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Abstract

Though English sentences are typically inflex-
ible vis-a-vis word order, constituents often
show far more variability in ordering. One
prominent theory presents the notion that con-
stituent ordering is directly correlated with
constituent weight: a measure of the con-
stituent’s length or complexity. Such the-
ories are interesting in the context of natu-
ral language processing (NLP), because while
recent advances in NLP have led to signif-
icant gains in the performance of large lan-
guage models (LLMs), much remains unclear
about how these models process language, and
how this compares to human language pro-
cessing. In particular, the question remains
whether LLMs display the same patterns with
constituent movement, and may provide in-
sights into existing theories on when and how
the shift occurs in human language. We com-
pare a variety of LLMs with diverse proper-
ties to evaluate broad LLM performance on
four types of constituent movement: heavy
NP shift, particle movement, dative alterna-
tion, and multiple PPs. Despite perform-
ing unexpectedly around particle movement,
LLMs generally align with human preferences
around constituent ordering.’

1 Introduction

Despite the fact that word order in English is typ-
ically strict, constituents in post-verbal positions
can be highly flexible in their ordering (Chom-
sky, 2002; Wasow and Arnold, 2003). A number
of specific phenomena are prime examples of this
movement; we show these in Figure 1.

The cause of this movement has been attributed
to a variety of factors, including lexical bias (Baars
et al., 1975; Hartsuiker et al., 2005; Dell and Re-
ich, 1981), semantic connectedness (Kayne, 1983;

TAll code and data is available at
https://github.com/McGill-NLP/Constituent-Movement.

Behaghel, 1932), and information structure (Lam-
brecht, 1994; Chafe, 1976; Behaghel, 1932; Gun-
del, 1988). However, one of the most prominent
factors, as prior research has suggested, is con-
stituent weight and complexity (Quirk et al., 1975;
Behaghel, 1909; Wasow, 1997a).

As the following examples show, we tend to
prefer sentences where longer and more complex
constituents are moved to the end of the sentence:

®)) a. I'met [the man]np [at the park]pp.
b. *I met [at the park]pp [the man]np.

c. I'met [at the park]pp [the tall man sell-
ing water to marathon runners]np.

d. 71 met [the tall man selling water to

marathon runners]np [at the park]pp.

The typical constituent order shown in (5-a), for
example, is not readily perturbed to the constituent
order shown in (5-b). In sentences (5-c) and (5-d),
however, where the NP is considerably longer and
more complex than the PP, the reverse is true.’

Linguistic theory thus suggests that phrases and
constituents are specifically ordered to be pre-
sented in increasing complexity, or weight; es-
sentially, the larger the constituent, the further
to the end of the sentence we expect it to ap-
pear (Quirk et al., 1975; Behaghel, 1909; Wasow,
1997a; Futrell et al., 2015). Consider the example
in Figure 3:

Other orderings of this sentence, if greatly vi-
olating this principle of weight, would likely be
considered undesirable. This relationship between
the complexity of post-verbal constituents and
their ordering raises several questions:

» What are the exact effects of weight on con-

*Note that, following common linguistics notation con-
ventions, ‘*’ refers to a sentence judged to be highly unac-
ceptable, while ‘?” refers to a sentence whose acceptability is
questionable.
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Heavy NP Shift (HNPS)
(1 a.

I met [the tall man selling water to
marathon runners]np [at the park]pp.

b. Imet [at the park]pp [the tall man sell-
ing water to marathon runners]p.

Particle Movement (PM)
) a. She looked [uplparticte [her
question]yp  on  her computer.
b. She looked [her question]ynp

[up]particle On her computer.

Dative Alternation (DA)

3) a. He sent [her]lndirectobj [a gift]DirectObj
for her birthday.
b. He sent [a giftlpiecon; [tO

her]indirectonj  for  her  birthday.

Multiple PP Shift (MPP)

4 a. I went [to the malllpp [with my
sister|pp on Sunday.
b. I went [with my sister]pp [to the

mall]pp on Sunday.

Figure 1: Examples of constituent movement types:
Heavy NP Shift (HNPS), Particle Movement (PM), Da-
tive Alternation (DA) and Multiple PP Shift (MPP).

stituent ordering, in terms of gradient and
ceiling effects, of increasing complexities on
sentence acceptability?

* Which measures of ‘weight/complexity’ best
explain the effects on constituent ordering ?

* How exactly do LLM preferences around con-
stituent shifting align with human constituent
shifting preferences?

Psycholinguistic research has provided some in-
sight into these questions for human language pro-
cessing, but the same cannot yet be said about
increasingly powerful non-human language pro-
cessors (Medeiros et al., 2021; Wasow, 2002).
Prior research, however, supports the abilities of
modern language models in assigning relative lin-
guistic plausibility scores aligning similar to hu-
man preferences (Linzen et al., 2016; Marvin and

Linzen, 2018). Additionally, we hypothesize that
the human-feedback mechanism incorporated in
instruction-tuned models will present even more
similar judgements.

In this work, we study the behavior of LLMs
with constituent movement in English. We
model Heavy NP Shift (HNPS), Dative Alterna-
tion (DA), Particle Movement (PM), Multiple PP
Shift (MPP)—see Figure 1—as a function of its
weight. Weight corresponds to a number of se-
lected measures: word length, syllable weight, to-
ken length, and modifier weight. We analyze these
measures to determine which best explains con-
stituent ordering effects. Figure 2 outlines our
contributions, which are as follows:

* We evaluate the preferences of models in re-
gards to constituent movement, using a novel
constituent shift dataset containing both syn-
thetic and naturally occurring data.

* We study the motivating factors for con-
stituent ordering preferences in models, over
a variety of candidates.

* We compare the behaviors of models with hu-
man judgements, analyzing correlative trends
between the two.

2 Background

At a high level, English follows a subject-verb-
object (SVO) ordering; beyond this basic struc-
ture, other objects, modifiers, constituents, and
clauses can be added to form more complex sen-
tences (Hengeveld, 1992). The organization and
format of how and when each constituent in a
sentence is delivered, or its ordering, can be
highly flexible (Bakker, 1998; Namboodiripad,
2019, 2017).

Constituent shifting is the process of reordering
the constituents of a sentence, such that the orig-
inal meaning of the sentence is maintained, and
all semantic truth conditions are unchanged. This
work focuses on four specific types of shift, with a
prime commonality: each shift involves the move-
ment of constituents from a post-verbal position
(i.e. appearing after the verb of a sentence) to
another post-verbal position (Wasow and Arnold,
2003; Wasow, 2002).3 Table 1 demonstrates how
we define shifted/unshifted sentences.

3Topicalization, for instance, is not considered, as it can

involve movement from a post-verbal position to a pre-verbal
position, and vice-versa.
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Constituent
Movement Data

Model Shifting Preference

“He met...

a physics student
Vs

% a physics student.”

*a tall, intelligent physics student from his
chemistry lab o
Vs
a tall, intelligent physics student
from his chemistry lab.”

Unshifted: “He met a

physics student at his
lecture.” -
Shifted: “He met at his /s
lecture a physics 4
student.”

Motivating Factors of Model

atall, intelligent physics student

Best Explanation
for Movement?

Human-Model Preference

Preference Correlation

Word Length: 3
Syllable Weight: 4
Token Weight: 3
Modifier Weight: 1

B Human Preference
B oM Preference

(Weight
from his chemistry lab
Word Length: 9
Syllable Weight: 16
Token Weight: 9
Modifier Weight: 4

ce to shifi

[P PR R ———

Figure 2: We categorize our work into three main experiments. Our first experiment evaluates model response to
constituent movement, our second experiment analyzes what motivates LLM constituent ordering preferences, and
our third experiment compares model preferences with human judgements.

Unshifted Form

Shifted Form

S+V+NP+PP

HNPS 1 met [the tall man selling water|np [at the park]pp.

S+V+PP+NP
1 met [at the park]pp [the tall man selling water[yp.

PM S +V + NP + PRT

She looked [up ]prr [her question]yp on her computer.

S +V + PRT + NP
She looked [her question]yp [up]prT on her computer.

S +V + NP1 + NP2

DA He sent [her]yp [a gift]np for her birthday.

S+ V + NP1 + PP
He sent [a gift]yp [to her]pp for her birthday.

S +V +PPI + PP2

MPP
I went [to the mall]pp [with my sister]pp on Sunday.

Table 1: Unshifted versus shifted forms for each shift.

S+ V +PP2 + PPl
I went [with my sister]pp [to the mall]pp on Sunday.

Note that the unshifted and shifted form for MPP is

ambiguous; the unshifted and shifted forms cannot be derived separately given an example.

"In my laboratory we use it as an
easily studied instance of mental
grammar, allowing us to document
[in great detail] [the psychology of
linguistic rules]

[in both normal and neurologically
impaired people] [in much the same way
that biologists focus on the fruit fly
Drosophila to study the machinery of the
genes]."

Figure 3: Example from (Pinker, 2007).

In our experiments, we consider the following
measures of weight: word length, which corre-
sponds to the number of words in a constituent;
syllable weight, which corresponds to the number
of syllables in a constituent; token length, which
refers to the number of tokens in a constituent, de-
termined by respective model tokenizers; modi-
fier weight, which refers to the number of adjec-
tive phrase (AdjP) and prepositional phrase (PP)
modifying the constituent itself (plus 1 to include
the weight of the base constituent itself as normal-
ization).

Absolute weight itself, however, is not the most
effective metric for observing motivations for con-

stituent movement; instead, there is reason to be-
lieve that it is the relative weight of constituents
that determines their ordering (Wasow, 1997b).
For instance, for phrases "with her grandmother"
and "around the garden", the ratio of word lengths
would be 1 (3:3); the ratio of syllables would be 1
(5:5), etc. For phrases "with her grandmother" and
"around the decorated entryway garden with the
large fountain", the ratio of word length would be
% (3:9); the ratio of syllables would be 1% (5:17),
etc. As the ratio of any metric increases beyond
1, we know that the weight of the first constituent
is larger than the second, and thus, we predict that
the motivation to shift will be greater.

3 Related Work

Constituent movement has been the subject of
considerable linguistic literature; we categorize
relevant contributions by our three research ques-
tions.
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3.1 What are the exact effects of weight on
constituent ordering?

Significant prior work has focused on investigat-
ing the effects of weight on constituent ordering
(Arnold et al., 2000; Wasow and Arnold, 2003;
Wasow, 1997a; Arnold et al., 2004; Hawkins,
1995; Behaghel, 1909; Hawkins, 2004); many
contributions find gradient effects by which the
shift becomes more frequent in examined lan-
guage corpora as the relative weight of the rela-
tive constituent changes, suggesting that weight is
the predominant factor in triggering the shift, even
cross-linguistically (Wasow, 1997b; Wasow and
Arnold, 2003; Faghiri and Thuilier, 2018; Wang
and Liu, 2014; Hawkins, 1999; Quirk et al., 1975;
Manetta, 2012). Furthermore, studies with hu-
man participants find similar results, where weight
presents a primary role in the shift (Medeiros et al.,
2021). The study, however, also suggests that
this movement is constrained by ceiling effects,
by which the efficacy of additional weight and
complexity plateaus. More closely relevant to this
work, Futrell and Levy (2018) conduct a simi-
lar analysis on post-verbal constituent movement
using weight as a binary feature (i.e. ‘long’ vs
‘short’), and find similar trends with LSTMs.

3.2 What measure of weight best explains
effects of constituent ordering?

Weight is a measure of a constituent’s complexity
or size, but how best to measure it is less straight-
forward (Chomsky, 2008; Haegeman, 1991; Wa-
sow, 1997a). Related research categorizes and an-
alyzes the effects of three primary measures of
weight on constituent movement, particularly with
HNPS: the word length of the NP, the number
of nodes in the NP’s syntactic structure, and the
number of modifiers applied to the NP (Wasow
and Arnold, 2003; Medeiros et al., 2021; Wasow,
1997b). The analyses found that, although the
word length was statistically the strongest predic-
tor for HNPS, “no single factor can account for
observed constituent order alternation” (Medeiros
et al., 2021, pg.6). Similarly, Wasow and Arnold
(2003) find in a corpus study that for HNPS and
DA, constituent movement was best accounted for
when considering both word length and modifier
weight together, as opposed to either on its own.

3.3 How exactly do LLM preferences around
constituent shifting align with human
constituent shifting preferences?

Research concerning the behaviors of computa-
tional models has also shown that models exhibit
human-like preferences (Fujihara et al., 2022;
Linzen et al., 2016; Marvin and Linzen, 2018; Ka-
math et al., 2024). Notably, prior work shows
models learn syntactic alternations (Wilcox et al.,
2019; Lau et al., 2017); more directly relevant
to us, Futrell and Levy (2018) finds that behav-
iors of LSTMs appear to correlate closely with
observed judgements of humans on correspond-
ing data, suggesting that constituent movement is
motivated similarly in both humans and models.
This work, however, predates preference-aligned
models (Ouyang et al., 2022); we hypothesize
that the behaviors of such models will align even
more closely with human preferences around con-
stituent ordering.

4 Models and Data
4.1 Data

We both generate synthetic data using a template
modified for the various shifts and structures and
mine natural data from the Penn Treebank-2 cor-
pus (Marcus et al., 1995). Each shift we consider
has a standardized form that we can utilize for
both processes, noted in Table 1. We also annotate
for the aforementioned weight measures; syllable
weight is computed using Syllapy;* token weight
is retrieved simultaneously with the model scor-
ing process; modifier weight is counted when con-
structing modifier chunks on constituents.

4.1.1 Synthetic Data

We synthetically generate data using the process
shown in Figure 4 in order to accumulate large
amounts of iteratively more complex data for
model evaluations. Using an overall frame for
the sentence, we alternate subjects, verbs, moving
constituents, and their modifiers; we do this for all
variables on a variety of constituents.

4.1.2 Mined Data

Our synthetic data, however, contains limited syn-
tactic variation, and may not represent naturally
occurring data; thus, we mine from existing data to
ground our results. We use the Penn Treebank-2 to
retrieve sentences following the structure of each

*https://github.com/mholtzscher/syllapy
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He awarded a[ --—- ] trophy [ --- ] to the team.
John = presented shiny cheque with the names at the ceremony
She gifted shiny gold medal with the names of the on the stage
| gave shiny gold award teammates after the tournament
championship with the names of the
teammates in silver writing
Figure 4: The outline for creating synthetic data, using varying modifier weights.
Synthetic Data Mined Data GPT-4 (OpenAl, 2024), due to inaccessibility of
HNPS 3,888 314 their underlying logits.
PM 4,136 131
DA 210304 123 5 Shifting Preference of Models
MPP 180,224 130 5.1 Approach
Total Size 398,552 698

Table 2: Dataset sizes by sentence count. Synthetic
datasets for DA and MPP are larger due to modification
of both constituents, rather than one, leading to more
constituent weight ratios.

shift (Marcus et al., 1995). We collect over 1,000
examples for HNPS and DA, and approximately
400 for PM and MPP, selecting a random sample
of 500 and 400 sentences, respectively. We man-
ually inspect and exclude low-quality datapoints.’
As weight measures, we include constituent word
length, syllable weight, and token length, but ex-
clude modifier weight due to the complexity of ac-
curately extracting this from such data.

4.2 Models

We select a range of open autoregressive models
with diverse attributes: the entire GPT-2 model
family (Radford et al.,, 2019) was analyzed to
study behaviors over scaled model sizes; Llama-3
8B, Llama-3 8B Instruct (Al@Meta, 2024), Mis-
tral v0.3 7B, Mistral v0.3 7B Instruct (Jiang et al.,
2023), OLMo 7B, and OLMo 7B Instruct (Groen-
eveld et al., 2024) were used to compare stan-
dard and instruction-tuned models; BabyFlamingo
and BabyOPT (Warstadt et al., 2023) were used
to study LLMs trained on BabyLM data, a child-
directed dataset to simulate language stimulus dur-
ing the early human language acquisition period.
We do not inspect closed-source models such as

>Low-quality data includes nonsensical or malformed
sentences, unnecessary repetitions, or incorrect modifier
structures.

To observe the effects of constituent weight on
ordering preferences, we compute the difference
in log probabilities assigned by models to shifted
and unshifted sentences at a range of constituent
weight ratios (see Section 2). We begin by extract-
ing log probabilities assigned to each sentence by
the aforementioned models, using the minicons
library (Misra, 2022). This score corresponds to
the model’s judgement of the sentence’s linguis-
tic plausibility, computed with the following equa-
tion:

Mscore(w) = 23;1 102; PM(wt‘wla w2, ..., Wt-1; 0)

Mgcore is the log probability score of the se-
quence W = |wy,wa,...,wy,...,wr]’, where
wy is the token at position ¢. The term Py is the
conditional probability from the model M of to-
ken w; given the preceding tokens, while 6 are the
model parameters. The output of this formula is
the sum of the probabilities of all tokens in the se-
quence, given previous tokens and model parame-
ters, which equates to the overall sequence proba-
bility. The closer Mgcore 1S to O, the more strongly
the model judges the sequence to likely occur in
human language.

Upon computing this score for each minimal
pair of shifted-unshifted sentences (denoted as U
and S), we calculate the difference of the My
for each sentence:

Mpreference = Mscore(U) - Mscore(S)-

This metric aligns closely with the surprisal-
based measure used by Futrell and Levy (2018),
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OLMo 7B Mpreference Score on Heavy NP Shift

olmo_score

75- Ratio Type
—— Modifier Weight Ratio
—— Syllable Weight Ratio

Token Length Ratio

Mean Score

5.0-
— Word Length Ratio

25-

Figure 5: OLMo 7B My,,¢ ference Scores with respect
to different measures of weight.

and is in line with other surprisal-based met-
rics commonly used in work in psycholinguistics
and computational linguistics (Linzen et al., 2016;
Futrell et al., 2018; Wilcox et al., 2018; Schuster
and Linzen, 2022; Baroni, 2022).

Intuitively, the value of My, ¢ ference Captures the
model’s relative preference for the unshifted ver-
sion of the sentence. If this value is >0, the model
has a stronger preference for the unshifted sen-
tence, and if it is <0, the model has a stronger
preference for the shifted version of the sentence;
values approaching 0 suggest no clear preference
between the two.

Though the usage of instruction-tuned mod-
els attracts the idea of directly prompting such
LMs for their linguistic preferences, Hu and Levy
(2023) and Kamath et al. (2024) show results
that suggests meta-linguistic prompting underesti-
mates linguistic capacities; thus, we only consider
raw probability scores in our experimentation.

5.2 Results: Are models motivated by weight
to shift?

We analyze model My, ference SCores by weight
ratios (see Section 2) considering various metric
types in the analysis. Figure 5 shows OLMo 7B
performance on HNPS; see Section A.2.1 for re-
maining models and variables. We observe similar
trends overall across models.

For HNPS, we find that model M, cference
scores initially start positive, i.e., models prefer
unshifted sentence, but converge above 0 as con-
stituent weight ratios increase, indicate some con-
tinued preference for unshifted constituent order-
ings beyond a given point. In the case of DA and
MPP, we see a similar effect of weight My rerence
scores, but with a plateau below zero, indicating

that models eventually converge upon a relative
preference for the shifted version of a sentence.
In the case of PM, however, we see scores initially
drop sharply from around 0, but later somewhat
rise.

6 Motivating Factors of Model
Preference

Literature regarding human language finds vary-
ing levels of importance correlated with differ-
ent measures of constituent weight, particularly in
corpus studies and human judgement tasks (Wa-
sow, 1997a; Wasow and Arnold, 2003; Medeiros
et al., 2021). Whether or not this same trend is
seen with language models is unknown. We con-
duct a regression analysis on the data collected
for the first experiment, using a generalized addi-
tive mixed model (Wood, 2017; Séskuthy, 2017),
with the goal of measuring how significantly each
weight measure both impacts the models’ judge-
ments and serves to fit regression lines on the data.

6.1 Approach

To compare how well different measures of weight
explain shifting preferences, we fit Generalized
Additive Mixed Models, or GAMMSs (Wood,
2017; Séskuthy, 2017), on our My,¢ ference SCOTES
(see Section 5.1) as a function of various weight
measures: word length, token length, syllable
weight, and modifier weight. GAMMs allow for
the fitting of highly non-linear relationships as the
sum of multiple predictor-wise smooth functions:
basis functions that allow for an arbitrary degree
of smoothness. Crucially, aside from providing in-
terpretable measures of goodness of fit, GAMMs
also allow for grouping structures in the data to be
captured as random effects (Wood, 2017, ch.6).
Bearing in mind that multiple measures of
weight may jointly determine the accessibility of
a shift (Wasow, 1997b; Wasow and Arnold, 2003),
we analyze the relative importance of each weight
measure in the following manner. For each model,
first, we fit a GAMM on the model’s My, ference
scores as a function of all weight predictors, with
verb-wise random intercepts and slopes. We then
iteratively ablate each weight predictor while re-
taining all others, and compare the quality of fit
yielded by the full model with that of the ablated
model. Intuitively, this provides an indication of
how important the dropped predictor is for the
LLM: it captures how much less of the LLM’s be-
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Model Var  Full Token,, Word,, Syll,;, Mods,,
GPT-2 Medium .654 .629 616 .540 .635
Llama-3 HNPS 542 524 519 485 .538
Llama-3 Instruct 452 438 408 359 451
BabyLlama 527 514 466 415 .509
GPT-2 Medium .605 .602 581 .534 .580
Llama-3 PM  .608 .603 .586 .564 .590
Llama-3 Instruct 627 619 .599 .555 .602
BabyLlama 719 702 .663 .651 701
GPT-2 Medium 571 .561 552 .568 .568
Llama-3 DA 554 544 532 .538 .549
Llama-3 Instruct 503 493 490 .486 496
BabyLlama .630 .616 .603 .622 .623
GPT-2 Medium .368 309 302 .300 .356
Llama-3 MPP 358 316 321 271 351
Llama-3 Instruct 320 284 291 .208 313
BabyLlama 310 297 .298 281 .306

Table 3: R-squared scores for a subset of models;
see full table in Appendix A.1. Full denotes R-
squared values from GAMMs with all weight measure
predictors included, while [Metric|,, denotes the R-
squared score when excluding the metric; a larger dif-
ference compared to the original R-squared score de-
notes higher significance in contributing to the overall
R-squared. Numbers bolded denote high R-sq.; num-
bers underlined denote low R-sq.

haviour is explained when information about that
given measure of weight is ignored.

6.2 Results: Which measure of weight best
explains shifting?

Table 3 presents a subset of the results of our
regression analysis (full results in Appendix Ta-
ble 5). Crucially, we find that syllable weight is
often the most important predictor of LLM behav-
ior around constituent ordering preference, since
the drop in R-squared scores is highest when sylla-
ble weight is not used. For DA, word length seems
to be the best predictor.

We find that GPT-2 Medium achieves the high-
est R-squared overall on both HNPS and MPP.
Further, contrary to our hypotheses, across almost
all shift types, instruction-tuned models consis-
tently achieve lower R-squared scores than their
base model counterparts. Table 3, for example,
shows these results for Llama-3 and Llama-3 In-
struct; see Appendix A.2.1 for remaining plots on
synthetic data. The BabyLM models also present
high R-squared scores on both PM and DA, with
BabyLlama yielding the highest R-squared val-
ues (see Table 3 for BabyLlama results and Ap-
pendix A.2.1 for BabyOPT results). Finally, de-
spite the high performance of GPT-2 Medium,
we do not observe consistent improvements in R-
squared values as model sizes scale.

Correlation Between OLMo 7B and Human Responses on HNPS

OLMo 7B Preference Score

Human Preference Score

Figure 6: Scatterplot of human judgment scores and
OLMo 7B Mpy¢ference scores on Heavy NP Shift data.

7 Human-Model Preference Correlation

7.1 Approach

To adequately compare the behaviors of LLMs
with those of humans, a direct study of preferences
on identical data points is necessary. We collect
human judgements on a subset of data presented
to models; though human judgements and model
scores are not identical metrics, they can act as
proxies when comparing relative trends.

We conduct a crowdsourced study through Pro-
lific, collecting judgments from 126 native English
speakers residing in Anglophone countries, on 500
sentence pairs. Each participant is presented 25
sentence pairs and asked to judge how natural they
sound in relation to each other, assigning a score
between 1 and 7; 1 corresponds to the first sen-
tence presented appearing far more natural than
the second, and 7 the reverse. We exclude data-
points with low inter-annotator agreement to min-
imize noise.®

7.2 Results: Do LLM and human preferences
correlate?

To analyze how this human judgment data com-
pares with model results, we compute the Spear-
man correlation between the average human score
for each data point and the model’s My, .cference
score. We present these scores in Table 4. We also
plot model scores against human judgment data
to observe the correlation visually; these plots are
presented in Figure 6 and Section A.3.
Comparing preferences of humans and models
on a statistical level introduces interesting find-

®Datapoints with standard deviation of participation re-
sponses >1.5, as well as those from participants who consis-
tently failed attention checks, were excluded.
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GPT-2 GPT-2Med GPT-2Large GPT-2XL BabyOPT BabyLlama Llama-3 Llama-31

Mistral v0.3 Mistral v0.31 OLMo OLMol

HNPS 410 440 342 .390 261 420 428 .386 414 344 509 431
PM 212 125 213 295 .196 .261 .305 293 315 347 430 431
DA .651 .565 .505 541 256 391 .600 S11 .524 449 494 478

mMpPpP 371 .395 .361 579 233 357 402 222 A87 412 513 263

Table 4: Spearman correlation values (absolute) between LLMs and humans on sentence judgement tasks.

ings. Notably, the GPT-2 and OLMo 7B classes
of models appear to align most closely with hu-
man behaviors, achieving the highest correlation
scores across all shift types.

Remarkably, most of the more highly corre-
lated models are the base versions of their respec-
tive model category—the instruction-tuned mod-
els quite often performed in manners less cor-
related with human preferences than their base-
model counterparts. This contrast is most stark
in the case of MPP. Interestingly, no clear trend
in alignment can be seen in the GPT-2 family as
model sizes scale on any of the judgement tasks.
We present remaining correlation figures in Sec-
tion A.3. Crucially, correlations between model
scores and human judgments are particularly low
on the PM data.

8 Discussion

8.1 What are the exact effects of weight on

constituent ordering?

In Figure 5 and Appendix A.2.1, we observe con-
verging effects as weight increases, suggesting
that prior theories defining weight as a prime fac-
tor in motivating the shift hold with computational
models as well. Further, we observe, specifically
with PM, that weight, beyond a certain threshold,
begins to detriment motivation for shifting.

We observe similar effects on the scraped cor-
pus data, in Appendix A.2.2, though with more
noise. Given the specificity of the data itself, be-
ing rooted in financial reports and news articles,
some noise and outliers were expected, and in
some cases, observable trends remain. Similar to
the synthetic data plots, we see convergence on
HNPS, and some on MPP, as well as an initial drop
followed by a rise in My ference scores for PM.

8.2 'What measure of weight best explains
effects of constituent ordering?

The syllable weight was the best measure of
weight for explaining motivations to shift in
LLMs. This raises an obvious question—-why
is syllable weight a more effective predictor of

model behavior than token weight, which would
intuitively be most aligned with a model’s process-
ing of weight and complexity? This finding acts as
initial evidence that models may induce linguistic
information not just at the token level, but also im-
plicitly at the level of syllables.’

8.3 How exactly do LLM preferences around
constituent shifting align with human
constituent shifting preferences?

Broadly speaking, a clear trend is maintained
across humans and models, following what was
presented by Futrell and Levy (2018) in their anal-
ysis. Where human language sees motivation for
movement with increasing weight, model behavior
follows closely. Our experiment, which includes
graded data beyond binary weight categorizations,
and a wider range of models, yields relatively high
correlation effects between preferences of models
and humans, as presented in Table 4—suggesting
noticeably similar behaviors between the two on
particular linguistic tendencies, with the notable
exception of particle movement.

Interestingly, we observe an unexpected trend
where instruction-tuned models, which consis-
tently correlate less with human data than their
corresponding base model, as well as, quite of-
ten, yield lower R-squared scores. This runs
against our initial hypothesis around instruction-
tuned models, and suggests inadequacy in provid-
ing consistent and explainable trends compared to
base models.

8.4 Future Work

Our findings suggest that even though newer mod-
els are equipped with more parameters, training
data, and the human-feedback mechanism, they
fail to align better with human linguistic prefer-
ences than their earlier counterparts, raising ques-

" Admittedly, however, this evidence is not conclusive
proof of such ‘knowledge’; it is also possible that syllabic
information fits the data best simply because of how much it
varies—syllabic information is more likely to be a signal for
specific words and phrases, due to the fact that while any two
tokens could have the same ratio of tokens between them,
they may vary in their syllable weights.
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tions for future study. Equally, it invites further
research into how models generate such sentences
in standard conversational usage. We also wish
to study further the motivations of LLMs in con-
stituent movement, primarily regarding analysis of
theories suggesting disparities between ordering
preference motivations of listeners and speakers
(Wasow, 2002).

9 Conclusions

In this work, we present a thorough analysis of
the behaviors of LLMs in response to constituent
movement, using both a novel set of nearly 400K
minimal pairs of variably ordered sentences, as
well as naturally occurring data. We collect hu-
man judgements and model preference scores and
observe comparable trends between the behaviors
of humans and models. Such comparisons indi-
cate that humans and LLMs largely hold simi-
lar linguistic preferences around constituent order-
ing, with the exception of particle movement. Our
findings—and in particular, the surprising gap we
find between instruction-tuned models and their
vanilla counterparts—invite further research into
when and how linguistic preferences of models
and humans align.

10 Limitations

We only focus on constituent movement in En-
glish, even though this phenomena is known to
manifest cross-linguistically (Faghiri and Thuilier,
2018; Wang and Liu, 2014; Hawkins, 1999; Quirk
et al., 1975; Manetta, 2012; Fujihara et al., 2022).
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A Appendix
A.1 Regression Table

Model Var Full Token,, Word,, Syll,, Mods,,
GPT-2 PM  0.543 0.533 0.515 0457 0.517
GPT-2 Med PM  0.605 0.602 0.581 0.534  0.580
GPT-2 Large PM  0.611 0.605 0.579  0.556  0.585
GPT-2 XL PM  0.613 0.610 0.583  0.561 0.590
Llama-3 PM  0.608 0.603 0.586  0.564  0.590
Llama-3 1 PM  0.627 0.619 0.599  0.555 0.602
BabyOPT PM 0562 0.550 0.534  0.507 0.542
BabyLlama PM  0.719 0.702 0.663  0.651 0.701
Mistral v0.3 PM  0.606 0.588 0.563  0.565 0.588
Mistral v0.31  PM  0.630  0.618 0.585  0.601 0.618
OLMo PM  0.655 0.639 0.623  0.612  0.637
OLMo I PM  0.511 0.505 0.494 0469 0.481
GPT-2 MPP  0.379  0.325 0.337 0264 0.370
GPT-2 Med MPP 0.368  0.309 0.302 0300 0.356
GPT-2 Large MPP 0.311 0.265 0.273 0213  0.302
GPT-2 XL MPP  0.323 0.249 0.260 0.244 0.310
Llama-3 MPP 0.358 0.316 0.321 0.271 0.351
Llama-3 I MPP 0320 0.284 0.291 0.208 0.313
BabyOPT MPP  0.441 0.433 0435 0.368 0.432
BabyLlama MPP  0.310 0.297 0.298  0.281 0.306
Mistral v0.3 MPP  0.325 0.302 0.315 0.239 0314
Mistral v0.31 MPP  0.269  0.238 0.258  0.186  0.256
OLMo MPP  0.306 0.303 0.296  0.222 0.294
OLMo I MPP  0.263 0.257 0.253  0.237 0.250
GPT-2 HNPS 0.356  0.343 0.332 0278 0.349
GPT-2Med HNPS 0.654 0.629 0.616  0.540 0.635
GPT-2 Large HNPS 0.589  0.570 0.554 0430 0.585
GPT-2 XL HNPS 0.592  0.587 0.557  0.527 0.589
Llama-3 HNPS 0.542 0.524 0.519 0485 0.538
Llama-3 1 HNPS 0.452 0438 0.408 0359 0451
BabyOPT HNPS 0.491 0.457 0472 0421 0.450
BabyLlama HNPS 0.527 0.514 0.466 0415 0.509
Mistral v0.3 HNPS 0.488  0.476 0.461 0.451 0.458
Mistral v0.31 HNPS 0467  0.441 0.436 0438 0434
OLMo HNPS 0.518  0.500 0.468 0443 0513
OLMo I HNPS 0411 0.391 0.377  0.290 0.395
GPT-2 DA 0.562  0.554 0.542  0.545 0.549
GPT-2 Med DA  0.571 0.561 0.552  0.568 0.568
GPT-2 Large DA 0.541 0.528 0.506  0.533  0.533
GPT-2 XL DA  0.561 0.553 0.540  0.552  0.555
Llama-3 DA  0.554 0.544 0.532  0.538 0.549
Llama-3 1 DA 0.503 0.493 0.490 0486 0.496
BabyOPT DA 0.252 0.242 0.238  0.241 0.237
BabyLlama DA  0.630 0.616 0.603  0.622  0.623
Mistral v0.3 DA  0.540  0.529 0.526  0.528 0.534
Mistral v0.31T DA 0478  0.469 0.461 0.467  0.467
OLMo DA 0467  0.460 0458 0449 0459
OLMo I DA 0392 0.384 0.388 0.374  0.385

Table 5: R-sq. scores for each model on each variable. [Metric|,, denotes the R-sq. score when excluding the
metric; a larger difference from the original score denotes higher significance in contributing to the overall score.
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A.2 Model Behavior Plots
A.2.1 Synthetic Data

Model Preference Scores on Heavy NP Shift
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Model Preference Scores on Particle Movement
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A.2.2 Mined Data
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Model Preference Scores on Dative Alternation
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Mean Score

Mean Score

Model Preference Scores on Mined Heavy NP Shift
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Model Preference Scores on Mined Dative Alternation
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Model Preference Scores on Mined Multiple PPs
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Correlation Between Llama-3 Instruct and Human Responses on D/
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