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Abstract

The recent success of specialized Large Lan-
guage Models (LLMs) in domains such as
mathematical reasoning and coding has led to
growing interest in methods for merging these
expert LLMs into a unified Mixture-of-Experts
(MoE) model, with the goal of enhancing per-
formance in each domain while retaining effec-
tiveness on general tasks. However, the effec-
tive merging of expert models remains an open
challenge, especially for models with highly di-
vergent weight parameters or different architec-
tures. State-of-the-art MoE merging methods
only work with homogeneous model architec-
tures and rely on simple unweighted averaging
to merge expert layers, which does not address
parameter interference and requires extensive
fine-tuning of the merged MoE to restore per-
formance. To address these limitations, this
paper introduces new MoE merging techniques,
including strategies to mitigate parameter inter-
ference, routing heuristics to reduce the need
for MoE fine-tuning, and a novel method for
merging experts with different architectures.
Extensive experiments across multiple domains
demonstrate the effectiveness of our proposed
methods, reducing fine-tuning costs, improving
performance over state-of-the-art methods, and
expanding the applicability of MoE merging.

1 Introduction

Large language models (LLMs) pretrained on a
wide-variety of corpora have achieved notable suc-
cess in multiple tasks (Touvron et al., 2023; Ope-
nAI, 2023; Brown et al., 2020; Liu et al., 2024a).
With significant progress, there is increasing in-
terest in how to continuously improve the per-
formance of LLMs in new domains, including
math (Yu et al., 2023), code (Roziere et al., 2023),
Wikipedia knowledge (Shao et al., 2024), or le-
gal domains (Cui et al., 2023). One straightfor-
ward approach is through continual pretraining
(CPT) on domain-specific data, which, however,
is challenging for multiple target domains, as it can

cause catastrophic forgetting on previously learned
tasks (Luo et al., 2023).

An alternative approach is Mixture-of-Experts
(MoE) merging, where dense experts are first CPT-
ed in parallel for each domain and then merged
into a unified MoE model, usually by keeping feed-
forward neural network (FFN) layers separate and
averaging non-FFN layers (Sukhbaatar et al., 2024;
Kang et al., 2024). Compared with dense models
of similar size, the MoE model uses just a subset of
parameters during inference by learning to route to-
kens to the top few experts, thus reducing inference
costs. Unlike training an MoE model from scratch,
MoE merging offers modularity, as individual ex-
perts are domain-specialized, and is substantially
less expensive, as CPT-ing experts in parallel re-
quires less compute than training the entire MoE
on large datasets from the beginning (Sukhbaatar
et al., 2024).

In this paper, we investigate how to effectively
merge different domain expert models into a unified
MoE model. The current state-of-the-art (SoTA)
MoE merging approach, such as Branch-Train-Mix
(BTX) (Sukhbaatar et al., 2024) assumes experts
are branched from the same ancestor model and
merges experts by simply unweighted averaging
the non-FFN layers. However, as experts diverge
in the parameter space, for example by branching
from different ancestors or by training on aggres-
sively different data, unweighted averaging may
not effectively handle parameter interference such
as sign conflicts (Yu et al., 2024; Yadav et al.,
2024). As a result, the merged MoE may under-
perform and will require a significant amount of
additional fine-tuning to recover in performance,
which is both expensive and could be impractical
when the experts’ training data is not publicly avail-
able. Furthermore, existing MoE merging methods
cannot be directly used to merge heterogeneous
experts with different architectures, which could be
the case in practice, as increasingly more experts
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are provided by separate teams, such as CodeL-
lama (Roziere et al., 2023) and Olmo (Groeneveld
et al., 2024). Therefore, it is still an open ques-
tion how to effectively merge homogeneous and
heterogeneous experts into an MoE combining the
benefits of each.

To enable the use of diverse expert models, our
work addresses the above limitations via new MoE
merging methodologies for both homogeneous and
heterogeneous experts. In summary, our work in-
troduces three main contributions:

• We utilize advanced merging methods that ad-
dress parameter interference, demonstrating their
superiority over unweighted averaging in homo-
geneous expert merging, particularly in scenar-
ios with limited resources for post-merging MoE
fine-tuning.

• We propose a perplexity-based heuristic for rout-
ing token sequences to domain-specific experts
in low-resource environments where MoE fine-
tuning is not feasible.

• We develop a novel approach to merge experts
with different architectures into a single MoE,
which learns to route token sequences dynami-
cally to the appropriate expert.

Through extensive experiments and ablation
studies across benchmarks in mathematical rea-
soning, programming, and general knowledge, we
show that our proposed methodologies outperform
previous state-of-the-art methods and extend the
practical applications of MoE merging.

2 Background and Related Work

2.1 Dense Model Merging

Dense merging methods combine multiple dense
models into one to achieve diverse capabilities
(Wortsman et al., 2022; Ilharco et al., 2022; God-
dard et al., 2024; Jin et al., 2022; Matena and Raffel,
2022; Roberts et al., 2024). Most approaches fo-
cus on merging homogeneous dense models into
another dense model. For example, average merg-
ing (Wortsman et al., 2022) averages model pa-
rameters, while task vector merging (Ilharco et al.,
2022) adds the unweighted sum of task vectors
(the difference between base and expert parame-
ters) back to the dense model with scaling. Other
work determines task vector weights instead of us-
ing an unweighted sum (Jin et al., 2022; Matena

and Raffel, 2022). SoTA methods like Dare and
Ties (Yadav et al., 2024; Yu et al., 2024) trim the
task vector to resolve parameter interference: Dare
trims the task vector randomly and rescales, while
Ties sets vector parameters to zero by magnitude
and adjusts signs to reduce conflicts.

In addition to homogeneous model merging,
Roberts et al. (2024) propose merging heteroge-
neous models into a dense model using projectors,
while Wan et al. (2024) apply knowledge distilla-
tion to fuse heterogeneous models. In this work,
we introduce a more efficient method for merging
experts with limited or no further fine-tuning and,
unlike previous work focusing on dense models, we
explore merging homogeneous and heterogeneous
experts into an MoE model.

2.2 MoE Training and Merging

MoE architectures enable quicker inference with
a certain parameter count by introducing Sparse
MoE layers, where a router mechanism assigns to-
kens to the top-K expert FFNs (usually 1 or 2) in
parallel (Fedus et al., 2022; Shazeer et al., 2017;
Zhang et al., 2022). Most MoE training approaches,
known as upcycling, train the entire model from
scratch to handle multiple tasks (Komatsuzaki et al.,
2022; Jiang et al., 2024; Dou et al., 2024; Dai
et al., 2024). These methods first initialize the
MoE model from a pretrained base model and then
train it on the entire dataset. However, due to the
costly communication between GPUs, the upcy-
cling method introduces significant computational
overhead (Sukhbaatar et al., 2024; Li et al., 2024b).
To address this, methods like Branch-Train-Merge
(BTM) (Gururangan et al., 2023; Li et al., 2022) av-
erage model outputs from different experts, while
Branch-Train-Mix (BTX) (Sukhbaatar et al., 2024)
branches the base model, trains each on different
domains, and merges them into a unified MoE.
BTX is shown to be more effective than BTM
as well as dense CPT and MoE upcycling base-
lines. Another recent approach, Self-MoE (Kang
et al., 2024), uses low-rank adaptation (LoRA) (Hu
et al., 2021) to fine-tune experts on generated syn-
thetic data (Liu et al., 2024b) and combines trained
adapters into an MoE. To our knowledge, we are
the first to introduce a framework for merging het-
erogeneous models into an MoE.
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Figure 1: Overview of the proposed MoE framework
for homogeneous model merging. We replace aver-
aging with Dare or Ties merging to reduce parameter
interference. Additionally, we introduce novel routing
heuristics to enhance performance without fine-tuning.

3 Methodology

We define our research problem as follows:
Given l dense expert models with parameters
[θ1, θ2, . . . , θl], each pretrained on different do-
mains, we aim to propose an efficient merging
method to combine these dense models into an
MoE with parameters θm = Merge(θ1, θ2, . . . , θl)
, optimizing performance across all domains.

We now present our approach for MoE merging
with homogeneous and heterogeneous expert mod-
els. First, for MoE merging with homogeneous ex-
perts (Section 3.1), we propose replacing existing
averaging with more advanced merging methods
to deal with parameter interference, and introduce
sequence-level routing heuristics to enhance MoE
performance without post-merge fine-tuning. Sec-
ond, we introduce a novel framework for MoE
merging with heterogeneous experts (Section 3.2),
which uses projectors to unify expert inputs and
outputs, and a sequence-level router.

3.1 Homogeneous Model Merging

First, we describe the basic merging setup (Sec-
tion 3.1.1) and then summarize our extensions to re-
solve parameter interference (Section 3.1.2) and ad-
dress the need for MoE fine-tuning (Section 3.1.3).
The overall pipeline is visualized in Figure 1.

3.1.1 Merging Setup
Our merging setup is similar to the
BTX (Sukhbaatar et al., 2024), where it
merges all non-FFN layers (embedding, attention,
normalization, and head) of experts by unweighted

averaging and keeps the FFNs separate. As in
standard MoE architectures, a router network,
implemented as a Multilayer Perceptron (MLP), is
inserted between the attention and FFN layers for
token-level routing, selecting the top K (usually
1 or 2) experts for each layer among all l experts.
The output of FFN layers FFMoE(v) of token
embedding v is formulated as:

FFMoE(v) =
K∑

i=1

SoftMax(top-K(θrv))FFi(v)

where θr is the parameter of the router network and
FFi(v) is the output of each FFN experts for token
v. After merging experts into a single MoE, BTX
fine-tunes all parameters, including the router pa-
rameters on a mix of training data from all experts.

3.1.2 Addressing Parameter Interference
The major pitfall of the unweighted merging is that
there exists parameter interference, as explored in
the previous work on dense model merging (Yu
et al., 2024; Yadav et al., 2024). As suggested in
Figure 2, when influential parameters (large magni-
tude parameters) in the task vector merge with re-
dundant parameters (small magnitude parameters)
or parameters with sign conflict, simple averaging
will output a small magnitude parameter, which
may reduce the effect of the original task vector.

no
interference

averaging

redundant conflict

Figure 2: Different types of parameter interference and
merged outputs produced by simple averaging.

In contrast to BTX, we mitigate model interfer-
ence by employing previous SoTA methods in this
MoE setup, namely Dare and Ties. First, we cal-
culate the task vector τi = θb − θi with the base
model parameter θb and the parameter θi for the
model CPTed on domain i. For Ties merging, we
first drop the bottom (100− p)% of the redundant
parameters (smallest magnitude) by resetting them
to 0. For each parameter, we determine the sign
with the highest total magnitude in all task vectors
and sum all task vectors together to τm but only by
keeping the parameter values whose signs are the
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same as the determined sign. For Dare merging,
we randomly drop the (100− p)% parameters. We
rescale each task vector with τi =

τi
0.01p . We sum

all task vectors to τm. Finally, we add the summed
task vector back to the base model with the scal-
ing term λ and obtain the merged layer parameters:
θm = θb+λ·τm. We expect that the drop operation
in both methods will address the parameter inter-
ference issue, as revealed in dense model merging,
and produce a consistent performance boost (Yu
et al., 2024; Yadav et al., 2024).

Similar to BTX, after combining each expert
model into an MoE, we fine-tune all parameters
in the MoE in the fine-tuning stage. By address-
ing parameter interference, our approach achieves
performance improvements over BTX especially
in earlier stages of fine-tuning. Next, we describe
how to further reduce the fine-tuning needs.

3.1.3 Reducing Fine-Tuning Needs
Fine-tuning MoEs is expensive due to the com-
munication cost between GPUs (Sukhbaatar et al.,
2024). Previous MoE merging methods require
substantial fine-tuning of the MoE parameters to
train the router network. In this section, we pro-
pose two techniques to reduce reliance on MoE
fine-tuning, namely a perplexity-based routing and
separating the attention layers.

The overall MoE pipeline after merging is illus-
trated in Figure 1, but we replace the router net-
work with our routing heuristic to determine the
expert selection. Additionally, we separate atten-
tion layers without merging them. For each input,
the routing heuristic selects the appropriate experts
and assigns their weights. The input is then pro-
cessed by the chosen experts, and their outputs are
combined using weights.

Routing Heuristics Our goal is to develop rout-
ing heuristics that replace the routing network with-
out accessing the training data. We propose a
sequence-level heuristics: perplexity (PPL) routing
with only access to the inference sentence.

Our approach assesses the confidence of expert
models by utilizing perplexity (PPL) to estimate
their uncertainty. We then select the experts with
the lowest PPL values, indicating higher confidence
(Jelinek et al., 1977). Formally, with the infer-
ence input xinf with t tokens and the expert pa-
rameter θi for expert i, we compute the PPL value
PPL(xinf , θi) as below:

PPL(xinf | θi) = exp
(
−1

t

∑t
j=1 logP (xj | x<j , θi)

)

where P (xj | x<j , θi) is the probability assigned
by model θi on j-th token, given previous tokens.

Since a higher PPL indicates greater uncertainty,
we use the reciprocal of PPL values to represent
the model’s confidence. With the top-K routing,
the selected experts and their weights α can be
computed as follows:

α = SoftMax(top-K( 1
PPL(xinf |θ1) , . . . ,

1
PPL(xinf |θl)))

Additionally, we also propose another routing
heuristic based on the task vector and we present
the details of this heuristic in Appendix C. With the
routing heuristics and the corresponding computed
weights from the heuristic, we will present the de-
tailed merging process to form the MoE without
further fine-tuning.

Separating attention layers We hypothesize
that by merging attention layers, BTX creates in-
consistency between the attention and FFN outputs.
Specifically, the merged attention layers are influ-
enced by all l task vectors from the dense experts,
while the top-k routing method limits the FFN out-
put to only k task vectors, leading to mismatched
outputs. To address this, we consider keeping ex-
perts’ attention layers as separate, similar to FFN.
This ensures that both the attention and FFN layers
come from the same expert, eliminating discrepan-
cies from inconsistent task vector counts.

3.2 Heterogeneous Model Merging

This section describes how to merge models with
different architectures into a unified MoE. Previous
MoE merging techniques cannot be directly used in
this setting, as it is not possible to merge non-FFN
networks layer by layer when experts have differ-
ent numbers of layers or different layer shapes. To
resolve this challenge, we propose a new merg-
ing method, which introduces projector layers and
sequence-level routing as shown in Figure 3.

First, we denote the hidden dimension of all l
experts as d1, d2 . . . , dl, and the maximum dimen-
sion among them is dm. Suppose that we have a
vocabulary V and an input sentence with tokens
[v1, v2 . . . , vt]. For the shared embedding layer
Me, it maps the token vi in the sentence to em-
bedding ei ∈ Rdm and the shared head layer is
the network Mh : Rdm → R|V|, which maps the
weighted sum of projectors back to the probabil-
ity distribution of tokens in the vocabulary. The
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Figure 3: Overview of the proposed MoE framework
for heterogeneous experts. Each color represents one
heterogeneous expert. n1, · · · , n4 refers to the number
of layers in each expert.

embedding and head layer parameters are initial-
ized from an averaging of the embedding and head
layers of each expert. For experts with a hidden
dimension less than dm, we add padding zeros for
their embedding and head layers before averaging.

Since we do not merge attention layers due to
heterogeneous experts, all tokens must be routed
to the same expert. Otherwise, the attention lay-
ers cannot perform self-attention, as they require
access to every token. Hence, we average the to-
ken embeddings and use the router to perform the
sequence-level routing. Formally, for top-K rout-
ing with router parameters θr, the router computes
the model weights as follows:

α = SoftMax(top-K(θravg(e1, e2, . . . , et)))

For projectors: Proj-in and Proj-out, for each ex-
pert, randomly initialized MLP layers, they project
the embedding outputs to the dimension of each
expert, and project the expert output back to the
maximum dimension. For i-th expert, we define:

Proj-in layer : Rdm → Rdi , Proj-out layer : Rdi → Rdm

After using the selected K experts to process
the input sequences and translating their outputs to
the representation ri via the Proj-out layer (with
dimension dm), we combine the representations
using the router’s weights:

∑K
i=1 αiri. The com-

bined representation is then fed into the head layer
to obtain the token probabilities.

After merging the heterogeneous experts into the
MoE model, we choose an arbitrary tokenizer from

one expert, following previous work (Roberts et al.,
2024) and fine-tune all parameters.

4 Experiments Setup and Model Analysis

Through our extensive empirical analysis, we aim
to evaluate our frameworks in the settting of homo-
geneous experts and heterogeneous experts.

4.1 Evaluation Dataset
We evaluate our proposed methodology on 6
datasets from three domains, as in the previous
work (Sukhbaatar et al., 2024). For math reasoning,
we choose GSM8K (8-shot) and MATH (4-shot)
(Cobbe et al., 2021; Hendrycks et al., 2021). For
code generation, we choose MBPP (0-shot) and Hu-
manEval (0-shot) (Chen et al., 2021; Austin et al.,
2021). For world knowledge, we choose Natu-
ral Questions (NQ, 5-shot) and TriviaQA (5-shot)
(Kwiatkowski et al., 2019; Joshi et al., 2017).

4.2 Model Configuration
This section describes the base model and experts
discussed in our experiments:

• Base Model (Base-1B): This is our base model
with 1B parameters and Llama-like architecture.
We pretrain Base-1B from scratch with 250 bil-
lion (250B) tokens from the following datasets
from the RedPajama dataset (Together Com-
puter, 2023): Arxiv, CommonCrawl, C4, Stack-
Exchange data and the first half of the WikiPedia
data in the RedPajama dataset.

• Math Expert: We CPT the Base model on the
OpenWebMath data for 100B tokens (Paster
et al., 2023).

• Code Expert: We use the GitHub data in RedPa-
jama to CPT the Base model for 100B tokens.

• Knowledge Expert: We CPT the Base-1B model
on the second half of the Wikipedia data in the
RedPajama dataset for 100B tokens.

• Math TinyLlama and Math Olmo: We CPT
the TinyLlama-1.1B model (Zhang et al., 2024)
and Olmo-1B model (Groeneveld et al., 2024) on
the same data mixture of the Math Expert.

• Mixture of Experts (MoE): For homogeneous
model merging, we combine three experts (Math
Expert, Code Expert, Knowledge Expert) and
one base model (Base-1B) into an MoE. For het-
erogeneous merging, we combine Code Expert,
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Knowledge Expert, Base-1B, and either Math
TinyLlama or Math Olmo. MoE fine-tuning is
performed on all data sources from the base and
expert models, using an additional 40B tokens.
Detailed sampling ratios for pretraining and fine-
tuning are provided in Appendix B.

We present the details of model architecture for
each expert in Appendix A.

4.3 Baseline Methods

To demonstrate the effectiveness of our methodol-
ogy, we compare the performance of the merged
4-expert MoE models with several other baselines.

• Base & Experts: The dense base and expert
models in Section 4.2.

• BTX (Sukhbaatar et al., 2024): The MoE model
derived from the BTX pipeline with average
merging and post-merge fine-tuning.

• Random Routing: The average merged MoE
with randomly initialized router.

• Router Fine-tuning: The MoE model derived
from the BTX pipeline but only fine-tune the
parameters in the router network.

• 3-expert MoE: To demonstrate the functionality
of Math Olmo or TinyLlama in heterogeneous ex-
pert merging, we prepare 3-expert MoE models
(Base, Knowledge Expert, Code Expert), fine-
tuned either on the full data source (including
math) or only on code- and knowledge-related
data. We merge these models using the BTX
method, naming them 3-expert MoE (same
data) and 3-expert MoE (w/o math).

• Dare Dense (Yu et al., 2024), Ties Dense (Yadav
et al., 2024): Advanced dense model merging
method. We apply Dare or Ties to merge four
LMs to one dense model.

The details of the model configuration of the
baseline methods are included in Appendix A.

4.4 Similarity of Model Parameters

Before presenting the performance of our pro-
posed methodology, we first analyze the similari-
ties in model parameters across different experts to
demonstrate the necessity for alternatives to aver-
age merging. Previous work assumes that parame-
ters in attention layers are less domain-specialized,

leading to the use of simple averaging when com-
bining non-FFN layers (Sukhbaatar et al., 2024).
Our analysis aims to verify whether this assumption
holds true for experts trained on different domains.

To quantify the degree of domain specialization
in the model layers, we first extract the task vec-
tors for each layer from our Math and Code Ex-
pert models. We then concatenate the task vectors
from the attention layers and FFNs into two long
vectors. Next, we calculate the cosine similarity
between the two concatenated task vectors. The
cosine similarity for the task vectors of the FFNs
and self-attention layers is visualized separately in
Figure 4.
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Figure 4: Similarity of task vector for attention and
FFNs layers for Math and Code Expert experts. We
average the similarity of attentions or FFNs in one de-
coder layers as the overall similarity for each layer.

We observe that the task vectors from both layers
exhibit low similarity, suggesting that the assump-
tion of similar attention layers does not consistently
hold and parameter interference may occur. This
analysis demonstrates the need for more advanced
merging methods, rather than averaging, for homo-
geneous model merging.

5 Results

5.1 Homogeneous Model Merging

5.1.1 Averaging vs. Dare / Ties

Replacing simple averaging with Dare or Ties
merging obtains better performance. In this
section, we demonstrate the superiority of our pro-
posed Ties and Dare merging MoE over the BTX
merging method. We present the performance of
MoE models with Dare merging or Ties merging
on non-FFN layers and other baselines in Table 1.

2320



The details of training cost for each method are
presented in Table 6 in Appendix.

Method MBPP HumanEval MATH GSM8K NQ TriviaQA Avg.
Dense Model

Base-1B 4.60 3.04 2.42 1.44 6.61 26.72 7.47
Code Expert 10.2 8.53 2.42 2.57 3.11 16.70 7.26
Math Expert 9.80 6.71 7.81 6.36 5.48 19.86 9.34
Knowledge Expert 3.60 4.26 2.62 2.04 5.65 28.71 7.81

MoE Merging
Random Routing 4.00 6.10 2.78 2.05 4.86 21.75 6.92
Router Fine-tuning 3.60 6.71 2.42 2.96 5.82 25.98 7.92
BTX merging 12.40 11.58 6.74 7.73 6.78 25.10 11.72
Ties merging 14.20 11.98 6.74 7.81 6.72 27.66 12.52
Dare merging 14.20 10.98 6.82 7.96 6.50 30.68 12.86

MoE from Scratch
MoE Upcycling 18.40 12.20 7.80 12.21 8.37 37.33 16.05

Table 1: Performance of proposed Dare and Ties
merged MoE and other baselines across six datasets.
The best performance of Dense and MoE model is
marked in bold. Results of Dare and Ties merged MoE
outperform the BTX MoE and other baseline methods.

From Table 1, we see that individual experts gen-
erally achieve the best performance in their respec-
tive domains, as expected. However, CPTed Expert
models experience catastrophic forgetting. For in-
stance, both Code and Math Expert perform worse
than Base-1B on the TriviaQA and NQ datasets.

The results in Table 1 show that using Ties or
Dare merging significantly improves MoE perfor-
mance over the BTX pipeline across almost all
datasets, with a relative improvement of 6.94% and
9.72% in average performance. This suggests that
advanced merging methods reduce weight interfer-
ence and enhance performance.

As a reference, we include the results of MoE
sparse upcycling (Komatsuzaki et al., 2022) in the
last row of Table 1. This approach initializes the
MoE model by creating four identical copies of the
FFN layers from the base model and then CPT on
the same 340B tokens used in our pipeline. How-
ever, we do not directly compare our results with
the upcycling method, as it involves pretraining
the entire MoE on all data, incurring significantly
higher costs. We also visualize the average perfor-
mance for each merging method with different fine-
tuning token numbers in Figure 10 in Appendix D.
In Figure 10, we observe that the Dare and Ties
merging MoE models consistently outperform the
BTX merging MoE throughout fine-tuning, espe-
cially in the earlier stages of fine-tuning.
MoE with Dare or Ties merging routes more
tokens to domain experts. To further explore
the effectiveness of Dare and Ties merging MoE,
we evaluate MoEs on multiple benchmarks and cal-
culate the routing probability averaged from each
layer and token. We visualize the routing probabil-
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Figure 5: Routing probability of experts on GSM8K
and MATH for different merging methods.

ity of each method of two math datasets (MATH
and GSM8K) in Figure 5 and for other datasets, we
put the results in Figure 7 in Appendix D.

Compared to MoEs with BTX merging, where
the base model accepts the most routing decisions,
the Dare and Ties merging method routes tokens
to domain experts more frequently, as suggested in
Figure 5. For example, for the GSM8K dataset, the
routing probability for math expert increases from
0.28 to 0.35 or 0.46 when replacing simple aver-
aging with the Ties or Dare merging. This finding
suggests that the more effective MoE with the more
advanced merging method should be attributed to
more optimized routing decisions.

5.1.2 Merging without Fine-tuning
In this part, we will evaluate our proposed rout-
ing heuristics in Section 3.1.3 for MoE without
fine-tuning. Before we evaluate the overall perfor-
mance of each benchmark, we will first examine
the routing decision with our proposed heuristics.
We present the routing probability for PPL routing
heuristics for each dataset in Table 2.

Benchmark Base Code Math Knowledge
GSM8K 23% 2% 43% 32%
MATH 22% 2% 49% 27%
MBPP 19% 22% 44% 15%
HumanEval 5% 43% 45% 7%
NQ 43% 4% 10% 43%
TriviaQA 50% 0% 0% 50%

Table 2: Routing probability of PPL routing for each
dataset. The largest probability are in bold, and the
second-largest are underlined.

Routing heuristic effectively assigns tokens to
the corresponding experts. Table 2 demon-
strates that PPL routing generally achieves the de-
sired routing patterns, effectively directing inputs
from a specific domain to the specialized expert
models, except in the case of the MBPP dataset.
Since our heuristics rely solely on inference inputs
without fine-tuning, they can be considered reliable
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strategies. We also visualize the routing probabil-
ity for both PPL and task vector routing heuristics
for each dataset in Figure 9 in Appendix D. We
find that PPL routing consistently produces better
results than the task vector routing.

Next, we evaluate the performance on each
dataset with different combinations of merging
methods and routing heuristics, compared to the
baseline methods. We prepare three dense fine-
tuning baselines: Dare Dense, Ties Dense and
Random Routing (details in Section 4.3). We
also evaluate the ablation methods: merging at-
tention layers without separation and task vector
routing. We present the results of each method
across datasets in Table 3. The details of training
cost for each method are presented in Table 7 in
Appendix.

Merging Routing MBPP HumanEval MATH GSM8K NQ TriviaQA Avg.
Dense Merging

Dare N/A 6.20 6.70 2.22 2.27 4.80 20.45 7.11
Ties N/A 6.00 6.70 2.48 2.19 3.62 20.86 6.98

MoE Merging
Merge attention random 4.00 6.10 2.78 2.05 4.86 21.75 6.92
Merge attention task vector 6.60 4.87 3.06 1.44 6.05 21.39 7.24
Merge attention PPL 6.40 4.87 2.86 1.13 5.93 22.71 7.32
Separate attention task vector 4.00 7.32 2.98 2.5 5.37 20.11 7.05
Separate attention PPL 6.80 7.92 2.88 2.95 4.74 23.21 8.08

Table 3: Performance of proposed merging and rout-
ing methods for MoE without substantial fine-tuning
and other baselines across six datasets. Separating
attention layers and perplexity routing heuristics get the
best average performance.

Proposed MoE method without fine-tuning out-
performs the dense merging baseline. From
Table 3, we observe that using the PPL routing
heuristic and separating attention layers achieves
the best average results among all baseline meth-
ods. Compared to Random Routing and the SoTA
dense merging method (Dare), our best method -
PPL routing + separating attention layers - yields
relative improvements of 16.8% and 13.6%, respec-
tively. The superior performance of PPL routing
aligns with Figure 9 in Appendix D, where PPL
routing more accurately directs input to the ap-
propriate experts. Moreover, the better results of
separating attention layers support our expectation
that this approach resolves the inconsistency of task
vector counts, as discussed in Section 3.1.3.

5.2 Heterogeneous Model Merging

MoE merged with heterogeneous models out-
performs the corresponding experts. After
showing the superiority of our homogeneous model
merging method, our next question is whether the
proposed heterogeneous expert merging is also ef-
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Figure 6: Routing probability of experts on GSM8K and
MATH for the MoE w/ Olmo and MoE w/ TinyLlama.

fective. We present the performance of the dense,
MoE and baseline methods in Table 4. The details
of training cost for each method are presented in
Table 8 in Appendix.

Method MBPP HumanEval MATH GSM8K NQ TriviaQA Avg.
Dense Model

Base-1B 4.60 3.04 2.42 1.44 6.61 26.72 7.47
Base TinyLlama 5.40 5.27 2.26 2.2 8.53 34.27 9.66
Base Olmo 2.80 2.64 2.46 2.42 6.16 29.21 7.62
Code Expert 10.20 8.53 2.42 2.57 3.11 16.7 7.26
Math TinyLlama 15.60 9.76 4.18 5.91 6.05 21.12 10.44
Math Olmo 0.00 0.00 4.82 5.08 3.61 11.25 4.13
Knowledge Expert 3.60 4.26 2.62 2.04 5.65 28.71 7.81

Homogeneous Expert Merging
3-expert MoE
(same data)

9.14 10.8 4.42 5.16 6.95 26.78 10.54

3-expert MoE
(w/o math)

12.00 9.76 2.38 1.74 6.22 33.20 10.88

Heterogeneous Expert merging
(Ours) MoE w/
Math Olmo

13.60 10.98 4.86 6.14 5.43 26.01 11.17

(Ours) MoE w/
Math TinyLlama

15.80 11.59 5.42 6.29 8.25 32.71 13.34

Table 4: Performance of proposed heterogeneous
merged MoE and other baselines. The merged MoE
is comparable or outperform the dense or 3-expert base-
lines on the benchmark from the corresponding domain.

Table 4 shows that our merged MoE models
are comparable to or outperform the domain ex-
pert models in their respective domains. For in-
stance, the MoE merged with Math Olmo and Math
TinyLlama achieves 6.14% and 6.29% accuracy on
GSM8K, compared to 5.91% and 5.08% for their
dense counterparts. On average, our MoEs with
Olmo and TinyLlama improves performance by
43.02% and 27.78% relative to the best dense ex-
perts, respectively. Both MoEs with heterogeneous
experts also outperform the 3-expert MoE baseline,
particularly in math, highlighting the effectiveness
of including math experts in the pipeline.
MoE merged with heterogeneous experts show
the desired routing patterns in most cases. We
also perform a similar routing analysis as described
in Section 5.1.1. We visualize the routing probabil-
ity of two MoEs when evaluating on GSM8K and
MATH datasets in Figure 6 and for other datasets,
we visualize the results in Figure 8 in Appendix D.
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As shown in Figures 6 and 8, most tokens in the
coding and knowledge datasets are routed to the
corresponding experts. However, unlike homoge-
neous model merging where the math expert has
the highest routing probability for math datasets,
Math Olmo or Math TinyLlama ranks second. This
discrepancy is likely due to the difference in embed-
ding outputs between the MoE and expert models.
Since the MoE’s embedding layer is merged from
3 Expert models and 1 other model, its output is
closer to that of the Expert models, making the
router more likely to select them. Adding a load
balancing loss is a possible solution to address this
issue (Sukhbaatar et al., 2024; Fedus et al., 2022),
ensuring a more uniform routing distribution. We
leave this for future exploration

6 Conclusion

In this paper, we propose novel methods to ad-
dress challenges in the current MoE merging litera-
ture. For homogeneous experts, we replace average
merging in non-FFN layers with more advanced
methods to reduce parameter interference. We also
explore merging models into an MoE without post-
merge fine-tuning. For heterogeneous experts, we
introduce a method using projectors and sequence-
level routing networks to combine models with
different architectures. Extensive empirical evalua-
tions show that our approach significantly improves
MoE performance across multiple datasets.

7 Limitation

One of the limitations of the proposed merging
methods with heterogeneous experts is that the
merged MoE model has more parameters when the
BTX merging, since we do not merge the attention
layers. For example, for our 4 × 1B Expert MoE,
the total parameter number is about 3.7 billion due
to the non-FFNs layer merging but the total param-
eter number of the MoE after the heterogeneous
merging method is near 4 billion. More parameters
represent more costly fine-tuning and inference.

For our homogeneous merging method, we re-
place simple averaging with a more advanced merg-
ing method: Dare and Ties and fine-tune MoE mod-
els. There are still other merging methods, such as
fisher merging (Matena and Raffel, 2022) or Reg-
mean (Jin et al., 2022) methods. However, in the
Ties and Dare paper (Yadav et al., 2024; Yu et al.,
2024), they have demonstrated the superiority of
proposed merging methods over Regmean and fin-

isher merging, so we leave the exploration of other
merging methods to future work.

Moreover, using routing heuristics to process
the input sequence introduces additional inference
costs, as we first need to use the expert model to cal-
culate the perplexity (PPL) or gradient. However,
our routing heuristic requires only one additional
forward pass, and considering the multiple forward
passes during inference (forward pass number = the
generate token number), the computational over-
head for our method to enhance MoE performance
without fine-tuning is minimal.

For all MoE fine-tuning, we utilize only the
cross-entropy loss to do the auto-regression on the
training data. Previous works showed that the load-
balancing loss (Fedus et al., 2022; Sukhbaatar et al.,
2024) may be beneficial to resolve the “dead” ex-
perts. From our routing analysis for the merged
MoEs, we observe that merging with homogeneous
experts gets the desirable patterns, where most to-
kens in one specific domain are gated to the cor-
responding expert. However, for heterogeneous
experts, due to the different architecture and tok-
enizer of the math expert, the math expert does not
get the highest routing probability in evaluating on
GSM8K and MATH datasets. For the next step,
we may need to add the load balancing loss for the
fine-tuning of MoE with heterogeneous experts to
develop more robust models (Zhou et al., 2024a)
and observe whether the routing patterns are more
efficient.

Due to limitations of computation resources,
we only experimented with three domains and 1b
LLMs. Incorporating larger models and more do-
mains, such as legal, medical, or multilingual, can
benefit future studies. Furthermore, our method
can be extended to multimodal MoE by incorpo-
rating vision audio or graph experts (Wang et al.,
2024b,a; Li et al., 2024a; Zhu et al., 2024).

In addition to directly merging models with
different architectures with additional projectors,
there is another direction to first distill the knowl-
edge of experts to student models with the same
architecture (Wan et al., 2024; Zhou and Ai, 2024;
Li et al., 2025; Zhou et al., 2023, 2024b) and merge
student models together to an MoE. We leave the
exploration of this direction to future work.
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A Implementation Details

For our Base-1B models, we utilize the Llama-2
architecture (Wu et al., 2024) with layer number
24 and hidden dimension 2048. The open-source
TinyLlama-1.1B model contains 22 layers and the
hidden dimension is 2048. For the open-source
Olmo-1B model, it has 16 layers and the hiddn
dimension is 2048.

In our experiments, we use top-2 routing for
MoE models. For Dare-merging and Ties merging

(both dense and MoE), we set the scaling term λ
to 1

3 and the retain ratio p of the model parameters
of two methods are set to 80% to gain the optimal
performance, according to our preliminary explo-
ration. For inference, we set the temperature to 0.0
for greedy decoding, and the maximal number of
generated tokens is 512. For CPT and fine-tuning
of MoE and dense models, we set the learning rate
to 1e-5 and the weight decay is 0.01.

B Data mixture

In Table 5, we present the data ratios to CPT or
fine-tune the dense or MoE models. For fine-tuning
the MoE model, we sample datasets that are used
to train all experts and the base model with the
same probabilities as described in Sukhbaatar et al.
(2024).

Base Math Code Knowledge Finetune MoE

Wiki1 0.85% 0.17% 0.17% 8.00% 1.11%

Wiki2 0.00% 0.00% 0.00% 8.00% 0.82%

Arxiv 9.37% 1.87% 1.87% 7.94% 3.94%

CommonCrawl 27.92% 5.58% 5.58% 23.65% 11.74%

C4 54.60% 10.93% 10.93% 46.26% 22.97%

StackExchange 7.26% 1.45% 1.45% 6.15% 3.05%

Open Web Math 0.00% 80.00% 0.00% 0.00% 24.13%

GitHub 0.00% 0.00% 80.00% 0.00% 32.25%

Table 5: Data source and weights for CPT or fine-tune
MoE or dense models. Wiki1 represents the first half
of Wikipedia data for pretraining the base model and
Wiki2 represents the second half of Wikipedia data for
CPT the knowledge expert.

C Task Vector Routing Heuristic

Our second approach is to identify the input domain
and assign the input to experts trained in that do-
main. The core idea is that an expert’s task vector,
defined as the difference between its parameters
and the base model, represents the cumulative gra-
dient of the base model on the expert’s training
data. For a given input, we first compute the base
model’s gradient on that input and compare it to
the task vectors of each expert. A higher similarity
between the gradient and a task vector suggests the
input is closer to the expert’s training data.

With the task vectors τ1, τ2, . . . , τl for l experts
and inference input xinf , the loss function L and
the base model parameters θb, we first compute the
gradient (ginf ) of the loss function with respect to
the base model parameters as: ginf = ∇θbL(xinf ).

The routing heuristic decides the experts and
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Figure 7: Routing probability of experts on MBPP, Hu-
manEval, Natural Questions and TriviaQA for different
merging methods.
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Figure 8: Routing probability of experts on MBPP,
HuamnEval, Natural Questions and TriviaQA for the
MoE w/ Olmo and MoE w/ TinyLlama.

weights with the cosine similarity (Sim) as below:

α = SoftMax(top-K(Sim(ginf , τ1), . . . ,Sim(ginf , τl)))

D Supplementary Results

In this section, we present the supplementary anal-
ysis of the routing probability for each research
question.

For the calculation of training cost for each
method, we will use the product of the number
of model parameters and the number of training
tokens as a metric for training cost. We present the
training costs for each method featured in Tables 1,
3, and 4.
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Figure 9: Routing probability of tow routing heuristics
for each dataset.
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Figure 10: Performance with varied fine-tuning token
numbers across different datasets.
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Method Training Cost (# B parameters × # B tokens)

Base-1B 0
Code Expert 100
Math Expert 100
Knowledge Expert 100
Random Routing 300
Router Fine-Tuning 300
BTX Merging 448 (3 × 100 + 3.7 × 40)
Ties Merging 448
Dare Merging 448
Model Upcycling 1258 (3.7 × 340)

Table 6: Training cost of methods in Table 1

Method Training Cost (# B parameters × # B tokens)

Dare 100
Ties 100
Merge Attention 100
Separate Attention 100

Table 7: Training cost of methods in Table 3

Method Training Cost (# B parameters × # B tokens)

Base-1B 0
Base TinyLlama 0
Base Olmo 0
Code Expert 100
Math TinyLlama 100
Math Olmo 100
Knowledge Expert 100
3-expert MoE 312 (2 × 100 + 2.8 × 40)
(Ours) MoE w/ Math Olmo 448
(Ours) MoE w/ Math TinyLlama 448

Table 8: Training cost of methods in Table 4
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