
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2145–2160

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

MSc-SQL: Multi-Sample Critiquing Small Language Models For
Text-To-SQL Translation

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Jiapeng Wu,
Noël Vouitsis, Guangwei Yu, Jesse C. Cresswell, Rasa Hosseinzadeh,

Layer 6 AI
{satya, ilan, zhaoyan, paul, noel, guang, jesse, rasa}@layer6.ai

Abstract

Text-to-SQL generation enables non-experts to
interact with databases via natural language.
Recent advances rely on large closed-source
models like GPT-4 that present challenges in
accessibility, privacy, and latency. To address
these issues, we focus on developing small, ef-
ficient, and open-source text-to-SQL models.
We demonstrate the benefits of sampling mul-
tiple candidate SQL generations and propose
our method, MSc-SQL, to critique them using
associated metadata. Our sample critiquing
model evaluates multiple outputs simultane-
ously, achieving state-of-the-art performance
compared to other open-source models while
remaining competitive with larger models at a
much lower cost. Full code can be found at
github.com/layer6ai-labs/msc-sql.

1 Introduction

Text-to-SQL generation is a rapidly growing area of
natural language processing with significant real-
world applications. It enables non-expert users
to interact with databases using natural language
queries, which are then automatically translated
into SQL queries. This capability is widely appli-
cable across various domains, including business
intelligence, customer service automation, and data
analysis. For example, it facilitates automating the
feature selection process in tabular data prediction
tasks which often involves complex aggregation
queries over event histories. Furthermore, empow-
ering translation models with database query access
will allow for automated agentic workflows.

Recent advances in text-to-SQL generation have
primarily leveraged closed-source models like
GPT-4 (OpenAI, 2023) which, combined with ad-
vanced prompting techniques, have consistently
achieved state-of-the-art performance on bench-
marks such as Spider (Yu et al., 2018) and BIRD
(Li et al., 2023b). However, the reliance on closed-
source API-based models limits accessibility, trans-

parency, and task adaptability, while presenting
privacy concerns around data being sent to an API.
All of these limitations underscore the need for
efficient, open-source alternatives capable of com-
petitive performance.

The inherent complexity of text-to-SQL tasks
has contributed to proposed solutions becoming
increasingly expensive. For instance, recent re-
search (Wang et al., 2023; Pourreza and Rafiei,
2024; Talaei et al., 2024) demonstrates that decom-
posing complex tasks into specialized sub-tasks –
such as table prediction, SQL generation, and error
correction – improves overall performance. How-
ever, these composite approaches also increase the
number of function calls to the model, leading to
latency issues, especially when relying on larger
models. This highlights the importance of devel-
oping smaller, task-specific models that maintain
accuracy while being computationally efficient. Ef-
forts such as DTS-SQL (Pourreza and Rafiei, 2024)
and SFT CodeS-7B (Li et al., 2024a) are among
the few that try to address this need.

Our objective is to develop efficient methods for
text-to-SQL generation that succeed with small and
open-source models. We demonstrate that smaller
language models (under 10B parameters) struggle
to match the performance of their larger closed-
source counterparts when relying solely on exist-
ing approaches, namely those that combine schema
linking with SQL generation. We then show that
this gap can be closed by sampling and running
multiple SQL queries – either from the same model
or from an ensemble of models of similar size –
and comparing the results. By limiting the number
of samples to two or three, this strategy balances
between improving generation quality and main-
taining computational efficiency. Recent works
on other natural language generation tasks (Brown
et al., 2024; Snell et al., 2024; Li et al., 2024b)
support the idea that increased test-time compute
can boost generation quality.

2145

Sampling multiple SQL queries requires a way
to judge the various candidates and then select the
best one. Prior works on natural language gener-
ation with Large Language Models (LLMs) have
employed techniques like training a ranker to eval-
uate the quality of generated samples (Li et al.,
2022a), or using reward models to guide the selec-
tion process (Ouyang et al., 2022; Rafailov et al.,
2023). However, in the more specialized context
of text-to-SQL generation we propose a distinct ap-
proach: training a sample-critiquing model that si-
multaneously considers multiple generations, their
corresponding execution results, and associated
metadata to determine which of the generated SQL
queries should be returned. Compared to analogous
methods, our approach allows the model to better
leverage comparative information and contextual
cues. Our results show state-of-the-art performance
among open-source models on popular text-to-SQL
benchmarks, while also achieving competitive re-
sults against larger closed-source models albeit at
a much lower cost.

2 Related Work

Text-to-SQL Generation. Early works in the
space of text-to-SQL generation predominantly
leveraged rule-based methods to parse natural lan-
guage queries and map them to valid SQL state-
ments (Popescu et al., 2003, 2004; Li and Jagadish,
2014). Recently, LLMs such as GPT-4 (OpenAI,
2023) have facilitated this task by leveraging their
strong textual priors to generate SQL queries (Li
et al., 2023b). Due to the challenging nature of
direct SQL generation, subsequent works instead
decomposed the generation process into dedicated
sub-tasks and prompted GPT-4 to solve each task
sequentially (Wang et al., 2023; Dong et al., 2023;
Pourreza and Rafiei, 2023; Chen et al., 2024). For
example, MAC-SQL (Wang et al., 2023) defined
three sub-components namely a Selector, a Decom-
poser, and a Refiner, where dedicated prompts were
engineered for each component. Despite being
state-of-the-art on several SQL generation bench-
marks, the reliance of these methods on very large
and closed-source models makes them inherently
inefficient and expensive, and poses accessibility
and privacy concerns. More recently, a few works
have begun exploring the use of smaller open-
source models (under 10 billion parameters) for
SQL generation tasks (Pourreza and Rafiei, 2024;
Li et al., 2024a) and have shown promising re-

sults. However, there remains a significant perfor-
mance gap compared to several of the aforemen-
tioned GPT-4-based models. Our method MSc-
SQL largely bridges this accuracy gap while re-
maining efficient and open-source.

Exploring Test-Time Computation. On general
LLM benchmarks, recent methods have sought
to leverage additional test-time computation, such
as planning, reasoning and problem deliberation
to improve performance (Wei et al., 2022; Yao
et al., 2023b; Besta et al., 2024; Zelikman et al.,
2024; Yao et al., 2023a). For example, Chain-of-
Thought (CoT) prompting (Wei et al., 2022) forces
the model to spend more tokens “thinking” about
the problem before answering. Some methods have
also explored repeated sampling as a way of us-
ing increased test-time computation to expand the
space of generated solutions (Cobbe et al., 2021;
Irvine et al., 2023; Snell et al., 2024; Brown et al.,
2024; Zhang et al., 2024a). This expanded solu-
tion set is then filtered out using either rule based
verifiers (Wang et al., 2022), such as picking the
response that passes all the test-cases in the coding
domain, or using other models to compare and then
select the best sample among candidates (Cobbe
et al., 2021; Lightman et al., 2024). We explore
the latter direction in the domain of text-to-SQL
generation.

3 Towards Building an Efficient
Text-to-SQL Pipeline

Problem Setup. Text-to-SQL generation involves
translating a natural language query q into a struc-
tured SQL query s that retrieves the desired infor-
mation from a database. More formally, given a
natural language question q, the schema S of a
relational database D, and any extra metadata M
associated with the query such as extra evidence
or few-shot examples from the database, the goal
is to generate a valid SQL query s such that the
execution of s on D returns the correct answer
to q. In other words, the overall objective is to
learn a model f : (q,S,M) → s. This problem
is challenging on many fronts because of the di-
versity in which the natural language question can
be expressed, the difficulty in inferring complex
relational structures from a database schema, and
the restriction of generating only valid SQL syntax
for s. Due to these complexities, we divide the
problem into three distinct modules which form
a blueprint for an efficient text-to-SQL pipeline,

2146

…

DB Vector Index

SQL Executor

Multi-Sample
Critiquing Model

NN Lookup

Schema Linking
Model

SQL Generation
Model

Figure 1: Starting with a natural language query q, database schema S, and metadata Mlink, the schema linking
model returns a subset Sq of tables which are necessary to answer q. Next, the SQL generation model adds metadata
Mgen obtained through retrieval against an embedding of the query e(q), and generates multiple possible SQL
queries si. Finally, the multi-sample critiquing model comparatively evaluates the generations si along with their
execution results ri when run on the database, and then selects one as the final output s.

depicted in Figure 1. While the first two modules
are commonly used, we make novel design rec-
ommendations in our blueprint. The third module
described in section 4 is original.

3.1 Schema Linking

Schema linking is the task of identifying the rel-
evant tables and attributes within the schema S
that are necessary to construct a valid SQL query
s based on the natural language query q. This step
is critical because SQL queries typically involve
only a subset of the available tables and attributes.
Correctly identifying this subset ensures that the
subsequent steps including SQL generation are fo-
cused on the most pertinent tables in the schema.
Schema linking also reduces the input’s length to
help it fit in the limited context size of existing lan-
guage models, while reducing costs in the quadratic
Transformer attention (Vaswani et al., 2017) opera-
tion, and improving context utilization (Liu et al.,
2024). Given the schema S containing information
about each table and column type including the
primary key and foreign key relationships, and cor-
responding metadata Mlink, we denote our schema
linking model as flink : (q,S,Mlink) → Sq, where
Sq ⊆ S represents only the schemas of the tables
that are predicted to be needed for answering q. Our
aim here is to maximize the recall of predicted ta-
bles; high recall is essential because missing even
one necessary table immediately precludes com-
plete and correct SQL generation. While emphasiz-
ing recall may introduce some false positives (i.e.,
irrelevant tables included in Sq), our subsequent
stages are designed to be robust to such inaccura-
cies.

3.2 SQL Generation

Given a reduced schema Sq, we then proceed to
generate a SQL query s as fgen : (q,Sq,Mgen) →
s, where Mgen is associated metadata. Although
conceptually simple, generating a valid SQL query
often requires knowledge of the formatting of col-
umn values, for instance when using a WHERE
clause. To generate a correct SQL query s for the
example q “Which school is in California?”, fgen
must know whether the state of California is rep-
resented as “CA”, “California”, or another variant
thereof in the particular SQL database D.

Contextual Retrieval through Few-Shot Exam-
ples. We thus augment the SQL generation process
by providing few-shot examples of the values in
each column as additional metadata in Mgen. By
including this information, the model can better
infer the correct SQL query, resolving potential
ambiguities related to data representation in the
database. For string columns it is especially im-
portant to provide information which is relevant
to the query; hence we use the nearest neighbours
of q. The retrieval of few-shot examples is con-
ducted through a similarity measure with an em-
bedding of the input query concatenated with any
additional evidence provided as metadata. A vec-
tor index on the entire database is constructed of-
fline by indexing a fixed number of unique entries
of every string type column. We specifically use
Alibaba-NLP/gte-large-en-v1.5 (Zhang et al.,
2024b) as the embedding model. For other column
types, we randomly sample few-shot examples.

Robust Training with Noisy Table Injection. The
schema linking stage may predict more tables than

2147

are strictly necessary in Sq because it aims to max-
imize recall. To combat this, we improve the ro-
bustness of generation to noise in Sq by having the
SQL generation step learn to discard unnecessary
and irrelevant tables. Starting with the ground-truth
schema S∗

q from the training set containing only
necessary tables needed for query q, we inject extra
tables denoting the result by S†

q . We sample any-
where between 0 to 2 extra tables with a weighted
probability, then train fgen on S†

q rather than S∗
q .

Training. Starting with an open-source language
model, we fine-tune on tuples (q,S†

q ,Mgen, s) so
that the model learns to generate syntactically cor-
rect and semantically valid SQL queries. The gen-
eration follows a sequence to sequence paradigm
to maximize the likelihood of outputs,

Lgen = −
∑

(q,S†
q ,Mgen,s)

logP (s | q,S†
q ,Mgen), (1)

where P represents the probability assigned to s by
the language model fgen. Integrating both retrieval
of contextual examples through Mgen and expo-
sure to superfluous tables through S†

q refines the
model’s capability to discern relevant schema in-
formation, enhancing the accuracy of the generated
SQL queries.

4 MSc-SQL: Enhancing SQL Generation
Using Multi-Sample Critiquing

As mentioned in section 1, our objective is two-fold.
We propose to use only open-source language mod-
els for their improved accessibility, transparency,
adaptability, and privacy. Second, we aim to
achieve high-quality SQL generation using smaller
language models to promote faster inference and re-
duce overall computational costs. However, small
language models typically lag behind their larger
counterparts in generation quality due to inherent
limitations in their capacity. This is especially true
in challenging tasks like SQL generation that re-
quire a deep understanding of the complex hierar-
chies present in an SQL statement. We reconcile
this gap by increasing the test-time computation
budget used by smaller language models, sampling
multiple generations to improve the likelihood of
generating a correct SQL statement. In this work,
we demonstrate that generating as few as three
samples can yield highly competitive results on
SQL benchmarks while maintaining the overall ef-
ficiency of the pipeline.

However, sampling multiple generations leaves
us with the task of selecting the best possible gener-
ation among them. Prior works have used methods
such as majority voting (Wang et al., 2022), use
of a reward model (Christiano et al., 2017; Cobbe
et al., 2021; Lightman et al., 2024; Li et al., 2022a)
or a combination of the two to pick the best gen-
erated candidate (Brown et al., 2024) . This has
shown promising results in other domains like math
and coding tasks (Hendrycks et al., 2021; Li et al.,
2022b). Other methods use pre-trained LLMs like
GPT-4 to judge the quality of the sampled gener-
ations to select the best one (Zheng et al., 2023;
Lee et al., 2024). Such methods have the drawback
of utilizing expensive closed models like GPT-4 to
evaluate the best candidate. We mitigate this cost
by developing an open model for the purpose of
sample critiquing.

4.1 Multi-Sample Critiquing in MSc-SQL
Sample critiquing involves evaluating the inputs
and the generated samples to determine the correct-
ness of the generation. To facilitate this decision we
can increase the contextual information provided to
the model so it can make a more informed critique.
To this end, we provide the model with not only the
question, schema and the generated SQL queries,
but also with the output of executing the SQL query
and any resulting error messages. For example, if
the query asks to find the average employee salary
grouped by department, and a generated SQL query
returns a single column of average salary without
the grouping column, then the critiquing model
should be able to identify the discrepancy and rule
out the generated query.

We let si and ri represent the candidate SQL
queries and their respective execution results, and
let Msc denote any additional metadata needed
for this stage. As a baseline, we first con-
sider a basic critiquing model, using fisc to de-
note independent sample critiquing, where fisc :
(q,Sq, (si, ri),Msc) → [0, 1]. This model inde-
pendently critiques the candidates si which are then
ranked according to the model’s logits to output a
single option. Although augmenting the input of
fisc with ri improves the model’s ability to select
the correct SQL query, by independently ranking
each SQL query the model still lacks the ability to
jointly reason over multiple samples to consider
relative differences among them; we expect that
critiquing multiple samples at once should allow
the model to consider subtle nuances that might

2148

Question

Question: Who is the illustrator that illustrated the least amount of cards? List
the format of play of the cards that he/she illustrated.

Evidence: format of the cards refers to format; illustrator refers to artist; the
least amount of cards refers to MIN(artist)

DB schema: card_games
TABLE "cards"
(
 id INTEGER primary key, -- Ex: 41138, 1349, 23810
 artist TEXT, -- artist that illustrated the card art. Ex: "Pete", "Andrea
Radeck", "Illustranesia"
 ...
)

TABLE "legalities"
(
 id INTEGER primary key, -- unique id legality. Ex: 1, 2, 3
 format TEXT, -- format of play. Ex: "pauper", "standard", "penny"
 ...
 foreign key (uuid) references cards(uuid)
)
...

Generated SQL 1

SELECT T2.artist, T1.format FROM legalities AS T1 INNER JOIN
cards AS T2 ON T1.uuid = T2.uuid GROUP BY T2.artist ORDER BY

COUNT(T2.id) ASC LIMIT 1

+----------------------+----------------------+
| artist | format |
+----------------------+----------------------+
| Anna Pavleeva | gladiator |
+----------------------+----------------------+

Result of SQL 1

SELECT T1.artist, T2.format FROM cards AS T1 INNER JOIN
legalities AS T2 ON T1.uuid = T2.uuid GROUP BY T1.artist,

T2.format ORDER BY COUNT(T1.artist) LIMIT 1

+----------------------+----------------------+
| artist | format |
+----------------------+----------------------+
| None | commander |
+----------------------+----------------------+

Generated SQL 2

Result of SQL 2

Figure 2: Two example queries sampled from our SQL generation model. Both are given to MSc-SQL for critiquing;
one is correct and one is incorrect. Joint reasoning over both queries allows MSc-SQL to better capture the nuanced
differences between them and thus select the correct query.

make one query correct over another.
We therefore propose to simultaneously cri-

tique multiple generated samples (provided they fit
within the maximum context size of the underlying
model) to allow for a more comprehensive compari-
son. We illustrate an example in Figure 2 where we
provide two generated SQL samples that MSc-SQL
must choose between. The question asks to identify
the illustrator with the least amount of cards, along
with clarifying evidence on the ‘format’ and ‘artist’
columns. While the first generated query is cor-
rect, the second one wrongly groups the ‘artist’ and
‘format’ columns resulting in the value None for
the ‘artist’ column (highlighted in red in the figure).
Providing the model with both generations at once
makes it easier to discern the correct response. We
only illustrate two generated samples for clarity,
but MSc-SQL generalizes to n candidate samples
as fmsc : (q,S, {(si, ri)}ni=1,Msc) → {1, . . . , n}
where the output is now the index of the selected
SQL sample.
Training. To facilitate training of our critiquing
model and leverage the existing knowledge embed-
ded in pre-trained open-source models, we model
this task in a similar manner to next token predic-
tion and simply predict the correct sample index as
the next token.

4.2 Inference

The end-to-end inference process is specified in
Algorithm 1. In cases where the context size of
the underlying model is not big enough to capture
all the candidates, we can reduce the context size
by employing pairwise comparisons on all pairs,
a sliding window strategy (Sun et al., 2023), or a
tournament-style voting mechanism where candi-

Algorithm 1: Inference with MSc-SQL
Input: Natural language query q, schema S ,

metadata Mlink,Mgen,Msc
Output: Generated SQL query s

Step 1: Schema Linking
Predict relevant schema subset:
Sq = flink(q,S,Mlink)

Step 2: SQL Generation
Retrieve nearest-neighbor examples and

enrich metadata Mgen
Generate candidates:
si = fgen(q,Sq,Mgen), i = 1, . . . , n

Step 3: Sample Critiquing
Execute candidates to obtain results ri
Select the best candidate:
i∗ = fmsc (q,Sq, {(si, ri)}ni=1,Msc)

Return Selected SQL query s = si∗

date pairs are arranged in a tournament bracket to
reduce the number of comparisons required. Over-
all, we find that MSc-SQL yields highly compet-
itive results, outperforming several methods that
use proprietary LLMs like GPT-4, and stands as
the best performing open-source model for text-to-
SQL generation.

5 Experiments

Implementation Details. For our experiments,
we considered open-source language models with
fewer than 10 billion parameters. Specifically, we
used instruction-tuned variants of Mistral-7B-v0.3
(Jiang et al., 2023), Llama-3-8B (Dubey et al.,
2024) and Gemma-2-9B (Riviere et al., 2024) mod-
els. Fine-tuning was performed using QLoRA

2149

Table 1: Results comparing recent methods on the BIRD and Spider benchmarks. Params. refers to the number of
model parameters; if multiple models are used we select the single largest.

Method Params. Dev EX%

Closed Proprietary Models

Distillery+GPT-4o-finetune (Maamari et al., 2024) NA 67.2
Distillery+Gemini-1.5-Pro (Maamari et al., 2024) NA 60.5
CHESS+GPT-4 (Talaei et al., 2024) NA 65.0
MCS-SQL+GPT-4 (Lee et al., 2024) NA 63.4
MAC-SQL+GPT-4 (Wang et al., 2023) NA 59.6

Open Models

CHESS+Llama-3 (Talaei et al., 2024) 70B 61.5
Distillery+Llama-3 (Maamari et al., 2024) 405B 59.9
SFT CodeS (Li et al., 2024a) 15B 58.5
SFT CodeS (Li et al., 2024a) 7B 57.2
DTS-SQL+DeepSeek (Pourreza and Rafiei, 2024) 7B 55.8
MSc-SQL (Ours) 9B 65.6

(a) BIRD Benchmark

Method Params. Test EX%

Closed Proprietary Models

CHESS+GPT-4 (Talaei et al., 2024) NA 87.2
DAIL-SQL+GPT-4 (Gao et al., 2024) NA 86.6
DIN-SQL+GPT-4 (Pourreza and Rafiei, 2023) NA 85.3
C3+ChatGPT (Dong et al., 2023) NA 82.3

Open Models

RESDSQL (Li et al., 2023a) 3B 79.9
NatSQL+T5 (Rai et al., 2023) 3B 78.0
DTS-SQL+Mistral (Pourreza and Rafiei, 2024) 7B 77.0
MSc-SQL (Ours) 9B 84.7

(b) Spider Benchmark

(Dettmers et al., 2023), with a LoRA rank of 32, a
LoRA α of 128, and a dropout rate of 0.05. Fine-
tuning was conducted with an effective batch size
of 12, using a single NVIDIA A6000 Ada GPU
with 48GB VRAM. The use of QLoRA allowed for
memory efficient fine-tuning of these models with-
out the need to update all the model parameters, in
line with our efficiency goal.

Datasets and Metrics. We utilized two primary
datasets of text-to-SQL examples, Spider 1.0 (Yu
et al., 2018) and BIRD (Li et al., 2023b), each
serving distinct roles in evaluating the effective-
ness of our approach to text-to-SQL generation.
Spider 1.0 is a widely recognized dataset contain-
ing queries across 138 different domains span-
ning 200 databases. The BIg Bench for LaRge-
scale Database Grounded Text-to-SQL Evaluation
(BIRD) is a more comprehensive and challenging
benchmark compared to Spider 1.0. BIRD contains
over 12,751 unique question-SQL pairs on 95 big
databases with a total size of 33.4 GB. All of the
results in our paper are reported on Spider 1.0’s test
set and BIRD’s Dev set.

Key evaluation metrics for text-to-SQL genera-
tion are: Execution Accuracy (EX), Exact Match
(EM), and Validity and Efficiency Score (VES) (Yu
et al., 2018; Li et al., 2023b). EX measures the cor-
rectness of the SQL queries by checking if their ex-
ecution results match the expected outcomes, mak-
ing it a direct indicator of practical usability. EM
assesses syntactic precision by comparing the gen-
erated SQL query against the reference query char-
acter by character; however, since different SQL
queries can produce the same results, EM may pun-

ish functionally correct queries. VES evaluates
both the correctness and computational efficiency
of generated queries, which may be important in
practical real-time systems.1 Still, generating cor-
rect queries is a challenging enough problem in its
own right, so we prioritize EX and forgo evalua-
tions of syntactic precision or efficiency.

Comparison with SoTA on BIRD and Spider 1.0
Datasets. In Table 1 we provide detailed evalua-
tion of our model’s performance against the cur-
rent state-of-the-art (SoTA) methods across both
major benchmarks The results are grouped under
two headings to emphasize the performance dispar-
ity between closed proprietary models and open
models. Our method, MSc-SQL which integrates
multi-sample critiquing, demonstrates impressive
performance improvements across the two bench-
marks compared to existing methods using open
models. MSc-SQL critiques one sample from each
of a fine-tuned Mistral-7B, Llama-8B, and Gemma-
8B model to select the best candidate. Although,
it only uses models under 10 billion parameters,
our overall pipeline achieves a competitive score
often outperforming methods that use proprietary
language models such as Gemini-Pro (Reid et al.,
2024) and GPT-4 (OpenAI, 2023), while also main-
taining a significant advantage in inference speed.
Compared to methods using open models, MSc-
SQL outperforms the existing methods by a signifi-
cant margin of 4.18 percentage points on BIRD.

Ablations. We show in Table 2 detailed ablation
studies on different settings of our pipeline to un-

1Note that the run-time efficiency of the generated query
is separate from the efficiency of the text-to-SQL method.

2150

Table 2: Ablations of our method on BIRD. Superscripts
M , L, and G refer to the fine-tuned versions of Mistral,
Llama-3, and Gemma-2 models respectively.

Model Family Params. Dev EX%

fM
gen 7B 56.4
fL

gen 8B 54.1
fG

gen 9B 55.0
fM

link + fM
gen 7B 61.3

fM
link + fL

gen 8B 60.0
fM

link + fG
gen 9B 60.8

fM
link → {fM

gen, f
M
gen} → fM

msc 7B 64.0
fM

link → {fL
gen, f

L
gen} → fM

msc 8B 63.5
fM

link → {fG
gen, f

G
gen} → fM

msc 9B 62.7
fM

link → {fM
gen, f

M
gen, f

M
gen} → fM

msc 7B 64.8
fM

link → {fL
gen, f

L
gen, f

L
gen} → fM

msc 8B 64.1
fM

link → {fG
gen, f

G
gen, f

G
gen} → fM

msc 9B 62.9
fM

link → {fM
gen, f

L
gen, f

G
gen} → fM

msc 9B 65.6

derstand how various parts of it contribute to the
performance on the BIRD benchmark. We denote
the underlying LLM using a superscript: fM , fL,
fG denote the Mistral, Llama and Gemma models
mentioned above. We first measure the effect of
directly predicting SQL using fgen, and then add
schema linking before generation as flink → fgen.
Schema linking increases the overall accuracy by
5-6% across generation models by removing redun-
dant tables and improving focus. We then incor-
porate multi-sample critiquing by using either two
or three samples from the underlying generation
models and let the critiquing model fmsc pick the
most accurate SQL generation. Training such a
model to critique the generations consistently in-
creases the overall score across various settings as
the sample size increases. Diversity of samples
is also important. Sampling from each of a fine-
tuned Mistral, Llama, and Gemma model results in
the highest performance, achieving an accuracy of
65.6% on the BIRD Dev set. We denote this setting
as “MSc-SQL” in Table 1.

We further perform analysis on the effect of us-
ing multiple generation models for sampling SQL
outputs and contrast it with sampling multiple SQL
outputs from a single generation model with non-
zero temperature. Towards this, we train a number
of different SQL generation models fgen from a
base Mistral model with different random seeds,
obtain one SQL sample from each model (with tem-
perature set to zero), and use our critiquing model
to pick the best candidate. We plot performance
on the BIRD Dev set in Figure 3 and see that the
improvement in accuracy saturates between three
and five models. Limiting the number of samples

Figure 3: Effect of using different models to each create
one sample for multi-sample critiquing. The generation
models are all fine-tuned Mistral-7B models, but with
different random seeds used during training.

1 2 3 4 5 6
60

61

62

63

64

65

66

No. of samples

D
ev

Se
tE

X
(%

)

Table 3: EX% on the BIRD Dev set for varied temper-
atures T and number of queries used for multi-sample
critiquing. The underlying generation model is a fixed
fine-tune of Mistral-7B.

Samples T = 0 T = 0.1 T = 0.5 T = 1

1 61.3 61.4 59.9 56.5
2 61.3 61.6 61.4 59.3
3 61.3 61.8 61.9 60.6
4 61.3 62.0 62.3 61.4
5 61.3 62.0 62.4 62.0

from a smaller language model to three maintains
the overall efficiency of the pipeline compared to
using very large models. Since these models are
trained using QLoRA, the memory footprint of us-
ing multiple versions is comparable to just loading
the base model.

To quantify the effect of varying temperature
while sampling from a single generation model
fgen, we fix the temperature T to a value in [0, 1],
generate between one and five queries, and mea-
sure the performance of multi-sample critiquing on
the BIRD Dev set with results shown in Table 3.
Of course, when T is fixed to zero, sampling is
deterministic and there is no benefit to critiquing.
Increasing the number of samples and selecting the
final output with fmsc consistently increases the ac-
curacy across different T values. We note the best
results with temperature T = 0.5.

Based on these ablations, it is evident that sam-
pling from diverse generation models and incor-
porating our multi-sample critiquing model in-
creases the overall accuracy of the text-to-SQL
pipeline. Compared to sampling from a single gen-
eration model with non-zero temperature, training
different models from random initializations in-
creases the likelihood of generating a correct query
which can be picked out by multi-sample critiquing,
and translates to higher performance. Both abla-

2151

Table 4: Performance of methods as the complexity of
BIRD queries is varied (EX%).

Simple Moderate Challenging Overall

GPT-4-turbo 54.3 35.2 41.7 46.3
SFT CodeS-7B 64.6 46.9 40.3 57.2
SFT CodeS-15B 65.8 48.8 42.4 58.5
MAC-SQL+GPT-4 65.7 52.7 40.3 59.4
CHESS+GPT-4 65.4 64.8 58.3 64.6
MSc-SQL (Ours) 72.0 58.0 49.0 65.6

tions highlight that diversity of samples is bene-
ficial. Duplicate generated queries are not help-
ful in multi-sample critiquing, whereas generating
diverse queries allows fmcs to contrast several ap-
proaches to the problem as well as execution results.
Ultimately, only a single correct query is needed,
but diverse samples provide more information to
determine which may be correct.
Query Complexity. In Table 4 we compare how
varying query complexity affects accuracy, using
annotations from the BIRD benchmark. We see an
overall improvement compared to most methods
on all three categories. Importantly, we observe
that MSc-SQL performs much better on simple
queries compared to all the current methods, while
CHESS+GPT-4 (Talaei et al., 2024) performs better
on moderate and challenging categories. We be-
lieve this to due to the their use of GPT-4 to gener-
ate SQL queries which is expected to be much bet-
ter at generating coherent complex sequences. Due
to the plug-and-play nature of MSc-SQL where
we can easily fine-tune and swap models in the
pipeline, as smaller models improve in their ability
to generate more complex sequences, the overall
accuracy of our method can improve accordingly.
Analyzing Multi-Sample Critiquing. The data
presented in Table 5 highlights the effectiveness of
the sample critiquing methodologies described in
section 4. We compare these methods with an or-
acle critiquing model, foracle, that always chooses
the correct query when there is at least one cor-
rectly generated SQL query in the available sam-
ples. With the oracle model, the pipeline’s accu-
racy is 71.4% on the BIRD Dev set, representing
the ceiling in terms of the performance for a fixed
generation model.

To show the efficacy of the multi-sample cri-
tiquing method with fmsc, we first compare two
different critiquing models that process samples
independently to generate a likelihood of cor-
rectness. One is an off-the-shelf high perform-
ing Llama-8B reward model taken from the Re-

Table 5: Measuring the effect of different sample cri-
tiquing techniques on BIRD.

Method Dev EX%

Baseline: fM
link → fM

gen 61.3
fM

link → {fM
gen, f

L
gen, f

G
gen} → foracle 71.4

fM
link → {fM

gen, f
L
gen, f

G
gen} → f1

isc 60.2
fM

link → {fM
gen, f

L
gen, f

G
gen} → f2

isc 62.9
fM

link → {fM
gen, f

L
gen, f

G
gen} → fconsistency 62.6

fM
link → {fM

gen, f
L
gen, f

G
gen} → fM

msc 65.6

wardBench leaderboard (Lambert et al., 2024),
Skywork-Reward-Llama-3.1-8B, that is tasked to
predict the correctness of the generated output one
at a time, with the highest ranked sample taken as
the output. We refer to this model as f1

isc. We also
fine-tune a Llama-8B on the same dataset as we
train fmsc, but with only a single query in context
as described in section 4, and choose the highest
ranked result. We refer to this as f2

isc. Addition-
ally, we evaluate a third approach based on self-
consistency (Wang et al., 2022), which selects the
most consistent output among the generated out-
puts, referred as fconsistency. We see that f1

isc per-
forms worse than the baseline (i.e. no critiquing)
which is likely due to the reward model not being
specifically trained on SQL tasks. While we see an
improvement of 1.6 p.p. from training f2

isc on SQL
data. The self-consistency approach fconsistency
shows 1.3 p.p. improvements over the baseline,
comparable to f2

isc. Multi-sample critiquing fmsc
outperforms all other selection methods by a large
margin; an improvement of 4.3 p.p. over the base-
line and 2.7 p.p. over f2

isc, further demonstrating
the benefits of critiquing multiple samples at once.

6 Conclusion

We present an approach for text-to-SQL transla-
tion that leverages open-source language models
to build an efficient and high performing method,
and show comprehensive evaluations on two ex-
isting benchmarks along with analysis on various
design choices made in our approach. We show
that multi-sample critiquing is needed to address
the limitations of smaller language models to com-
pete with larger and proprietary counterparts. Our
critiquing model is trained to leverage richer con-
textual information, including query execution re-
sults and errors to determine the best generation
among candidate samples.

2152

7 Limitations & Risks

While our approach performs competitively with
most methods that use closed models, the choice to
use smaller language models poses an inherent chal-
lenge on the capability of generating complex SQL
statements. This was observed to be the case when
analyzing responses qualitatively based on query
complexity. We found that reliance on smaller lan-
guage models necessitated the use of the critiquing
step for adequate performance, which increases the
complexity of the inference pipeline, even though
the overall computational demand is lower than
competing methods. We leave further investigation
of the effects of critiquing larger open models, the
effects of multi-sample critiquing on them, and the
trade-offs around cost and performance to future
work.

There can also be risks that arise when relying
on text-to-SQL models or more generally agentic
workflows involving LLMs. Such models could
inadvertently, or by way of an attack, output SQL
queries that damage the databases which are acces-
sible, such as by dropping tables. Our proposed
method MSc-SQL is designed to automatically ex-
ecute generated SQL code on the database and
further process the outputs. Hence, if the generated
code is damaging or malicious it could be automat-
ically executed leading to harms. Any such work-
flow that automatically runs generated code should
be implemented with guardrails to prevent perma-
nent damage, for instance by backing up databases,
and segregating the agentic computing environment
from other production systems.

References
Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-

stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
17682–17690.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Aza-
lia Mirhoseini. 2024. Large language monkeys:
Scaling inference compute with repeated sampling.
arXiv:2407.21787.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024. Teaching Large Language Mod-
els to Self-Debug. In The Twelfth International Con-
ference on Learning Representations.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine-
tuning of Quantized LLMs. In Advances in Neural
Information Processing Systems, volume 36, pages
10088–10115.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-SQL with ChatGPT.
arXiv:2307.07306.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-SQL Empowered by Large Language Mod-
els: A Benchmark Evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Robert Irvine, Douglas Boubert, Vyas Raina, Adian
Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei Kor-
shuk, Zongyi Liu, Fritz Cremer, Valentin Assassi,
Christie-Carol Beauchamp, Xiaoding Lu, Thomas
Rialan, and William Beauchamp. 2023. Rewarding
chatbots for real-world engagement with millions of
users. arXiv:2303.06135.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. arXiv:2310.06825.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
Noah A. Smith, and Hannaneh Hajishirzi. 2024. Re-
wardbench: Evaluating reward models for language
modeling. arXiv:2403.13787.

2153

https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. MCS-SQL: Leveraging Multiple
Prompts and Multiple-Choice Selection For Text-to-
SQL Generation. arXiv:2405.07467.

Fei Li and H. V. Jagadish. 2014. Constructing an
interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73–84.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. RESDSQL: Decoupling Schema Linking and
Skeleton Parsing for Text-to-SQL. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 13067–13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. CodeS: Towards
building open-source language models for text-to-
SQL. Proceedings of the ACM on Management of
Data, 2(3):1–28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Ma Chenhao, Guoliang
Li, Kevin Chang, Fei Huang, Reynold Cheng, and
Yongbin Li. 2023b. Can LLM Already Serve as A
Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. In Advances in
Neural Information Processing Systems, volume 36,
pages 42330–42357.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and
Deheng Ye. 2024b. More agents is all you need.
arXiv:2402.05120.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022a. Making
large language models better reasoners with step-
aware verifier. arXiv:2206.02336.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022b. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The Death of Schema
Linking? Text-to-SQL in the Age of Well-Reasoned
Language Models. arXiv:2408.07702.

OpenAI. 2023. GPT-4 Technical Report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern nat-
ural language interfaces to databases: Composing
statistical parsing with semantic tractability. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages 141–
147.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed In-Context Learning of Text-
to-SQL with Self-Correction. In Advances in Neural
Information Processing Systems, volume 36.

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: Decomposed Text-to-SQL with Small
Large Language Models . arXiv:2402.01117.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct Preference Optimization: Your Lan-
guage Model is Secretly a Reward Model. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 53728–53741.

Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu
Yao. 2023. Improving generalization in lan-
guage model-based text-to-SQL semantic parsing:
Two simple semantic boundary-based techniques.
arXiv:2305.17378.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, et al. 2024. Gemini 1.5:
Unlocking multimodal understanding across millions
of tokens of context. arXiv:2403.05530.

Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, et al. 2024. Gemma 2: Im-
proving open language models at a practical size.
arXiv:2408.00118.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
arXiv:2408.03314.

2154

https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://cdn.openai.com/papers/gpt-4.pdf

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
CHESS: Contextual harnessing for efficient SQL syn-
thesis. arXiv:2405.16755.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. MAC-SQL: Multi-agent collaboration for
text-to-SQL. arXiv:2312.11242.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems, volume 36, pages
11809–11822.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. ReAct: Synergizing Reasoning and Acting
in Language Models. In The Eleventh International
Conference on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, David Radev,
Dragomir Chiang, Julia Hockenmaier, and Jun’ichi
Tsujii. 2018. Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL task. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3911–3921.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D Goodman. 2024.
Quiet-star: Language models can teach themselves
to think before speaking. arXiv:2403.09629.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou,
Yuqiang Li, and Wanli Ouyang. 2024a. Access-
ing GPT-4 level Mathematical Olympiad Solutions
via Monte Carlo Tree Self-refine with LLaMa-3 8B.
arXiv:2406.07394.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie,
Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,
Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li,
and Min Zhang. 2024b. mGTE: Generalized Long-
Context Text Representation and Reranking Models
for Multilingual Text Retrieval. arXiv:2407.19669.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In Advances in Neural Information Processing Sys-
tems, volume 36.

2155

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Appendix

We specify example prompts and outputs used to train the schema linking, SQL generation and multi-
sample critiquing models.

A.1 Schema Linking

User: As an experienced and professional database administrator , your
task is to analyze a user question and a database schema to provide

relevant information. You are given an SQL Question , "Evidence" which
is information that you need to use to solve the question , "DB

schema" containing the database schema.

Identify and list all the relevant tables names from the DB schema
based on the user question , database schema and evidence provided.
Make sure you include all of them.

SQL Question: What is the highest eligible free rate for K-12
students in the schools in Alameda County?

Evidence: Eligible free rate for K-12 = `Free Meal Count (K-12)' / `
Enrollment (K-12)'

DB schema: california_schools
TABLE "frpm"
(
"CDSCode" TEXT primary key ,
"Academic Year" TEXT ,
"County Code" TEXT ,
"District Code" INTEGER ,
...
2013 -14 CALPADS Fall 1 Certification Status INTEGER ,
foreign key (CDSCode) references schools(CDSCode)

)

TABLE "satscores"
(
"cds" TEXT primary key ,
"rtype" TEXT ,
"sname" TEXT ,
"dname" TEXT ,
...
foreign key (cds) references schools(CDSCode)

)

TABLE "schools"
(
"CDSCode" TEXT primary key ,
"NCESDist" TEXT ,
"NCESSchool" TEXT ,
"StatusType" TEXT ,
...
LastUpdate DATE ,

2156

)

Assistant:
```json
{

"tables ": ["frpm", "schools "]
}
```

A.2 SQL Generation

User: You are given an SQL Question , "Evidence" which is information
that you need to use to solve the question , 'DB schema ' containing
the database schema.
Think step by step and solve the question by coming up with the
correct SQL statement that solves the question.

Important things to keep in mind:
1. Only use the tables that are required to solve the task.
2. Use the "evidence" and sample values and column descriptions given
to you for reasoning.

3. Don 't forget keywords such as DISTINCT , WHERE , GROUP BY, ORDER BY ,
LIMIT , etc. if needed.

SQL Question: What is the highest eligible free rate for K-12
students in the schools in Alameda County?

Evidence: Eligible free rate for K-12 = `Free Meal Count (K-12)` / `
Enrollment (K-12)`

DB schema: california_schools
TABLE "frpm"
(
"CDSCode" TEXT primary key , -- Example: "10621660114355" ,
"10621176113575" , "10621256113849" ,
"Academic Year" TEXT , -- Example: "2014 -2015" ,
"County Name" TEXT , -- Example: "Alameda", "Contra Costa", "Santa
Clara",
"District Name" TEXT , -- Example: "Alameda County Offic ...", "San
Francisco County ...", "San Mateo County Off...",
...
foreign key (CDSCode) references schools(CDSCode)

)

TABLE "schools"
(
"CDSCode" TEXT primary key , -- Example: "04755070000000" ,
"04615490000000" , "04746820000000" ,
"County" TEXT , -- County name Example: "Alameda", "Contra Costa", "
Santa Clara",
"District" TEXT , -- Example: "Alameda County Offic ...", "San
Francisco County ...", "San Mateo County Off...",

2157

"School" TEXT , -- Example: "Alameda County Oppor ...", "Alameda
County Speci ...", "Alameda City Unified ...",
"City" TEXT , -- Example: "Alameda", "Santa Clara", "San Mateo",
...

)

Reminder of the SQL Question: What is the highest eligible free rate
for K-12 students in the schools in Alameda County?

Assistant:
```json
{

"sql": "SELECT `Free Meal Count (K-12)` / `Enrollment (K-12)`
FROM frpm WHERE `County Name ` = 'Alameda ' ORDER BY (CAST(`Free
Meal Count (K-12)` AS REAL) / `Enrollment (K-12) `) DESC LIMIT 1"

}
```

A.3 Multi-Sample Critiquing

User: You are an SQL , database expert. A previous user was given a
task of writing a SQL query given a question prompt. The user wrote 2
possible SQL queries. One is correct and one is wrong given the

question. You task is to use the question and your expertise to
decide which one is correct. Here is the question prompt:

You are given an 'SQL Question ', 'Evidence ' which is information that
you need to use to solve the question , 'DB schema ' containing the

database schema.
Think step by step and solve the question by coming up with the
correct SQL statement that solves the question.

Important things to keep in mind:
1. Only use the tables that are required to solve the task.
2. Use the "evidence" and sample values and column descriptions given
to you for reasoning.

3. Don 't forget keywords such as DISTINCT , WHERE , GROUP BY, ORDER BY ,
LIMIT , etc. if needed.

SQL Question: Please list the phone numbers of the direct charter -
funded schools that are opened after 2000/1/1.

Evidence: Charter schools refers to `Charter School (Y/N)` = 1 in the
frpm

DB schema: Database: california_schools
TABLE "frpm"
(
CDSCode TEXT primary key , -- Example: "10621661030675" ,
"04755070433953" , "10621661035831" ,
"Academic Year" TEXT , -- Example: "2014 -2015" ,
"County Code" TEXT , -- Example: "33", "48", "49",

2158

"District Code" INTEGER , -- Example: 10017, 31609, 31617,
...
foreign key (CDSCode) references schools(CDSCode)

)

TABLE "schools"
(
CDSCode TEXT primary key , -- Example: "01316090000000" ,
"04755070000000" , "04755070433953" ,
NCESDist TEXT , -- This field represents the 7-digit National Center
for Educational Statistics (NCES) school
...
LastUpdate DATE , -- Example: 2015-06-23, 2015-09-01, 2015-06-18,

)

Reminder of the SQL Question: Please list the phone numbers of the
direct charter -funded schools that are opened after 2000/1/1.

The following are the two SQL queries written by the user along with
the sample results they generated. One is correct and one is wrong.
You need to decide which one is correct.

1: SELECT DISTINCT T2.Phone , T1.CDSCode FROM frpm AS T1 INNER JOIN
schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T1.`Charter School (Y/
N)` = 1 AND T2.OpenDate > '2000-01-01' AND T1.FundingType = 'Directly
funded '

Results of 1st SQL:
+----------------------+---------------------+
| Phone | CDSCode |
+----------------------+---------------------+
(510) 596 -8901	01100170109835
(510) 563 -1504	01100170118489
(510) 146 -7526	01100170130419
+----------------------+---------------------+	
2: SELECT T2.Phone FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.	
CDSCode = T2.CDSCode WHERE T1.`Charter Funding Type ` = 'Directly	
funded ' AND T2.OpenDate > '2000-01-01'	
Results of 2nd SQL:	
+----------------------+	
Phone	
+----------------------+	
None	
(510) 596 -8901	
None	
(510) 686 -4131	
(510) 452 -2063	
+----------------------+

Provide the number of the correct SQL.

2159

Assistant:
```json
{

"correct_sql ": "2"
}
```

B Latency and Computational Cost Analysis

To evaluate the trade-off between latency and performance, we measured the inference time of our
baseline model fM

gen and compared it with various configurations in Table 2. All models are assumed to
be preloaded into memory, and SQL generation is parallelized where no sequential dependencies exist.
Our method incurs a nearly 1.7× increase in latency compared to the standalone model, but this results in
a performance gain of nearly 10% on the BIRD Dev set, demonstrating an effective trade-off between
inference speed and accuracy.

A direct latency comparison with other Text2SQL approaches in Table 1 is infeasible due to proprietary
models and the unavailability of open-source implementations. Instead, we estimate the computational
cost in FLOPs for the strongest baseline by assuming a fixed context length of 2048 tokens per model
invocation. We utilize the calculate-flops.pytorch2 library to compute total FLOPs across all function
calls. The results are summarized in Table 6.

Compared to the CHESS baseline, which employs a 70B LLaMA model with multiple queries, our
method requires over 10 times less compute while achieving superior performance. This highlights the
efficiency of leveraging additional test-time computation with smaller models to outperform larger models
while reducing computational costs.

Model Family Params. Dev EX% Latency (rel. to baseline) FLOPs (TFLOPS)

fM
gen 7B 56.4 1.00 28.59
fL

gen 8B 54.1 0.89 28.59
fG

gen 9B 55.0 1.10 34.09
fM

link + fM
gen 7B 61.3 1.24 57.18

fM
link + fL

gen 8B 60.0 1.21 57.18
fM

link + fG
gen 9B 60.8 1.28 62.68

fM
link → {fM

gen, f
M
gen} → fM

msc 7B 64.0 1.42 114.36
fM

link → {fL
gen, f

L
gen} → fM

msc 8B 63.5 1.50 114.36
fM

link → {fG
gen, f

G
gen} → fM

msc 9B 62.7 1.53 125.36
fM

link → {fM
gen, f

M
gen, f

M
gen} → fM

msc 7B 64.8 1.55 142.95
fM

link → {fL
gen, f

L
gen, f

L
gen} → fM

msc 8B 64.1 1.54 142.95
fM

link → {fG
gen, f

G
gen, f

G
gen} → fM

msc 9B 62.9 1.69 159.45
fM

link → {fM
gen, f

L
gen, f

G
gen} → fM

msc 9B 65.6 1.68 148.45
CHESS+LLaMA-3 70B 61.5 NA 1682.28

Table 6: Comparison of latency and FLOPs across different model configurations on the BIRD dataset.

2https://github.com/MrYxJ/calculate-flops.pytorch

2160

