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Abstract

Recent studies have highlighted the effec-
tiveness of tensor decomposition methods in
the Temporal Knowledge Graphs Embedding
(TKGE) task. However, we found that inherent
heterogeneity among factor tensors in tensor de-
composition significantly hinders the tensor fu-
sion process and further limits the performance
of link prediction. To overcome this limita-
tion, we introduce a novel method that maps
factor tensors onto a unified smooth Lie group
manifold to make the distribution of factor ten-
sors approximating homogeneous in tensor de-
composition. We provide the theoretical proof
of our motivation that homogeneous tensors
are more effective than heterogeneous tensors
in tensor fusion and approximating the target
for tensor decomposition based TKGE meth-
ods. The proposed method can be directly inte-
grated into existing tensor decomposition based
TKGE methods without introducing extra pa-
rameters. Extensive experiments demonstrate
the effectiveness of our method in mitigating
the heterogeneity and in enhancing the tensor
decomposition based TKGE models1.

1 Introduction

Knowledge graphs (KGs) are data structures that
encapsulate knowledge triples of real-world enti-
ties and their interrelationships, and are widely
used to improve information retrieval (Liang et al.,
2023), reasoning (Xu et al., 2023), Q&A (Hu et al.,
2021), etc. Temporal knowledge graphs (TKGs)
extend this paradigm by introducing timestamps
into knowledge triplets to reflect the validity of
facts over time and provide a deeper understanding
and analysis of dynamic changes in the facts. Due
to the data incompleteness in both KGs and TKGs,
researchers propose many KG embedding (KGE)
and TKG embedding (TKGE) methods to predict

* Corresponding Author
1Our code is available at https://github.com/

dellixx/tkbc-lie

Figure 1: (a) illustrates the heterogeneity in the distribu-
tion of entities, relations and timestamps within TKGs,
as evidenced by the differing distribution curves. (b)
illustrates the homogeneous distribution curves of enti-
ties, relations and timestamps when using our method to
mitigate the heterogeneity among these three elements.

the missing facts, thereby enhancing the richness
and accuracy of the KGs and TKGs. This work
mainly focuses on TKGE.

As the interest in TKG grows, researchers pro-
posed many TKGE methods and greatly promoted
the development of TKG. Concerning the success
of tensor decomposition in KGE (Nickel et al.,
2016; Trouillon et al., 2016; Lacroix et al., 2018),
recent works (Lacroix et al., 2020; Xu et al., 2021;
Li et al., 2023) further extended tensor decompo-
sition into TKGE and obtained very excellent per-
formance. These works demonstrated that tensor
decomposition can guarantee full expressiveness
under specific embedding dimensionality bounds
in TKG, thus enhancing the link prediction.

However, existing TKGE methods based on ten-
sor decomposition suffer from inherent heterogene-
ity among factor tensors. Recent research (Wu
et al., 2020; Li et al., 2021) also highlights the in-
trinsic heterogeneity in TKGs, specifically in terms
of entity and temporal heterogeneity. According to
our analysis, the heterogeneity of entity, relation
and timestamp originates from their semantic roles
within the knowledge graphs. That is, the entities
represent the static components of the graph, the
relations delineate the interactions among the enti-

2161

https://github.com/dellixx/tkbc-lie
https://github.com/dellixx/tkbc-lie


ties, and the timestamp characterizes the temporal
aspects of these interactions, specifying when they
occur and their duration. This heterogeneity leads
to the learned factor tensor expliciting different
distributions in TKGE, as shown in Figure 1(a).
This further limits the tensor fusion in TKGE mod-
els and lowers the link prediction accuracy. More
discussion about heterogeneity can be found in Ap-
pendix A.

Therefore, it is necessary to address the het-
erogeneity for tensor decomposition-based TKGE
methods to enhance link prediction. To this target,
we propose to map the factor tensors onto a unified
smooth Lie group manifold to make the distribu-
tion of factor tensors approximating homogeneous
in tensor decomposition, as shown in Figure 1(b).
Since the manifold in Lie group looks the same at
every point and all tangent spaces at any point are
alike (Solà et al., 2018), the factor tensors mapped
by the Lie group have a smooth and unified distri-
bution, which mitigates the heterogeneity among
the factor tensors. We provide the theoretical proof
of our motivation that homogeneous factor tensors
are more effective in approximating the target com-
pared to heterogeneous factor tensors in TKGE
models in Sec. 4.1. We integrate the proposed
method into several existing tensor decomposition
based TKGE models and conduct extensive experi-
ments to evaluate its effectiveness. The experimen-
tal results present the heterogeneity among factor
tensors in TKGE methods and illustrate that the
proposed method brings significant performance
improvement. This confirms the effectiveness of
our method in alleviating the heterogeneity. Our
contributions are summarized as follows:

• To the best of our knowledge, we are the first
to investigate the negative effect of the hetero-
geneity among the factor tensors for tensor
decomposition based TKGE models and pro-
pose to enhance these models by diminishing
the heterogeneity via Lie group manifold.

• We provide the theoretical proof of our motiva-
tion that homogeneous factor tensors are more
effective than heterogeneous factor tensors in
approximating the target in TKGE.

• Our proposed method can be directly inte-
grated into the tensor decomposition based
TKGE models without introducing any addi-
tional parameters, and extensive experiments

on several TKGE models demonstrate its ef-
fectiveness and generalization.

2 Related Work

2.1 Static Knowledge Graph Embedding

Drawing inspiration from the concept of translation
invariance featured in word2vec (Mikolov et al.,
2013), TransE assesses the relations between
entities and their links by calculating the distance
from es + er̂ to eo using standard l1 or l2 norms,
where es and eo are the vectors that represent the
starting and ending entities, and er̂ represents the
linking relation. Following TransE, TransH (Wang
et al., 2014), TransR (Lin et al., 2015), and
TransD (Ji et al., 2015) introduce various mapping
ways and thus refine these embeddings for better
KGE representation. ComplEx (Trouillon et al.,
2016) employs 3-th order tensor decomposition to
capture the interactions within KGs. TorusE (Ebisu
and Ichise, 2018) utilizes a torus (a donut-shaped
manifold) for its embeddings. TorusE introduces a
torus, which is a compact Abelian Lie group, and
defines distance functions on the torus. The torus
can be considered as a collection of multiple Lie
groups. Instead, we map the factor tensors to the
Lie group space, thus mitigating the distributional
heterogeneity among them.

2.2 Temporal Knowledge Graph Embedding

In TKGE models, the temporal information is
added, and the scoring function is calculated for
the quadruples to assess their reasonableness.
Therefore, most TKGE models use existing KGE
models as a foundation. TTransE (Leblay and
Chekol, 2018) extends TransE and encodes time
stamps τ as translations same as relations. Hence,
the score function of TTransE is denoted as
ϕ(s, r̂, o, τ) = ||s + r̂ + τ − o||p. Furthermore,
TA-TransE (García-Durán et al., 2018) encode
timestamps based on TransE. RotateQVS (Chen
et al., 2022) uses quaternion embeddings to
represent both entities and relations. Recently,
BoxTE (Messner et al., 2022) models the TKGE
based on a box embedding model BoxE (Abboud
et al., 2020). TCompoundE (Ying et al., 2024)
employs relation-specific and time-specific
compound geometric operations to enhance the
modeling of temporal dynamics and relational
patterns.
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2.3 Tensor Decomposition Based Temporal
Knowledge Graph Embedding

TComplEx (Lacroix et al., 2020) and TNTCom-
plEx (Lacroix et al., 2020) expand upon the
ComplEx model by executing a fourth-order ten-
sor decomposition in temporal knowledge graphs
(TKGs). This method offers a more nuanced under-
standing of the temporal dimensions in knowledge
graphs. TeLM (Xu et al., 2021) utilizes the asym-
metric geometric product, a method that allows for
a more sophisticated and expressive representation
of temporal relationships and entities. TeAST (Li
et al., 2023) maps relations onto Archimedean spi-
ral timelines, and ensures that relations occurring
simultaneously are placed on the same timeline,
with all relations evolving over time. The above
works are all based on tensor decomposition to op-
timize the TKGE representation. In this paper, we
focus on exploring the problem of the heterogene-
ity of factor tensors in tensor decomposition based
TKGE models.

3 Background and Notation

3.1 TKGE Task

Given a TKG, let E denote the set of entities, R
denote the set of relations, and T denote the set of
timestamps. A TKG can be defined as a collection
of quadruples (s, r̂, o, τ), where s ∈ E , r̂ ∈ R,
o ∈ E and τ ∈ T denote the subject entity, rela-
tion, object entity and timestamp, respectively. The
TKGE task aims to accurately learn embedded rep-
resentations of entities, relations and timestamps to
facilitate predictions of missing entities in TKGs.
Specifically, it involves predicting the object entity
o given a tuple (s, r̂, ?, τ), or conversely, predicting
the subject entity s for a tuple (?, r̂, o, τ), thereby
capturing the dynamic nature of relationships over
time. In this paper, we denote the relation in TKG
as r̂ and the rank in mathematics as r.

3.2 Tensor Decomposition for TKGE

In the existing tensor decomposition based TKGE
methods, each relation quadruple is represented
by a {0, 1}-valued 4-th order tensor Y ∈
{0, 1} (Lacroix et al., 2020). This representation
allows each element Ys,r̂,o,τ = 1 to indicate that at
a specific time τ , there is a relationship r̂ between
entities s and o. In link prediction, tensor decom-
position algorithms learn to infer a predicted tensor
X that approximates the ground truth Y , as

Y ∼ X =
R∑

r=1

ur ⊗ vr ⊗wr ⊗ tr, (1)

where rank r ∈ {1, ..., R}, ⊗ denotes the tensor
product. ur, vr, wr and tr denote the subject en-
tity, relation, object entity and timestamp factor
tensors. Tensor decomposition based TKGE meth-
ods aim to optimize the factor tensors to make X as
close as possible to the tensor Y and thus achieve
more accurate link prediction.

4 Methodology

This paper employs Lie group manifold to diminish
the heterogeneity of factor tensors in tensor decom-
position based TKGE models and thus improves
the performance of these models. In Sec. 4.1, we
provide the theoretical proof of our motivation that
homogeneous tensors are more effective than het-
erogeneous tensors in approximating the target for
tensor decomposition based TKGE methods. In
Sec. 4.2, we explain why Lie groups can mitigate
the heterogeneity among factor tensors, and de-
scribe how to map the factor tensors to the Lie
group space. In Sec. 4.3, we introduce a Logarith-
mic Mapping ‘log(f(·))’ operation and alleviate
the heterogeneity among factors by minimizing the
difference between the original factor tensors and
the mapped factor tensors in the Lie group through
the N3 regularization in the loss function.

4.1 Theoretical Analysis of Homogeneous vs.
Heterogeneous Factor Tensors

Proposition 1. Homogeneous factor tensors
(ur, vr, wr, tr) with a low rank can effectively
approximated Y while heterogeneous factor
tensors (ur, vr, wr, tr) require a higher rank to
approximate Y in TKGE.

Proof. Given a 4th-order tensor decomposi-
tion in TKGE

Y ≈
R∑

r=1

ur ⊗ vr ⊗wr ⊗ tr, (2)

where R is the rank of the decomposition, and
(ur,vr,wr, tr) ∈ R are factor tensors.

If the factor tensors (ur, vr, wr, tr) are ho-
mogenous, there are a common set of basis vec-
tors B = {b1,b2, . . . ,bm} between these factor
tensors. Based on this homogeneity, the column
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vectors of each factor matrix can be expressed as
linear combinations of the basis vectors in B.

ur = B ·αr, vr = B · βr,

wr = B · γr, tr = B · δr,
(3)

where r = 1, . . . , R, and αr, βr, γr, and δr are
the coefficient vectors for the r-th component in
their respective factor matrices. Consequently, we
can get

Y ≈ ∑R
r=1(B ·αr)⊗ (B · βr)⊗ (B · γr)⊗ (B · δr).

(4)
Given the homogeneity among factor tensors,

we can further obtain the representation as follows

Y ≈ ∑m
j=1 bj ⊗ bj ⊗ bj ⊗ bj ·

∑R
r=1 αjrβjrγjrδjr,

(5)
where αjr, βjr, γjr, and δjr are the scalar coeffi-
cients corresponding to the projection of the r-th
component onto the j-th basis vector in their re-
spective factor matrices. The set of basis vectors
{b1,b2, . . . ,bm} are orthogonal to each other, en-
suring that each dimension represented by these
vectors is independent. λj =

∑R
r=1 αjrβjrγjrδjr

can be considered as scaling constants. Thus, we
can get a reduced-rank tensor Y ′ as

Y ≈ Y ′ =
m∑

j=1

λjbj ⊗ bj ⊗ bj ⊗ bj , (6)

which captures the essence of the homogeneity
within the factor matrices. The rank m of Y ′ is
less than the original rank R (m < R). Thus, ho-
mogeneous factor tensors (ur, vr, wr, tr) with
a low rank can effectively approximate the target
quadruple tensor Y .

In contrast, if the factor tensors (ur, vr, wr,
tr) are highly heterogeneous, they exhibit distinct
semantics and distributions characteristics. This
implies that these factor tensors cannot be effec-
tively approximated by a simple, small number of
rank-1 tensors. Each rank-1 tensor can be viewed
as a representation of a specific pattern or feature.
For these heterogeneous tensors, the patterns they
capture, or the semantics they represent within the
data necessitate a larger number of rank-1 tensors
to capture their diverse characteristics individually.
Hence, the heterogeneous factor tensors (ur, vr,

Figure 2: An illustration of the relation between the Lie
group and the Lie algebra. The Lie algebra so(n) is the
tangent space to the Lie group’s manifold S(n).

wr, tr) require a higher rank or even full rank to
approximate Y in TKGE. Since higher rank means
more parameters to estimate and more computation,
homogeneous factor tensors are more effective than
heterogeneous factor tensors in approximating the
target for tensor decomposition based TKGE meth-
ods.

4.2 Mitigating Heterogeneity via Lie Group

In TKGE, the underlying reason why highly hetero-
geneous factor tensors require a higher rank to ap-
proximate the target vector is that the heterogeneity
among factor tensors can limit the fusion process of
subsequent computations, which can be analogous
to the multimodal fusion process (Chen and Zhang,
2020). Therefore, it is crucial to mitigate the het-
erogeneity among factor tensors to approximate the
target tensor more efficiently. Our motivations for
choosing Lie groups to mitigate heterogeneity in
TKGE are as follows.

Firstly, Lie groups are adept at maintaining struc-
tural integrity and handling data’s dynamic na-
ture over time, making them a suitable choice for
TKGE. The application of Lie groups in fields like
robotics (Solà et al., 2018), machine learning (Som-
mer et al., 2020; Lee and Civera, 2022), and com-
puter vision (Teed and Deng, 2021) underscores
its capability to model complex geometric trans-
formations effectively. Secondly, as shown in Fig-
ure 2, Lie group is a mathematical structure that
simultaneously satisfies the axioms of a group and
the properties of a smooth manifold. It is like a
curved, smooth hyper-surface, with no edges or
spikes, embedded in a space of higher dimension.
The smoothness of the manifold implies the exis-
tence of a unique tangent space at each point. In
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a Lie group, the manifold looks the same at every
point, and therefore all tangent spaces at any point
are alike. Thus, the factor tensors mapped by the
Lie group have a smooth and unified distribution,
which further mitigates the heterogeneity among
the factor tensors.

In this study, we map the factor tensors to the
same Lie group space and make the factor tensors
have a unified distribution to mitigate the hetero-
geneity among them. To facilitate the description
of our method, we employ factor tensor of rank 4 in
the subsequent discussions. Given a factor tensor e
of rank 4 and map it to the Lie group SO(2) space,
we get

f(·) : Rn → SO(2); e 7→ R (7)

where f(·) denots Lie group mapping operation.
Re is a rotation matrix in SO(2), denoted as

Re =

(
cos e − sin e
sin e cos e

)
. (8)

Accordingly, given a quadruple (s, r̂, o, τ ) in
TKG, its corresponding factor tensors are (u, v,
w, t) in the tensor decomposition based TKGE
models. We map these four factor tensors onto Lie
group space, and we get the rotation matrices

Ru =

(
cosu − sinu
sinu cosu

)
,Rv =

(
cosv − sinv
sinv cosv

)
,

Rw =

(
cosw − sinw
sinw cosw

)
,Rt =

(
cos t − sin t
sin t cos t

)
.

(9)
When generalized to n rank, SO(

√
n) can be

denoted as a Givens rotation matrix. In an n-
dimensional space, a Givens rotation is performed
by fixing

√
n− 2 dimensions and applying a rota-

tion transformation within the plane formed by the
remaining two dimensions. This effectively isolates
the rotation to a specific two-dimensional subspace.
The Givens rotation matrix G(i, j, e) for rotating
the i-th and j-th coordinates in

√
n-dimensional

space is given by:

G(i, j, e) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(e) · · · − sin(e) · · · 0
...

...
. . .

...
...

0 · · · sin(e) · · · cos(e) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




, (10)

where the rotation occurs in the plane spanned by
the i-th and j-th basis vectors. The matrix is an

identity matrix except for the four elements Gii,
Gij , Gji, and Gjj , which form the 2 × 2 rotation
block within the larger matrix. Hence, we focus
on the 2 × 2 base rotation matrices in the code
implementation.

4.3 Logarithmic Mapping from SO(n) to
so(n)

Our training goal is to diminish the heterogeneity
among the factor tensors in TKGE model train-
ing and thus improve the link prediction perfor-
mance. Due to the Lie group SO(n) residing on
a non-Euclidean manifold, we introduce a variant
of Logarithmic Mapping operation (Huang et al.,
2017) (denoted as log(·)) on the Lie group space
and converts the rotation matrices into the usual
skew-symmetric matrices which are situated in the
Euclidean space, as

log(·) : SO(n) → so(n), R 7→ log(R). (11)

The logarithm mapping log(R) is

log(R) =

{
0, if θ(R) = 0,

θ(R)
2 sin(θ(R))(R−RT ), otherwise,

(12)
where θ(R) is the angle of R, as

θ(R) = arccos

(
trace(R)− 1

2

)
. (13)

Here, trace(·) is a square matrix is the sum of
its diagonal elements.

The mathematical derivation of logarithmic map-
pings references this work (Solà et al., 2018).
After logarithmic mapping, we get log(f(ur)),
log(f(vr)), log(f(wr)), log(f(tr)). Then, we
calculate the differences between the original ten-
sors and their corresponding mapped tensors on the
Lie group

u′
r = ur − log(f(ur)),

v′
r = vr − log(f(vr)),

w′
r = wr − log(f(wr)),

t′r = tr − log(f(tr)).

(14)

Finally, we perform the standard tensor decom-
position with u′

r, v′
r, w′

r, t′r, as

Y ∼ X =
R∑

r=1

λru
′
r ⊗ v′

r ⊗w′
r ⊗ t′r. (15)
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Following previous works (Lacroix et al., 2018,
2020; Xu et al., 2021; Li et al., 2023), we use the
full multiclass log-softmax loss function and N3
regularization to optimize the factor tensors, which
are defined as follows:

L = − log(
exp(ϕ(s, r̂, o, τ))∑

s′∈E exp(ϕ(s
′, r̂, o, τ))

)

− log(
exp(ϕ(o, r̂−1, s, τ))∑

o′∈E exp(ϕ(o
′, r̂−1, s, τ))

)

+λµ

R∑

i=1

(∥u′
r∥33 + ∥v′

r∥33 + ∥w′
r∥33 + ∥t′r∥33),

(16)
where λµ denotes N3 regularization weight, r̂−1

is the inverse relation. We use ∥t′r∥33 to represent
the temporal regularizer for simplicity, which is
computed in N3 regularization way.

By using the N3 regularization, we minimize the
u′
r, v′

r, w′
r, t′r. That is, we drive the ur, vr, wr, tr

to be homogeneous in Euclidean space, since the
log(f(ur)), log(f(vr)), log(f(wr)), log(f(tr))
are tend to be homogeneous in Lie group space.
Therefore, the proposed method can mitigate the
heterogeneity among factor tensors in tensor de-
composition based TKGE methods.

5 Experiments

5.1 Datasets
To evaluate the effectiveness of the proposed
method, we evaluate our method on two popu-
lar TKGE benchmark datasets. ICEWS14 and
ICEWS05-15 (García-Durán et al., 2018) are both
extracted from the Integrated Crisis Early Warn-
ing System (ICEWS) dataset (Lautenschlager et al.,
2015), which consists of temporal sociopoliti-
cal facts starting from 1995. ICEWS14 consists
of sociopolitical events in 2014 and ICEWS05-
15 involves events occurring from 2005 to 2015.
ICEWS14 is a fine temporal granularity dataset,
while ICEWS05-15 has a wider temporal granu-
larity relative to ICEWS14. See Appendix B for
summary statistics of the dataset and more discus-
sion of the dataset.

5.2 Evaluation Protocol
In this research, we follow the previous
works (Lacroix et al., 2020; Xu et al., 2021; Li et al.,
2023) to evaluate our method. Specifically, to eval-
uate the quality of the ranking for each test quadru-
ples, we calculate all possible substitutions for the

subject and object entities, denoted as (s′, r̂, o, τ)
and (s, r̂, o′, τ), where s′, o′ ∈ E . After that, we
sort the score of candidate quadruples under the
time-wise filtered settings (Lacroix et al., 2020; Xu
et al., 2021; Li et al., 2023). The performance is
evaluated using standard evaluation metrics, includ-
ing Mean Reciprocal Rank (MRR) and Hits@n.
The Hits@n metric measures the percentage of
correct entities in the top n predictions. Higher
values of MRR and Hits@n indicate better perfor-
mance. Hits ratio with cut-off values n = 1, 3, 10.
In this paper, we utilize H@n to denote Hits@n
for convenience.

5.3 Experimental Setup
We implement our method based on the existing
training framework2. All experiments are trained
on a single NVIDIA Tesla A100. The hyperparam-
eters used in the experiment are consistent with
the optimal hyperparameters of the original paper
report. The best models are selected by early stop-
ping (threshold of 10) on the validation datasets.
The max epoch is 200. We report the average re-
sults on the test set for five runs. To ensure a fair
validation of the effectiveness of our method, we
employ the same hyperparameter configuration in
both the before and after comparison experiments.

According to Lie group mapping described in
Sec. 4.2, it is essential to ensure that the rank r of
the matrix can be satisfied by the square root of
(2 × r) is an integer in our method. This require-
ment arises from the implementation of the matrix
logarithm map for TcomplEx, TNTcomplEx and
TeAST. The rank of TeLM needs to be satisfied by
the square root of (4× r) is an integer.

6 Results and Analysis

6.1 Main Results
In our experiments, we validate the effectiveness
of our proposed method for dealing with TKGs het-
erogeneity in tensor decomposition on ICEWS14
and ICEWS05-15 datasets. The improvements are
marked in red in Table 1, highlighting the advance-
ments over the baselines. When our method is
applied to different tensor decomposition based
TKGE models, they all achieve meaningful im-
provements in different metrics. This significant
improvement confirms our Proposition 1, in which
homogeneous factor tensors can be effectively ap-
proximated Y with a low rank. Additionally, the

2https://github.com/facebookresearch/tkbc

2166

https://github.com/facebookresearch/tkbc


ICEWS14 ICEWS05-15

rank Para. MRR H@1 H@3 H@10 rank Para. MRR H@1 H@3 H@10

Tensor Decomposition Based TKGE Models
TComplEx♡ 128 2.04M 55.3 46.3 60.7 71.5 128 3.84M 58 49 64 76
TNTComplEx♡ 128 2.15M 55.7 46.3 61.5 73.0 128 3.97M 60 50 65 78
TeLM 121 3.85M 50.6 42.1 55.0 67.1 121 7.26M 56.8 48.7 61.1 72.0
TeAST 128 2.13M 53.4 43.9 58.8 70.9 128 4.87M 48.8 38.4 54.7 68.3

Tensor Decomposition Based TKGE Models+log(f(·))

TComplEx 128 2.04M
56.2 46.8 61.6 73.5

128 3.84M
59.6 50.2 65.3 77.2

( +0.9) ( +0.5) ( + 0.9) ( +0.9) ( +1.6) ( +0.3) ( +1.3) ( +1.2)

TNTComplEx 128 2.15M
56.3 46.7 61.8 74.1

128 3.97M
60.2 50.8 65.9 78.1

( +0.6) ( + 0.4) ( +0.3) ( +1.1) ( +0.2) ( +0.8) ( +0.9) ( +0.1)

TeLM 121 3.85M
54.5 45.5 59.5 71.7

121 7.26M
59.0 50.6 63.8 74.7

( +3.9) ( +3.4) ( +4.5) ( +3.6) ( +2.2) ( +1.9) ( +2.7) ( +2.7)

TeAST 128 2.13M
56.1 47.3 61.4 72.3

128 4.87M
59.2 50.5 64.8 76.9

( +2.7) ( +3.4) ( +2.6) ( +1.4) (10.4) ( +12.1) ( +10.1) (+8.6)

Table 1: Link prediction results on ICEWS14 and ICEWS05-15. The results of ♡ are taken from Lacroix et al.
(2020). Other results are obtained from our experiments. log(f(·)) indicates that our proposed method.

ICEWS05-15 dataset validates the effectiveness of
our method in mitigating data heterogeneity, with
TeAST notably exhibiting an average improvement
of 10.3 points.

In conclusion, the experimental results provide
robust evidence supporting Proposition 1. The ex-
perimental outcomes validate the theoretical frame-
work of our study and demonstrate that our novel
method effectively alleviates data heterogeneity in
tensor decomposition and enhances the link pre-
diction performance of these models. More exper-
iments on the large TKG dataset GDELT can be
found in Appendix C.

6.2 Quantitative Analysis on Heterogeneity
In this section, we perform a quantitative anal-
ysis to prove the effectiveness of our proposed
method. For any factor tensors ex and ey, the
skew-symmetric matrices in so(n) are given by

Ax = log(f(ex)), Ay = log(f(ey)). (17)

We define the difference between ex and ey in
so(n) to be denoted as d(Ax, Ay). The relationship
between the set of skew-symmetric matrices {Ax}
obtained from the mapping of a set of vectors ex
can be described using the operations in the Lie
algebra, such as computing their Lie brackets. This
process of mapping vectors to SO(n) and then to
so(n) transforms them into elements with a unified
algebraic structure, mitigating the differences in
structural distribution between them.

To quantify the structural differences between
the skew-symmetric matrices Ax and Ay in so(n),
we consider the Frobenius norm of their difference

∥Ax −Ay∥F =
√

trace((Ax −Ay)T (Ax −Ay)). (18)

This norm provides a measure of the difference
between the corresponding matrices.

Based on the above quantitative formulas, we
evaluate on the representative models TComplEx
and TNTComplEx. Specifically, we calculate the
difference between entity and relation, entity and
timestamp, and relation and timestamp. As shown
in Table 2, we calculate their average distance dif-
ference on ICEWS14.

d(|E|, |R|) d(|E|, |T |) d(R, |T |)
TComplEx 15.71 7.61 15.72
TComplEx

13.74 6.89 12.43
+log(f(·))

TNTComplEx 22.20 5.82 22.06
TNTComplEx

17.92 5.61 17.10
+log(f(·))

Table 2: Quantitative analysis results for TCom-
plEx vs. TComplEx+log(f(·)) and TNTComplEx vs.
TNTComplEx+log(f(·)).

As shown in Table 2, for the standard TComplEx
model, the average difference in distance between
entities and relations is 15.71, between entities
and timestamps is 7.61, and between relations and
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timestamps is 15.72. These results demonstrate
significant differences in quantification between
different types of embeddings.

Further, when our method log(f(·)) is employed
in the TComplEx model, we observe a reduction
in all three distance difference. This significant im-
provement points to the effectiveness of our method
in mitigating the heterogeneity among different fac-
tor tensors. Similarly, the results of the TNTCom-
plEx model support the above statement.

6.3 Visualisation Analysis

To further verify that our method can effectively
mitigate the heterogeneity between factor embed-
dings, we utilize t-SNE (Van der Maaten and Hin-
ton, 2008) to visualize the learned entity, relation,
and timestamp embeddings. As shown in Figure 3,
we can observe that the learned factor embeddings
through our method exhibit a trend towards ho-
mogeneity. This further demonstrates the inher-
ent heterogeneity present among different types
of embeddings in TKGE based on tensor decom-
position. Our method effectively mitigates this
issue, demonstrating that meaningful performance
improvements can be achieved.

150 100 50 0 50 100 150 200
200

100

0

100

200

300
Entities
Relations
Timestamps

(a) TComplEx

150 100 50 0 50 100
100

75

50

25

0

25

50

75

100 Entities
Relations
Timestamps

(b) TComplEx+log(f(·))

300 200 100 0 100 200 300

500

250

0

250

500

750

1000

Entities
Relations
Timestamps

(c) TNTComplEx

200 150 100 50 0 50 100

100

50

0

50

100

150

200

250
Entities
Relations
Timestamps

(d) TNTComplEx+log(f(·))

Figure 3: Visualisations of the learned entity, relation
and timestamp embeddings on ICEWS14.

6.4 Effect of Rank

In this work, we compare the performance of the
standard TeAST (Li et al., 2023) model with our
proposed TeAST model enhanced by + log(f(·))
across different rank values on ICEWS14. As
shown in Figure 4, we observe that the performance
of both models improves with the increase of rank
values. However, after the rank value reaches 800,
the pace of performance improvement slows down.
This is because the representation capacity of the
model reaches saturation at a certain level, beyond
which the marginal benefits of increasing rank di-
minish. Additionally, higher rank values might
lead to overfitting, especially in cases of sparse
data, negatively affecting the model’s generaliza-
tion ability on unseen data.
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Figure 4: Results of TeAST and TeAST+log(f(·)) with
different rank on ICEWS14.

7 Conclusion

In this study, we are the first to introduce methods
to mitigate heterogeneity in factor tensors within
tensor decomposition-based TKGE models. We
reveal that the heterogeneity primarily stems from
diverse semantic content among elements (enti-
ties, relation and timestamps), which impedes the
effective fusion of factor tensors and limits link
prediction accuracy. We prove that homogeneous
tensors are more effective than heterogeneous ten-
sors in tensor fusion and approximating the target
for tensor decomposition based TKGE methods.
Our method maps factor tensors onto a smooth Lie
group manifold to standardize their distribution and
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mitigate heterogeneity without increasing model
complexity. Our experimental results demonstrate
the effectiveness of this method in mitigating ten-
sor heterogeneity and enhancing performance. We
hope that this work can offer fresh insights for re-
search in the field of TKGE.

Limitations

In this paper, we investigate the effect of the het-
erogeneity among factor tensors on link predic-
tion in tensor decomposition based TKGE models.
We mainly focus on addressing the issue of het-
erogeneity among elements within TKGs, which
is recognized as a key challenge in this domain.
Moreover, similar to the majority of TKGE models,
our method is unable to process new entities that
are not present in the training data.
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A Definition and Discussion of
Heterogeneity in TKG

In KGs, ‘heterogeneity’ refers to the semantic dif-
ference of the entity and relation. Similarly, in
TKGs, ‘heterogeneity’ refers to the semantic dif-
ference of the entity, relation and timestamp. The
heterogeneity among entities, relations, and time is
as follows: (1) The heterogeneity between entities
and relations is reflected in their structural roles
within the graph, with entities existing as nodes
and relations represented as edges between nodes.
(2) The heterogeneity between entities and time is
reflected in the fact that entities represent the static
components of the graph, while time affects the
changes in entity attributes and their relations. (3)
The heterogeneity between relations and time is
reflected in that relations delineate the interactions
among entities, while time characterizes the tempo-
ral aspects of these interactions, specifying when
they occur and their duration. Recent work (Zhang
et al., 2019; Li et al., 2021; Cai et al., 2022) also
indicates that KGs have an intrinsic property of
heterogeneity, which contains various types of en-
tities and relations. Since TKG extends the KG

paradigm, they inherently exhibit this heterogene-
ity as well. Additionally, TKGs incorporate tempo-
ral information, which further contributes to time
heterogeneity.

The heterogeneity in TKG leads to the learned
factor tensor expliciting different distributions in
tensor decomposition based TKGE methods. Un-
like previous works (Wu et al., 2020; Park et al.,
2022), we do not propose a model for modeling het-
erogeneous TKGs, but rather a unified approach for
mitigating heterogeneity among entities, relations
and timestamps via Lie group.

B Statistics of Datasets

Statistics of all the datasets used in this work are
listed in Table 3. E denotes the set of entities, R
denotes the set of relations, and T denotes the set
of timestamps.

ICEWS14 ICEWS05-15 GDELT
E 7,128 10,488 500
R 230 251 20
T 365 4017 366

#Train 72,826 386,962 2,735,685
#Vaild 8,963 46,092 341,961
#Test 8,941 46,275 341,961

Table 3: Statistics of ICEWS14, ICEWS05-15 and
GDELT datasets in the experiment.

The ICEWS14 and ICEWS05-15 datasets ex-
hibit heterogeneity across multiple dimensions, en-
compassing a wide array of entities, relations, and
temporal variations. These datasets include diverse
entities such as countries, governmental bodies,
individuals, and organizations, each with unique
attributes and patterns of behavior. The relations
captured within these datasets are equally varied,
detailing interactions ranging from diplomatic en-
gagements to military conflicts, each bearing dis-
tinct characteristics and impacts. Furthermore, the
chronological recording of events introduces a dy-
namic aspect to the data, with entities and their
interrelations evolving over different times.

C Results on Larger Dataset

The above experiments have validated that our pro-
posed method can improve the TKGE performance
on the high-heterogeneity KGs by mitigating het-
erogeneity among factor tensors for tensor decom-
position based methods. To further validate the

2171

https://doi.org/10.18653/v1/2021.naacl-main.202
https://doi.org/10.1609/AAAI.V37I4.25601
https://doi.org/10.1609/AAAI.V37I4.25601
https://doi.org/10.1609/AAAI.V37I4.25601
https://doi.org/10.18653/v1/2024.acl-long.596
https://doi.org/10.18653/v1/2024.acl-long.596
https://doi.org/10.18653/v1/2024.acl-long.596


effectiveness, we conduct experiments on a larger
and more challenging TKG dataset GDELT. The
GDELT covers only 500 most common entities and
20 most frequent relations, while the number of
quadruples achieves 2M. This is reflected in the
denser relations between entities in KGs. Hence,
the GDELT dataset is a challenging large-scale
TKG.

We chose TComplEx and TNTComplEx mod-
els as the backbone model in the experiment on
GDELT. The results are shown in Table 4. From
Table 4, we observe that there is significant perfor-
mance improvement in terms of H@1, H@3, and
H@10. This proves that the proposed method can
effectively diminish the heterogeneity among the
factor tensors in TKGE. It exemplifies the potential
of our method in handling large-scale TKGs.

GDELT
rank Para. MRR H@1 H@3 H@10

TComplEx 128 0.23M 21.3 13.4 22.7 36.5
TComplEx +log(f(·)) 128 0.23M 22.7 14.7 24.3 38.3

TNTComplEx 128 0.24M 21.9 13.9 23.3 37.4
TNTComplEx +log(f(·)) 128 0.24M 22.1 14.0 23.5 37.6

Table 4: Link prediction results on GDELT.

D Method Efficiency Comparison

Since we implement logarithmic mapping in our
implementation of Lie group mapping using the
following method, our method is theoretically a
linear operation with O(n) time complexity. The
following table shows the training time required
for our method on the ICEWS05-15 dataset com-
pared to other methods, confirming the linear opera-
tion of our method without significantly increasing
the computational cost. As shown in Table 5, we
can observe that the training time for models us-
ing the log(f(·)) method shows a slight increase.
However, considering the potential performance
improvements brought by our method, this addi-
tional time cost is acceptable.

Method Para. Train-time
TComplEx 3.84M 30 min
TComplEx +log(f(·)) 3.84M 32 min
TNTComplEx 3.97M 32 min
TNTComplEx +log(f(·)) 3.97M 33 min
TeLM 7.26M 35 min
TeLM +log(f(·)) 7.26M 36 min
TeAST 4.87M 34 min
TeAST +log(f(·)) 4.87M 35 min

Table 5: Comparison of training times and parameters
for different TKGE models on ICEWS05-15.
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