your task is to generate a natural , logical , and concise follow−up USER question based on the final SQL query provided by the DB EXPERT.

Write your thinking process within <scratch /> XML tags, following these steps :
1. Carefully review the database schema to understand the structure and relationships between the tables .
2. Analyze the final SQL query to comprehend the information it retrieves and the operations it performs.
3. Formulate a follow−up question that accurately reflects the intent and results of the final SQL query, without any unnecessary or redundant words.
4. Ensure that the follow−up question is natural and free from unnatural phrases , such as phrases with underlines or unnatural casing .

In the end, write the follow−up question within the < result /> XML tags without any additional explanations .

Figure 6: System prompt for refining the user’s follow-up/clarification response/question.

You will be presented with a database schema containing multiple tables and their columns.
The schema will be provided in a markdown format, along with 3 sample values for each column enclosed within <schema/> XML tags.
After the schema, you will see a conversation between a USER and a DB EXPERT within <conversation/> XML tags.
The initial user question is often ambiguous or unanswerable, and the DB EXPERT explains why.
The user then asks a follow−up question that is answerable but verbose .

Your task is to rephrase the user ' s verbose follow−up question .
The rephrased question should convey the requested clarification (such as which column or cell value to use) in a concise , conversational , and natural way based on the
context provided by the initial ambiguous question and the DB expert ' s explanation .
It is important not to omit any information where the DB expert has requested clarification .

The rephrased follow−up question should be clear , logical , and easy to understand , while avoiding unnecessary repetition of information from the initial conversation
and technical jargon or complex words.
Do not include unnecessary filler words like "hey" or " hello ".

First , think step by step in <scratch /> XML tags.
Then, write the rephrased concise follow−up question within the < result /> XML tags without any extra explanation .

Figure 7: System prompt for adding execution results explanation based on the SQL execution results.

You will be provided with a database schema containing multiple tables and their columns in a markdown format, along with 3 example values for each column enclosed
within <schema/> XML tags.

After the schema, there will be a conversation between a USER and a DB EXPERT within <conversation/> XML tags.
The conversation will include the USER's query and the DB EXPERT's SQL query to retrieve the requested information .
At the end, the execution results of the DB EXPERT's final SQL query will be presented within < execution_results /> XML tags.

Your task is to analyze the execution results and provide a short answer to the USER's last question based on those results .
The answer should be concise , self −contained , and no more than two sentences .
Do not comment on the correctness of the query itself . Note that the short answer shall be self −explanatory becaues USER only sees the answer but not the execution
results .

Your answer should be clear , logical , and easy for the USER to understand. Avoid using technical jargon or overly complex explanations .
The goal is to provide a helpful and informative answer to the USER's question.

Note that if the execution results contain more than 30 rows, only the first 30 rows will be shown, and the remaining rows will be skipped .

First , outline your thought process step by step within <scratch /> XML tags. Then, write the rephrased response within the < result /> XML tags without any additional
explanation .

Figure 8: Binary classification Prompt for data filtering. "{category_with_explanation}" will be replaced with the
name and definition of the corresponding question category in Figure 10. Few-shots examples are presented as
conversation between the user and assistant in the format of message API of litellm.

You are a Database Expert (DB EXPERT) system that classifies user questions into one of the following two categories based on the given database schema:

{ category_with_explanation }

− answerable: the database contains data needed to answer the question and the question has one and only one valid interpreation .

You will receive :
1. A database schema in markdown format with relevant column values enclosed in <schema/> tags .
2. The user ' s question enclosed in <question/> tags .

Note that the "answerable" output shall only be provided if and only if :
− the question posed is unambiguous, precise , and leaving no room for multiple interpretations or confusion .
− the database contains the complete set of information required to formulate a comprehensive and accurate response to the query.
If either of these conditions is not met, meaning the question lacks clarity or our data is insufficient , we shall refrain from classifying the query as "answerable ."

Provide your step−by−step thoughts within </ scratch > tags .
Then, provide your final classification within < result /> tags as one of the categories above.
Note that you result shall only be one of the categories specified at the beginning & Do not include any extra explanation in the result .
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Figure 9: Nine-way classification System Prompt. "{category_with_explanation}" will be replaced with the name
and definition of four ambiguous and four unanswerable categories in Figure 10. Few-shots examples are presented
as conversation between the user and assistant in the format of message API of litellm.

You are a Database Expert (DB EXPERT) system that classifies user questions into one of the following 9 categories based on the given database schema:

{ category_with_explanation }

− answerable: the database contains data needed to answer the question and the question has one and only one valid interpreation .

You will receive :
1. A database schema in markdown format with relevant column values enclosed in <schema/> tags .
2. The user ' s question enclosed in <question/> tags .

Your output should follow this format :
<scratch> YOUR−STEP−BY−STEP−THOUGHTS </scratch>
< result > ONE−OF−THE−9−QUESTION−CATEGORIES </result>

Note that the "answerable" output shall only be provided if and only if :
− the question posed is unambiguous, precise , and leaving no room for multiple interpretations or confusion .
− the database contains the complete set of information required to formulate a comprehensive and accurate response to the query.
If either of these conditions is not met, meaning the question lacks clarity or our data is insufficient , we shall refrain from classifying the query as "answerable ."

Provide your step−by−step thoughts within </ scratch > tags .
Then, provide your final classification within < result /> tags as one of the categories above. Do not include any extra explanation in the result .

Figure 10: Ambiguous and Unanswerable category and their definition. These definitions are used in the binary and
9-way classification.

category_to_explanation_mapping = {
"Ambiguous_SELECT_Column":

"Multiple columns match the requested output information , leading to multiple valid SQLs that differ in the columns used in the SELECT clause.",
"Ambiguous_WHERE_Column":

"The filter condition matches multiple columns in a table , leading to multiple valid SQLs that differ in the specific filter column in the WHERE clause.",
"Ambiguous_Values_Within_Column":

"Multiple similar values in a column match the mentioned value , leading to multiple valid SQLs that differ in the specific filtering cell value from one column in the
WHERE clause.",

" Ambiguous_Filter_Criteria ":
"The question contains a filter condition or criteria that is ambiguous, vague, relative / descriptive , or open to multiple interpretations ."
"This ambiguity in the filter criteria makes it difficult to formulate a precise SQL query without additional clarification .",

"Nonexistent_SELECT_Column":
"At least one of the requested output information is not present in the schema, so no SQL can be constructed with the appropriate column in the SELECT clause.",

"Nonexistent_WHERE_Column":
"At least one filter condition column is not present in the schema, so no SQL can be constructed with the appropriate column in the WHERE clause",

"Unsupported_Join":
"The required join between tables is not supported due to a lack of common columns, preventing the construction of a valid SQL query",

" Nonexistent_Filter_Value ":
"The mentioned filtering value is not present in the schema, so no SQL can be constructed with the appropriate value in the WHERE clause.",

}
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Figure 11: Example user message and assistant message that are used as fewshots in the question category
classification.

User:

<schema>

## shop

| Column Name | Data Type | Description |
| −−− | −−− | −−− |
| Location | str | Example values: Dinas, Pentre , Porth , Cymmer |
| Open_Date | str | Example values: 11 April , 10 December, 1 January , 10 June |
| Open_Year | str | Example values: 2014, 2006, 2009, 2011 |
| Shop_ID | int | Example values: 1, 2, 3, 4 |
| Shop_Name | str | Example values: Dinas Device, Pentre store , Dinas store , Best Buy |

## stock

| Column Name | Data Type | Description |
| −−− | −−− | −−− |
| Device_ID | int | Example values: 4, 6 |
| Quantity | int | Example values: 100, 110, 134, 56 |
| Shop_ID | int | Example values: 1, 2, 3, 4 |

## device

| Column Name | Data Type | Description |
| −−− | −−− | −−− |
| Applications | str | Example values: 5.0.0.419, 5.0.0.328, 4.7.0.151, 5.0.0.451 |
| Device | str | Example values: Huawei, Apple, BlackBerry Storm 9530, Xiaomi |
| Device_ID | int | Example values: 1, 2, 3, 4 |
| Package_Version | str | Example values: 5.0.0.808, 5.0.0.328, 5.0.0.419, 4.7.0.208 |
| Software_Platform | str | Example values: Android, iOS |

</schema>

<question>
What are the carriers of devices that are not in stock anywhere?
</ question>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Assistant :

<scratch>
To determine if the question is answerable or not , I need to check if the requested information ( carriers of devices ) is present in the given schema.

The schema contains three tables :
1. shop: Contains information about shop locations , opening dates , and IDs.
2. stock : Contains information about device IDs, quantities , and shop IDs.
3. device : Contains information about device details like applications , device name, device ID, package version , and software platform .

The question is asking for the " carriers " of devices that are not in stock anywhere. However, there is no column in the schema that contains information about carriers .

The closest information we have is the "Device" column in the "device" table , which contains the device names like "Huawei", "Apple", "BlackBerry Storm 9530", and "
Xiaomi". But these are not carriers , they are device manufacturers /brands .

Since the requested information ( carriers ) is not present in the schema, this question falls under the "Nonexistent SELECT Column" category.
There are no SQL query can be constructed with the appropriate column in the SELECT clause to retrieve the requested information .
</ scratch >

< result >
Nonexistent_SELECT_Column
</ result >
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columns as inputs to an LLM and prompt it to gen-
erate column names that are semantically similar
but not equivalent. We then construct the value of
ambiguous problematic data by removing the origi-
nal column from the schema and adding the newly
generated Ambiguous SELECT Columns. In stage
2, we construct the assistant’s helpful response us-
ing a template similar to the Ambiguous SELECT
Column case. We generate the assistant’s clarified
SQL by replacing the column in the Where clause
of the original SQL with one of the Ambiguous
SELECT Columns. We then provide this data in
the form of a conversation as input to the LLM and
prompt it to come up with the user clarification re-
sponse. Like in the Ambiguous SELECT Column
case, after generating the user clarification we filter
the data based on some rules. We discard those
samples that contain the new column or miss the
removed column in the clarification. We finally re-
fine the conversation, execute the clarification SQL
to get the results, and generate the natural language
explanation of the results.

E.2 Ambiguous Values Within Column

In stage 1, we extract the values appearing in the
Where clause of the SQLs of all questions in the
Spider dataset. We prompt the LLM to generate
values that are similar but not equivalent to each
other. We then construct the Ambiguous Values
Within Column ambiguous data by constructing a
new schema from the original schema by remov-
ing the original value and adding the newly gener-
ated ambiguous values. For example, for the value
“chemistry” the LLM generates two ambiguous val-
ues, “organic chemistry” and “physical chemistry”.
In stage 2, we construct the assistant’s helpful re-
sponse by using a template that points out the pres-
ence of two Ambiguous SELECT Columns. We
generate the assistant’s clarified SQL by replacing
the original value with one of the ambiguous values.
We then provide this data in the form of a conver-
sation as input to the LLM and prompt it to come
up with the user clarification response. We then
discard those data where the user clarification does
not mention the newly generated values. Finally,
we refine the conversation, execute the clarifica-
tion SQL get the results, and generate the natural
language explanation of the results.

E.3 Ambiguous Filter Criteria

To construct the ambiguous filter criteria data, we
utilized the SPIDER dataset. Instead of modify-

ing the databases, we prompted a Large Language
Model (LLM) to modify the user questions to in-
troduce ambiguity. Specifically, we employed the
following techniques: 1. Replacing specific fil-
ter values with relative terms like "little/large,"
"young/old," "slow/fast," etc. 2. Using descriptive
terms instead of explicitly stating the original filter
value. The modified questions resembled those in
the BIRD dataset that require additional "evidence"
or definitions to convert text to SQL. After mod-
ifying the questions, we prompted the LLM with
different instructions to generate a response from
the database assistant’s perspective, explaining why
the question was ambiguous. Finally, we used the
original (unmodified) user question as the clarified
follow-up question, and the corresponding SQL as
the gold SQL after the user’s clarification.

E.4 Nonexistent SELECT Column

In stage 1, we extract the columns appearing in
the Select clause of the SQLs of all questions in
the Spider dataset and construct new schemas by
removing the columns required for answering the
respective questions. In stage 2, we construct the
assistant’s helpful response using a template that
states that the column required for answering the
question is missing from the schema. We construct
the final SQL by replacing the missing column
from the schema (in the Select clause) with a col-
umn that exists in the schema. We convert this data
into conversational data and prompt the model to
generate the user clarification response. In stage
3, we refine the conversation, execute the clarifica-
tion SQL get the results, and generate the natural
language explanation of the results.

E.5 Nonexistent Filter Value

In stage 1, we extract the values appearing in the
Where clause of the SQLs of all questions in the
Spider dataset. For constructing the problematic
data we construct a new schema by removing the
values required for answering the question from
the schema. In stage 2, we construct the assistant’s
helpful response using a template that mentions that
the value mentioned in the question is not present
in the schema. We construct the clarification SQL
by replacing the removed value with another value
present in the schema. We then convert this data
into conversational data and prompt the LLM to
generate the user clarification response. In stage
3, we refine the conversation, execute the clarifica-
tion SQL get the results, and generate the natural
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language explanation of the results.

E.6 Unsupported Join

In stage 1, to construct the problematic data, we
consider the unique schemas of the Spider dataset
and prompt the LLM to generate a new schema
with at least two new tables and corresponding
columns such that the new tables have a foreign
key relationship with themselves but not with any
other column in the schema. For example, for a
schema containing student information like student
grade, teacher details, etc. the LLM produces two
new tables of library and books that have a foreign
key relationship with each other but not with any
other table in the original schema. In stage 2, we
construct the assistant’s helpful response using a
template stating that the question requires joining
tables of the schema that have no relationship with
each other. We construct a clarification SQL by
using SQL from the Spider dataset corresponding
to the original schema. We then convert this data
into conversational data and prompt the LLM to
generate the user clarification response. In stage
3, we refine the conversation, execute the clarifica-
tion SQL get the results, and generate the natural
language explanation of the results.

E.7 Nonexistent WHERE Column

In stage 1, we extract the columns present in the
Where clause of the SQLs in the Spider dataset and
construct new schemas by removing the columns
required for answering the respective questions.
In stage 2, we construct the assistant’s helpful re-
sponse using a template that mentions that the in-
formation required for answering the question is
not present in the schema. We construct the clar-
ification SQL by finding a SQL from the Spider
dataset whose Select columns match the problem-
atic question and whose Where columns are present
in the schema. We convert this data into a conver-
sational format and prompt the LLM to generate
the user clarification response. In stage 3, we re-
fine the conversation, execute the clarification SQL
get the results, and generate the natural language
explanation of the results.

F Experimental Settings

We use Anthropic AI’s Claude 3 Sonnet via Ama-
zon Bedrock 9 for all our data generation. For the

9https://www.anthropic.com/, https://aws.
amazon.com/bedrock/

zero-shot and the few-shot prompts designed for
evaluating the dataset, we use Claude 3 Sonnet,
Haiku, Llama-3.1 70B, and LLama-3-1-8B with
a greedy decoding strategy, i.e., we set the top-p
value to 1.0 and temperature to 0.0. We imple-
ment the DIN-SQL model using Claude 3.5 Son-
net, Claude 3 Sonnet, Llama3-1-70B, Llama3-1-
8B, and Mixtral-Large-2 by tailoring the original
GPT-4 based prompts and using the same set of
hyperparameters as that used by GPT-4. Future
work can focus on evaluating our dataset with the
DIN-SQL model implemented using GPT-4.

G Dataset Access and Distribution

We will make the code and prompt used to used
for generating and benchmarking the data open-
source under the MIT License10 for the community
to access and contribute. We use the open-source
Spider11 dataset for creating PRACTIQ. The Spider
dataset is governed by CC BY-SA 4.0 license which
allows us to freely use the data for modification.
To the best of our knowledge, we make sure that
the dataset does not contain the private information
of any individual or entity.

10https://opensource.org/license/mit/
11We only used “train_spider.json” and “dev.json” from

Spider in our dataset construction and related experiments.
We did NOT use any data from “train_others.json” or “yelp”.
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