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Abstract

Large Vision-Language Models (VLMs) have
demonstrated strong capabilities in tasks re-
quiring a fine-grained understanding of literal
meaning in images and text, such as visual
question-answering or visual entailment. How-
ever, there has been little exploration of the
capabilities of these models when presented
with images and captions containing figurative
meaning, such as metaphors or humor. To close
this gap, we propose a new task framing the
figurative meaning understanding problem as
an explainable visual entailment task, where
the model has to predict whether the image
(premise) entails a caption (hypothesis) and
justify the predicted label with a textual ex-
planation. The figurative phenomena can be
present in the image, in the caption, or both.
Using a human-AI collaboration approach, we
build the accompanying expert-verified dataset
V-FLUTE, containing 6,027 {image, caption,
label, explanation} instances spanning five di-
verse figurative phenomena: metaphors, simi-
les, idioms, sarcasm, and humor. Through au-
tomatic evaluation, we find that VLMs struggle
to generalize from literal to figurative mean-
ing, particularly when it is present in images.
Further, we identify common types of errors in
VLM reasoning (hallucination and incomplete
or unsound reasoning) across classes of models
via human evaluation.1

1 Introduction

Figurative language is integral to human communi-
cation, enabling a variety of communicative goals
(Roberts and Kreuz, 1994), including affective com-
munication (Fussell and Moss, 2014). Figurative
language presents a significant challenge to com-
putational approaches as it requires understanding
of implicit meaning behind an expression (Stowe
et al., 2022; Shutova, 2011; Veale et al., 2016;
Zhou et al., 2021). Recently, Chakrabarty et al.

1Code and data: github.com/asaakyan/V-FLUTE

Label: Entailment Label: Contradiction

He was a chicken.The computer battery ran 
out of power.

The image shows a young boy flexing his 
muscles with an assertive facial 
expression while holding apples in his 
flexed arms. The metaphor "he was a 
chicken" typically implies being scared 
or cowardly. The contradiction arises 
because the boy's posture and expression 
suggest confidence and strength, which 
are opposite characteristics of being 'a 
chicken' in the metaphorical sense.

The illustration shows 
scene where a battery lies 
in an open coffin, 
symbolizing its 'death'. 
Next to the coffin stands a 
computer with a solemn 
expression. This creates a 
visual metaphor of a 
computer battery "dying", 
or running out of power.

Image (Figurative Premise)

Caption (Literal Hypothesis)

Image (Literal Premise)

Caption (Figurative Hypothesis)In
pu

t: 
Im

ag
e 

&
 C

ap
tio

n
O

ut
pu

t: 
Ex

pl
an

at
io

n 
&

 L
ab

el

Figure 1: Explainable visual entailment for understand-
ing figurative meaning: given an image and a caption
output whether the image entails or contradicts the cap-
tion along with a textual explanation.

(2022) proposed a task and dataset for Figurative
Language Understanding through Textual Expla-
nations (FLUTE) that frames the problem as an
explainable textual entailment covering a variety of
figurative language phenomena in text: metaphors,
similes, idioms, and sarcasm. This dataset has been
used successfully to advance and benchmark the
capabilities of LLMs for understanding figurative
language in text (Saakyan et al., 2022; Ziems et al.,
2024; Sravanthi et al., 2024; Dey et al., 2024).

However, figurative meaning is also prevalent in
visual phenomena, such as visual metaphors (Akula
et al., 2023; Chakrabarty et al., 2023), multimodal
sarcasm (Desai et al., 2022), and humor (Hessel
et al., 2023; Hwang and Shwartz, 2023). Yet so far
most of the work on vision and language models
(VLMs) has focused on understanding literal mean-
ing in images and captions (e.g., ScienceQA (Lu
et al., 2022), MMMU (Yue et al., 2024)) includ-
ing work on explainable visual entailment (Kayser
et al., 2021). Building on the idea of FLUTE
(Chakrabarty et al., 2022) for text, we present a new
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dataset for understanding figurative meaning as ex-
plainable visual entailment, V-FLUTE. Our dataset
contains 6,027 {image, caption, label, explanation}
instances spanning diverse figurative phenomena.
Each instance contains an image (premise) and a
caption (hypothesis) that is either entailed or con-
tradicted by the image. Deciding the entailment
relation requires the vision-language model to un-
derstand the implicit meaning in both the visual
and textual modalities. Our dataset contains fig-
urative phenomena present in the image, in the
caption, or in both. In addition, to mitigate the
dependence on spurious correlations, to more rig-
orously investigate reasoning capabilities, and to
promote explainability, our task requires the model
to generate a plausible explanation for the output
label. See Figure 1 for two examples from our
dataset.

We make the following contributions towards
assessing VLMs ability to understand figurative
meaning expressed multimodally:

• V-FLUTE, an expert-verified dataset of 6,027
{image, caption, label, explanation} instances
built using a human-LLM collaboration frame-
work covering several phenomena: metaphors,
similes, idioms, sarcasm, and humor (Section 3).

• A suite of evaluations to assess current VLMs’
capabilities on this new task of explainable visual
figurative entailment (Section 4.2 and 4.3).

• A detailed human evaluation with error analy-
sis yielding insights into the types of errors for
different classes of models (Section 5).

2 Related Work

Textual entailment (MacCartney and Manning,
2008; Bowman et al., 2015) and visual entailment
(Xie et al., 2019) tasks have been proposed to mea-
sure language and multimodal understanding. How-
ever, models trained to simply improve label accu-
racy on these data can be brittle and suffer from
spurious correlations (Poliak et al., 2018; Guru-
rangan et al., 2018; McCoy et al., 2019; Gardner
et al., 2021). Datasets such as e-SNLI (Camburu
et al., 2018) and e-SNLI-VE (Kayser et al., 2021)
augment existing entailment datasets with natural
language explanations and train models to not only
predict the label, but also generate a textual expla-
nation for the reason behind the prediction. How-
ever, they only focus on literal meaning in text and
images. Recently, explainable entailment has been

utilized to assess LLMs’ capabilities on understand-
ing figurative language through the FLUTE dataset
(Chakrabarty et al., 2022). FLUTE frames figu-
rative language understanding as an explainable
textual entailment task. Recent progress in multi-
modal models (Li et al., 2022; Alayrac et al., 2022;
OpenAI, 2023; Team, 2023; Liu et al., 2023b; An-
thropic, 2024) prompts us to asses understanding
of figurative meaning present in the multimodal
setting, contained in both images and text beyond
intent and sentiment (Zhang et al., 2021; Kruk et al.,
2019). To this end, we present an equivalent of the
FLUTE dataset for the visual modality: V-FLUTE.

3 V-FLUTE Task and Dataset

Following prior work on figurative language un-
derstanding in text defined as explainable textual
entailment, FLUTE (Chakrabarty et al., 2022), we
define understanding figurative meaning as an ex-
plainable visual entailment task: given an im-
age (premise) p and a caption (hypothesis) h, out-
put a textual explanation ê justifying whether the
premise entails or contradicts the hypothesis and as-
sign a label ŷ ∈ {Entailment, Contradiction}.
We focus on the binary classification task, since
for neutral labels, the explanations would be trivial
(simply describing the image).

To build V-FLUTE, we start with existing multi-
modal figurative datasets which cover phenomena
such as metaphors, similes, idioms, sarcasm or
humor. We utilize human-AI collaboration frame-
works with expert annotators (Chakrabarty et al.,
2022; Wiegreffe et al., 2022; Liu et al., 2022) to
augment them with expert-verified textual expla-
nations and entailing/contradicting captions. Each
instance then includes an image and a caption, and
the figurative phenomenon can be either in the im-
age, the caption or in both. An overview of the
V-FLUTE dataset and our contributions w.r.t to the
source datasets can be found in Table 1. See exam-
ples corresponding to each source dataset in Table 2
as they appear in V-FLUTE. Below, we describe the
construction of V-FLUTE by each phenomenon.

3.1 Metaphors, Similes and Idioms

To create visual entailment instances containing
metaphors and similes in V-FLUTE, we rely on two
existing resources: HAIVMet (Chakrabarty et al.,
2023) and IRFL (Yosef et al., 2023). Instances
from HAIVMet contain the metaphor/simile as a
part of the premise (image), while those taken from
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Phenomenon Data Source Visual Style Figurative Part Our Contribution # instances

Metaphor/
Simile

HAIVMet
(Chakrabarty et al., 2023) Illustration Image

Image Selection
Textual Explanations
Expert Verification

857
(450 E, 407 C)

IRFL
(Yosef et al., 2023) Photographic Caption xf

Image Selection
Textual Explanations
Expert Verification

1,149
(574 E, 575 C)

Idiom IRFL
(Yosef et al., 2023) Photographic Caption

Image Selection
Textual Explanations
Expert Verification

370
(186 E, 184 C)

Sarcasm MuSE
(Desai et al., 2022) Meme Caption

Caption Generation
Textual Explanations
Expert Verification

1,042
(521 E, 521 C)

Humor
MemeCap
(Hwang and Shwartz, 2023) Meme Image

Caption Generation
Textual Explanations
Expert Verification

1,958
(979 E, 979 C)

NYCartoons
(Hessel et al., 2023) Illustration Image+Caption Taken As Is 651

(651 E)

Table 1: V-FLUTE dataset composition: 5 figurative phenomena, source datasets, visual styles, and our contributions.
E denotes number of entailment instances, C - contradiction. Diversity of the dataset ensures coverage of various
figurative phenomena, figurative meaning location, and visual styles.

IRFL have the metaphor/simile as a part of the
hypothesis (text).

3.1.1 IRFL as Data Source

IRFL
Image Selection

  CLIP 

Explanation
Generation 

Entai. Expl.: The image 
depicts a child sitting alone 
on the floor, head down, in 
a dimly lit space that 
suggests feelings of 
isolation or unhappiness. 
This visual reinforces the 
metaphor "home was 
prison" because it 
suggests a lack of 
freedom or comfort.

 Entailment Contradiction

Contr. Expl.: The image shows 
a smiling young child against a 
blue background. The metaphor 
"home was prison" contradicts 
the image, as the child's bright 
smile and cheerful expression 
suggest feelings of happiness 
and comfort, which are opposite 
to the feelings of confinement 
and discomfort asso
-ciated with a prison.

Caption: Home was 
prison.

Label: Entailment

Label: 
Contradiction

Included 
in V-FLUTE
Expert 
Verification

LEGEND

Figure 2: Creation of V-FLUTE instances for metaphors,
similes, idioms from IRFL.

Yosef et al. (2023) proposed a benchmark (IRFL)
where given a metaphor, a simile or an idiom the
model has to distinguish which of the four asso-
ciated images implies the figurative meaning of
the expression. This dataset contains 1,440 figu-
rative expressions, each associated with 4 distinct
images. One of those images represents the figura-
tive expression (see Figure 2), and the other 3 act
as distractors.

Image Selection. We automatically select im-
ages using CLIP (Radford et al., 2021). We select
one of the distractor images that have the highest

CLIPScore (clip-vit-base-patch16) with the
corresponding entailing image to create a challeng-
ing, contradictory instance (see where an unrelated
image of a house is discarded when selecting the
contradiction instance in Figure 2).

Generating Textual Explanations. We prompt
GPT-4 (gpt-4-vision-preview) with the ground
truth label, caption, and the image to explain the
relationship between the image and the caption.

Expert Verification. We recruit three expert
annotators with significant experience in figurative
language and visual metaphor understanding on
Upwork and ask them to verify the explanation is
correct, complete, and concise and if not, edit it (see
details in Appendix A). We also ask the annotators
to discard rare noisy instances where the caption,
image, and label do not fit (due to automatic image
selection). Due to relative simplicity of generating
the explanation given a literal image, the experts
only needed to edit ≈ 7% of the explanations. They
also removed ≈ 1% the data, resulting in 1149
{image, caption, label, explanation} instances for
metaphors and similes and 370 for idioms.

3.1.2 HAIVMet as Data Source
Chakrabarty et al. (2023) use a human-AI collab-
oration framework to generate visual metaphors
from linguistic metaphors (HAIVMet dataset) and
propose a visual entailment task as an extrinsic
evaluation of dataset quality. The HAIVMet data
consists of 1,193 images of visual metaphors span-
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HAIVMet IRFL MuSE MemeCap NYCartoons

The faculty meeting
was peaceful.

Their relationship is
a house on fire.

Oh I just #love
having to stare at
this while I #work.

Even death won’t
exempt you from
going to work.

Easy for you to
say, you’re cured!

Contradiction Entailment Contradiction Entailment Entailment

The image shows
a faculty meeting
transformed into a
dramatic battlefield ...
The visual metaphor
suggests the faculty
meeting was like a
war, and not peaceful.

The photo suggests
a conflict or an
intense emotional
situation ... which aligns
with the symbolism of a
house on fire representing
a relationship filled
with turmoil or
heated arguments.

The image shows
Disneyland
Resort sign ... the
person would like
to experience it
in person rather
than just looking
at the sign during
work hours.

The image shows
RoboCop ...
it humorously
illustrates a
character who has
been reanimated
as a cyborg to
continue working
despite having died.

A play on the word
"cured". People seek
therapy to have their
mental problems
remedied or cured.
But "cured" can also
refer to a meat prep
technique ...

Table 2: Sample dataset instances form V-FLUTE corresponding to the source datasets displaying images (premise),
captions (hypothesis), labels, and explanations [Row 1-5].

HAIVMet

Image Selection

Explanation
Generation 

Explanation: The image 
depicts an airport with a pool 
in the middle filled with 
money, evoking a metaphor of 
swimming in money, which 
suggests that the airport is 
making tons of money on 
something…Visual Elaboration: An 

illustration of an airport with 
a big pile of money and a 
few passengers swimming 
in it.

Caption: Airports 
are not profiting off 
passenger fees.

Label: Contradiction

Included 
in V-FLUTE

Expert 
Verification

LEGEND

Figure 3: Creation of V-FLUTE instances for metaphors
and similes from HAIVMet.

ning over 958 distinct linguistic metaphors. Each
image is associated with a caption that can be con-
tradicting or entailing the image. In addition, each
image is associate with a visual elaboration that
presents a textual description of the image (See
Figure 3). This visual elaboration was used in the
original paper to generate the visual metaphors (im-
ages).

Generating Textual Explanations. We aug-
ment the dataset with candidate textual explana-
tions. We prompt ChatGPT (gpt-3.5-0914) to
generate an explanation for every tuple {visual elab-

oration, caption, label} (See Figure 3; and prompt
in Appendix E.1.1).

Expert Verification. Each caption is paired with
up to 5 images. However, since these images were
automatically generated with DALLE-2 using the
visual elaborations, not all are completely faith-
ful. Moreover, some captions and labels were in-
consistent. Finally, automatically generated LLM
candidate explanations are not always correct and
require refining. To tackle these issues, we em-
ploy an expert verification process recruiting the
same three expert annotators as from the IRFL sec-
tion above (see details in Appendix A). We ask
the annotators to select the visual metaphor most
faithful to the linguistic metaphor and the visual
elaboration (see Image Selection in Figure 3) or
if none were. In addition, we ask them to ver-
ify and edit the explanation if necessary to ensure
correctness, completeness, and conciseness. On
average, experts edited ≈ 65% of the explanations
and 29% of captions, and rejected ≈ 30% of visual
metaphors, resulting in 857 {image, caption, label,
explanation} instances.

3.2 Sarcasm

To create visual entailment instances containing
sarcasm, we rely on the MuSE data (Desai et al.,
2022).
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MuSE

Explanation
Generation 

Explanation: The image 
shows a sandwich that 
appears to be poorly 
assembled with a sparse 
filling. The inadequate filling 
and overall appearance of 
the sandwich indicates the 
author's dissatisfaction.

        Opposite Claim Generation 

Entailment Caption: 
this was the worst 
sandwich ever

Orig. Expl.: the 
author is pissed at 
for such poorly 
made sandwich, its 
not enjoyable.

Label: 
Contradiction

Sarcastic 
(Contradiction) Caption: 
thanks for the most 
enjoyable sandwich ever

Included 
in V-FLUTE

Expert 
Verification

LEGEND

Figure 4: Creation of V-FLUTE instances for sarcasm
from MuSE.

3.2.1 MuSE as Data Source
The MuSE dataset (Desai et al., 2022) consists
of 3510 distinct images, the respective sarcastic
captions that act as contradiction instances (see
example in Figure 4), and crowd worker written
explanations justifying the contradiction.

Generating Entailment Captions. Since the
dataset only contains sarcastic instances, there are
no captions with an entailment relationship. We
generate the entailing captions by prompting GPT-
4 to generate a non-sarcastic version of the caption
while maintaining the user-generated informal style
of the text (see the generated entailment caption in
Figure 4).

Generating Textual Explanations. While
the dataset already contains crowdworker-written
explanations, upon inspection, they were often
deemed poor quality, lacking enough details, and
formulaic (e.g., see the crowdworker explanation
in Figure 4). To improve their quality, we use the
dataset’s existing crowdworker explanations and
prompt GPT-4 to rewrite and generate candidate
textual explanations given the caption and the label
(see the re-written explanation in Figure 4). See
the prompt in Appendix E.3.

Expert Verification. Each image is now paired
with a GPT-4-generated entailing caption, an orig-
inal contradicting caption, and their respective la-
bels and explanations. The same three expert an-
notators checked if the generated explanations are
adequate (i.e., complete, correct, and concise) and
if not, asked to edit them. The experts were also
instructed to discard noisy examples, e.g. when
the image does not contradict the sarcastic cap-
tion. On average, experts edited ≈ 13% of the
initial explanations and rejected ≈ 18% of the ex-
amples, resulting in 1,042 {image, caption, label,
explanation} instances.

3.3 Humor

For multimodal humor, we rely on two datasets:
MemeCap (Hwang and Shwartz, 2023) and New
Yorker cartoons (Hessel et al., 2023).

3.3.1 MemeCap as Data Source

Entail. Caption: Sue is 
experiencing a difficult life.

MemeCap

Explanation
Generation 

Explanation: The image shows a 
buoy on the ocean with the name 
"Sue" written on it, accompanied 
by the text "LIFE AIN'T EASY 
FOR..." atop the image. … the 
buoy, personified as Sue, would 
lead to a difficult life being alone in 
the vast ocean, which is a 
metaphor for struggle and 
isolation.Meme Caption: 

Meme poster is 
trying to convey that 
Sue is having a 
hard life.

Filtering + 
Paraphrase

Contr. Caption: Sue is 
experiencing an easy life.

Opposite 
Caption

Generation 

Included 
in V-FLUTE
Expert 
Verification

LEGEND

Label: Entailment

Figure 5: Creation of V-FLUTE instances for humor
from MemeCap.

This dataset consists of memes along with their
captions that describe the meme poster’s intent (see
example in Figure 5). Memes frequently contain
implicit, non-literal meaning (Lestari, 2019) and
rely on visual metaphors (Piata, 2016), posing a
challenge to VLMs.

Caption Generation. Meme captions are not
suited for an entailment task, so we prompt GPT-4
with the original caption to generate an entailing
caption in the form of a claim from it (see example
in Figure 5). We filter these set of samples further
with GPT-4 by asking whether the image entails
the caption and only selecting positive instances.
In addition to generating captions that entail the
meme, we generate contradicting captions using
GPT-4.

Generating Textual Explanations. We
prompted GPT-4 with the ground truth label in
the prompt to explain the relationship between the
image and the caption. See prompts in Appendix
E.4.

Expert Verification. We hire the same three
expert annotators to ensure the correctness of the
data. Each annotator is tasked with verifying that
1) the generated caption fits the image and 2) the
explanation is correct and complete, and if not,
make the necessary changes. We also ask to discard
samples with inappropriate content. Experts edited
≈ 35% of the explanations and 15% of captions
on average, and discarded ≈ 2% of inappropriate
instances, resulting in 1958 {image, caption, label,
explanation} instances.
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3.3.2 NYCartoons as Data Source
The NYCartoons dataset (Hessel et al., 2023) con-
tains 651 high-quality instances from the New
Yorker Cartoon Caption Contest. Each instance
consists of an image paired with a humorous cap-
tion and an explanation of why this combination
of the caption and the image is funny. We utilize
this data as is by treating the image as entailing
the caption, so the explanation of the entailment
relationship is the explanation of the joke.

3.4 Dataset Statistics

We split our data into 4,578 training, 726 valida-
tion, and 723 testing instances. Table 3 shows the
number of samples from each source dataset that
are included in the randomly selected training, val-
idation, and held-out test splits. More details in
Appendix B.

Type Dataset Train Valid Test

Metaphor
/Similes

HAIVMET 649 107 101

IRFL
(metaphor
/simile)

912 117 120

Idioms IRFL (idiom) 170 100 100

Sarcasm MuSE 830 106 106

Humor MemeCap 1566 196 196

NYCartoons 451 100 100

Total 4,578 726 723

Table 3: Data counts per phenomenon and dataset.

4 Experiments

We empirically study how several baseline mod-
els perform on the task of explainable visual en-
tailment. We investigate both off-the-shelf and
fine-tuned model performance. We provide human
baseline performance in Appendix 5.4. Hyperpa-
rameters are provided in Appendix D.

4.1 Models

We select a variety of models for our study (see
taxonomy in Appendix, Figure 10). For off-the-
shelf models, we explore both open and API-based
models. For open models, we select the (cur-
rent) state-of-the-art LLaVA-1.6 models (Liu et al.,
2024). LLaVA is one of the simplest, yet one of the
most high-performing VLM architectures currently
available. It utilizes a pretrained large language
model (e.g., Mistral-7B (Jiang et al., 2023)) and

a vision-language cross-modal connector (e.g., an
MLP layer) to align the vision encoder (e.g., CLIP
(Radford et al., 2021)) outputs to the language mod-
els. We select LLaVA-1.6 models in their 7B and
34B configurations (LLaVA-v1.6-7B and LLaVA-
v1.6-34B respectively) and refer to them as LLaVA-
ZS-7B and LLaVA-ZS-34B. Both models have been
instruction-tuned on less than 1M visual instruc-
tion tuning samples to act as general language and
vision assistants. We also utilize Compositional
Chain-of-Thought Prompting proposed by Mitra
et al. (2023) denoted by LLaVA-ZS-7B-SG and
LLaVA-ZS-34B-SG (see description and results
discussion in Appendix G).

For API-based models, we select three widely
available state-of-the-art VLMs: Claude-3
Opus (claude-3-opus-20240229)(Anthropic,
2024), GPT-4 (gpt-4-1106-vision-preview)
(OpenAI, 2023) and GeminiPro
(gemini-pro-vision)(Team, 2023).

For fine-tuned models, we focus on fine-tuning
the LLaVA-1.5-7B model2 (Liu et al., 2023a). To
minimize bias for a single instruction, we fine-tune
and evaluate the models on a set of 21 instruction
paraphrases (see Appendix Table 8). Three model
configurations are tested:

• LLaVA-VF is the same checkpoint fine-tuned on
the training set of V-FLUTE. We also fine-tune
the model with a white square instead of the V-
FLUTE image (denoted by −Image).

• LLaVA-eViL and LLaVA-eViL+VF are check-
points of LLaVA-v1.5-7B further fine-tuned on
the eViL (e-SNLI-VE) dataset for explainable
visual entailment (Kayser et al., 2021) converted
to the instruction format or on both eViL and
V-FLUTE. We removed neutral label instances,
which resulted in 275,815 training instances and
10,897 validation instances.

4.2 Automatic Metrics
Since our goal is to ensure models provide an an-
swer for the right reasons, ideally, we would only
count predictions as correct when the explanation
is also correct. Based on prior work (Chakrabarty
et al., 2022), we use both the standard F1 score
and an adjusted score that accounts for explana-
tion quality: F1@ExplanationScore. The Expla-
nationScore computes the average of BERTScore
(Zhang* et al., 2020) and BLEURT (Sellam et al.,

2Fine-tuning code for 1.6 model was not published as of
writing of this paper.
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Model Name F1@0 F1@53 F1@60

Random Baseline 49.82 - -

Fine-tuned
LLaVA-7B
99K VF 72.78 60.66 47.12
99K − Image 64.77 53.28 39.37

99K eViL 54.34 4.11 0.55
99K + VF 74.91 62.34 48.80

Off-the-shelf
Open
LLaVA-ZS
99K 7B 45.44 35.57 18.38
99K + SG 52.94 39.27 14.86

99K 34B 55.60 48.32 31.83
99K + SG 58.08 45.74 26.77

API-based
Gemini-1.5-Pro 53.70 39.72 19.01
99K 5-shot 67.25 56.04 37.14

Claude-3 Opus 56.07 45.37 22.31
99K 5-shot 67.79 58.70 35.32

GPT-4 64.00 56.22 38.56
99K 5-shot 69.36 61.95 49.81

Table 4: F1 Score results for different models across
thresholds 0.0, 0.53, and 0.6 for explanation score. Best
result overall is in bold, best result in each category is
underlined.

2020) between model-generated and reference (V-
FLUTE) explanations. We report F1@0 (simply F1
score), F1@533 (all predictions with Explanation-
Score ≤ 53 are considered incorrect) and F1@60.

4.3 Automatic Evaluation Results
We include results per phenomenon in Appendix I,
discussion on CoT prompting in Appendix G and
additional models in Appendix H. Table 4 shows
the results, informing the following insights:

A literal visual entailment dataset does not solve
the figurative visual entailment task. Fine-
tuning only on e-ViL barely improves over a ran-
dom baseline (54.34 F1@0) and underperforms
compared with the models fine-tuned on V-FLUTE
(72.78 F1@0). Moreover, the explanations are of
poor quality (0.55 F1@60). This indicates that
models trained on a literal visual entailment task
struggle to generalize to figurative meaning, sup-
porting the challenging nature of our dataset.

The strongest model fine-tuned on V-FLUTE
(LLaVA-7B-eViL+VF) outperforms the best off-
the-shelf model (GPT-4-5shot) in terms of the
F1@0 score (p < 0.034). It performs competitively

3Thresholds selected based on human evaluation of expla-
nation quality in Section 5.3.

4p values reported via paired bootstrap test (Koehn, 2004)

when incorporating the reference-based Explana-
tionScore, with GPT-4 leading slightly as it is the
model with which the candidate explanations were
generated.

When figurative meaning is in the image rather
than text, models perform worse. We plot the
relative percentage decrease between F1@0 and
F1@60 for LLaVA-eViL-VF, LLaVA-34B-SG, and
GPT-4-5shot in Figure 6. Higher performance drop
indicates higher difficulty of generating the correct
explanation. For all models, we see a substantial
decrease in performance, especially on challenging
phenomena such as Humor (NYCartoons). The
percentage drop is substantially higher for all mod-
els for the HAIVMet subset rather than the IRFL
dataset, which contains metaphors in the image
rather than in the text. This suggests it is harder for
models to generate correct explanations when the
figurative meaning is contained in the image rather
than in the text, indicating the need to expand the
presence of figurative phenomena in existing visual
datasets.

VLMs benefit from visual information when
dealing with figurative phenomena and do not
just rely on the input text to make their pre-
diction. We utilize a hypothesis-only baseline
(Poliak et al., 2018) by including a model fine-
tuned on the V-FLUTE dataset, but with a white
square as the image input, denoted as −Image.
Fine-tuning on the full V-FLUTE dataset shows
an improvement of over 8 points in F1@0 (better
with p < 0.002).

Metaphor (VisMet)

Metaphor (IR
FL)

Humor (MemeCap)

Humor (NYCartoons)

Sarcasm (MuSE)

Idiom (IRFL)
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Figure 6: % Drop in F1 score for various models by
source dataset between 0 to 0.6. Higher drop indicates
higher proportion of wrongly generated explanations.

5 Human Evaluation and Error Analysis

We conduct human evaluation of generated explana-
tions to assess their quality and identify key errors
in reasoning about multimodal figurative meaning.
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Error Type Image Caption Label and Explanation

Hallucination (de-
scribes sharp pen-
cil as having a blunt
tip)

The tip is as sharp
as a knife.

Predicted Label: Contradiction
Predicted Explanation: The image depicts a
pencil with a blunt tip. [...]

Incomplete (does
not address
metaphorical
meaning of iceberg
imagery)

They looked at each
other in an almost
hostile way.

Predicted Label: Entailment
Predicted Explanation: The image depicts two
characters looking at each other with a tense
and confrontational expression, which is con-
sistent with the claim [...]

Unsound
(concludes that
large amount of
money + upward
trending chart im-
plies rough waters)

The world recession
of 2001 was one of
the worst in history.

Predicted Label: Entailment
Predicted Explanation: The image depicts
a man in a boat, holding a large amount of
money and a chart with an arrow pointing up-
wards. This suggests that the man is navigating
through rough waters [...]

Table 5: Examples of error types generated explanations.

We recruit two expert annotators with background
in linguistics for the task and sample 95 random
instances from the test set. For each instance, we
first provide the annotators with the image, caption
and reference explanation and ask the annotators
to choose the right label. If the annotator succeeds,
they can view the rest of the task, which consists
of 3 explanations from our top models by F1@0 in
each category: LLaVA-eViL-VF, LLaVA-34B-SG,
GPT-4-5shot. The explanations are taken for both
correct and incorrect model predictions. For each
explanation, we ask whether the explanation is ade-
quate (accurate, correct, complete and concise). If
not, we ask them to identify one of the errors based
on the following taxonomy:

• Hallucination: explanation is not faithful to the
image, indicating difficulties with visual com-
prehension (e.g., generates “blunt tip” when the
pencil tip is actually sharp in row 1 of Table 5).

• Unsound reasoning: sentences do not adhere
to natural logic or violate common sense (e.g.,
concluding that an upwards arrow and lots of
money imply an economic crisis, see row 3).

• Incomplete reasoning: while overall the expla-
nation makes sense, it does not address the key
property reasons why the image entails or contra-
dicts the caption (for example, does not address
the figurative part in the image, see row 2).

• Verbosity: the explanation is too verbose.

LLaVA-7B
eViL+VF

LLaVA-34B
SG

GPT-4
(5 shot)

Adequate % 33.78 29.85 50.67
Preference % 23.08 7.69 44.23

Table 6: Adequacy and Preference rates for generated
explanations.

5.1 How Do Models Perform According to
Humans?

In Table 6, we show adequacy and preference rates
for explanations from the 3 systems, where an
explanation is deemed adequate or preferred if
both annotators agreed it is, and inadequate if both
agreed it is not. The average IAA using Cohen’s
κ is 0.47, indicating moderate agreement (Cohen,
1960). We observe that the teacher GPT-4 model
is leading in terms of the adequacy of the expla-
nations and preference rate, as expected from a
larger system. Yet still only half of its explanations
are considered adequate, confirming that despite
good performance on the F1@0 scores, the models
are not yet capable of producing adequate textual
explanations in many instances. 5

5.2 What Errors Do Models Make?

We perform an analysis of the types of errors from
each model when the explanations are considered
inadequate in the above evaluation. In Figure 7, we
illustrate the normalized frequency of error types

5Note that during the human-AI collaborative dataset cre-
ation 1) the LLM is conditioned on the correct label, 2) its
explanation is edited by an expert annotator.
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Figure 7: Normalized frequency of main error types in
the explanation by model.

when both annotators agree that the explanation is
not adequate (i.e., out of all errors for this model,
what percentage is each type of error?). Overall,
the annotators did not consider verbosity to be a
major issue of the systems. For GPT-4, the lead-
ing error type is hallucination, indicating the need
to improve faithful image recognition even in the
most advanced models. Comparing LLaVA-34B-
SG and the fine-tuned model, we see that for the
scene graph model a larger percentage of errors is
due to incomplete reasoning (possibly due to fo-
cusing on the scene graph description rather than
the underlying figurative phenomena). For both
models, the main error type is unsound reasoning,
indicating difficulty for the models to consistently
reason about multimodal figurative inputs.

5.3 How Well Does the Explanation Score
Predict Human Judgment on Adequacy?

We explore whether the proposed explanation score
can capture human judgment of explanation ad-
equacy. We collect all instances from Section
5 where both annotators agreed on the adequacy
judgement for the explanation. We evaluate if the
explanation score described in Section 4.2 can act
as a good predictor for the human adequacy judg-
ment. We find that the area under the Precision-
Recall curve is 0.79, and the maximum F1 score is
0.77, obtainable at the explanation score threshold
of 0.53. Hence, we use this threshold to report the
results in Table 4. We also use the threshold of 0.6
since it maximizes F1 such that both precision and
recall are above 0.75.

5.4 How Well Do Humans Perform?
To find out how humans perform on the task, we
hire two expert annotators with formal education
in linguistics. We present them with 10 example in-
stances and then ask them to complete 99 randomly
sampled test set instances. We also evaluate our

best model (see Table 4) on the same set. Results
are shown in Table 7. Human performance is quite
strong, almost reaching 90 F1@0 score overall. Hu-
man performance is better than our strongest fine-
tuned model (LLaVA-7B-eVil+VF) performance
with p < 0.05 for Annotator 1 and p < 0.07 for
Annotator 2. Humans excel at interpreting memes,
with both annotators reaching a 100% F1 score.
Humans also perform noticeably better on the NY-
Cartoons dataset and on the idiom subset of the task.
The model has a slight edge in performance on the
sarcasm and visual metaphor subsets of the task,
perhaps due to difficulty of these subsets and any
potential spurious correlations during fine-tuning.

Phenomenon Dataset Human
Avg

LLaVA-
eViL+VF

Metaphor
/Similes

HAIVMET 78.84 81.25

IRFL
(metaphor
/simile)

94.36 77.78

Idioms IRFL
(idiom) 89.26 49.74

Sarcasm MuSE 68.89 85.42

Humor MemeCap 100.0 78.03

NYCartoons 71.43 47.83

Overall 89.09 77.26

Table 7: Human baseline results (F1@0) by phe-
nomenon and source dataset.

6 Conclusion

We introduce a novel dataset for understanding fig-
urative meaning in multimodal input, V-FLUTE,
via an explainable visual entailment task. Our
dataset consists of 6,027 {image, caption, label,
explanation} instances covering diverse phenom-
ena. We find that VLMs struggle to generalize from
literal to figurative meaning, particularly in images.
When figurative meaning is present in the image
rather than text, models perform worse. VLMs
benefit from the visual information during training
to understand visual figurative meaning. Finally,
humans still outperform even powerful VLMs over-
all. We identify three common error types in VLM
reasoning about multimodal figurative phenomena:
hallucination and incomplete or unsound reason-
ing.
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8 Ethics

Following prior work in human-AI collabora-
tion for complex text and image generation
(Chakrabarty et al., 2022, 2023; CH-Wang et al.,
2023; Saakyan and Muresan, 2023), we opt for an
expert-AI collaboration framework where experts
edit the initial generations by the language model.
Expert feedback is essential to improve the quality
of the data, as previous work has identified that
crowdworkers on platforms such as Amazon Me-
chanical Turk could be unreliable for open-ended
generation tasks (Karpinska et al., 2021), and might
even rely on ChatGPT to provide their answers
(Veselovsky et al., 2023). To mitigate these effects,
in this work, annotators were recruited through the
Upwork platform, allowing to select for relevant
level of expertise and verify, e.g., educational and
professional background of the annotators. All re-
cruited annotators have significant background in
figurative language understanding and have formal
educational background in linguistics or literature.
All of the annotators are fluent or native/bilingual
level in English. Workers on UpWork were in-
formed that that the work they were doing was go-
ing to be used for research purposes. All are fairly
compensated with USD $20 to $25 per hour with
self-reported time needed to complete the tasks.
The total budget for the annotation and GPT-4 gen-
erations was ≈ $5, 000 USD. We estimate that it
would take approximately 3 times longer to com-
plete the annotation task without the pre-generated
explanation, so we estimate that the cost would
have at least tripled if the human-AI collaboration
approach was not utilized. Workers were paid their

wages in full immediately upon the completion of
their work. All data collected by human respon-
dents were fully anonymized. We do not report
demographic or geographic information, given the
limited number of respondents, so as to maintain
full anonymity.

9 Limitations

We would like to acknowledge the following lim-
itations of our work. The textual explanations in
V-FLUTE dataset were generated with the help of
the strongest LLM available at the time of writ-
ing the paper, GPT-4. Despite our best efforts in
mitigating biases with expert human verification,
idiosyncrasies pertaining to GPT-4 outputs may
still be present in the text. This means that it is
potentially possible for the underlying biases of
source datasets of language model generations to
propagate into our resource, which we wish to mit-
igate by carefully examining each dataset instance
by one of the 3 expert annotators.

Reference-based evaluation has fundamental
flaws, such as not considering all possible explana-
tions, which would be impossible to collect. How-
ever, current reference-free metrics for free-text
rationales may still have flaws such as bias toward
length or the evaluator LLM (Stureborg et al., 2024;
Raina et al., 2024; Huang et al., 2024; Chiang and
Lee, 2023; Wei et al., 2024). When evaluating
textual explanations against these references, as
is the case with any reference-based evaluation,
there may also be a preference towards models
which output text closer in distribution to the GPT-
4 model. Because of that, it is important to utilize
the data set in order to compare models other than
the teacher model and pay more attention to the
F1@0 scores, which represent simple classification
scores and do not require the outputs to be similar
in distribution. In terms of pure F1 score perfor-
mance, GPT-4 underperforms the fine-tuned model,
and performs very closely with Gemini and Claude
that were not used to generate the data, with less
than 2% difference (see column F1@0, Table 4).
Although we showed a relatively high predictive
power of automatic explanation scores to predict
human judgments (see Section 5.3), future work
may focus on increasing reliability of reference-
based and reference-free textual explanation evalu-
ation methods.

We also note that the images from the HAIVMet
dataset (Chakrabarty et al., 2023) are AI generated.
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However, the majority of the remaining images in
V-FLUTE are not AI generated but are naturally
occurring or created by humans. However, to mit-
igate potential biases from AI-generated images,
all instances of the data were examined during the
expert verification stage, as described in the article.

Label predictions by language models can vary
significantly with slight differences in prompt word-
ing (Sclar et al., 2023), which is why during fine-
tuning and inference we utilize over 20+ different
templates of instructions (see Table 8). Neverthe-
less, it is important to consider the models’ ex-
planations to better assess their understanding of
the phenomena, which we hope to enable with our
explainable figurative visual entailment dataset.
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A Details on Expert Verification

We follow the same procedure for expert verifica-
tion of all sub-datasets. We recruit 3 expert anno-
tators with background in figurative language and
formal educational background in linguistics or lit-
erature on Upwork. We first ask to annotate 10
instances by all 3 annotators to ensure they under-
stand the task. We then ensured a high agreement
(≥ 90% pairwise accuracy) between annotators on
a subsample of 100 instances of each dataset, and
resolved any disagreements through mutual discus-
sion between the annotators and the authors before
proceeding. Finally, each annotator proceeds to
annotate roughly 1

3 of the data.
We provide the annotation interfaces below for

HAIVMET (Figure 12), IRFL (Figure 13), Meme-
Cap (Figure 14) and MuSE (Figure 15). In addition,
instructions were explained in more detail to the
annotators via chat on Upwork (for example, the
criteria for correctness and conciseness), and any
of their doubts and questions were answered.

B Dataset Statistics

Length distribution Average length of a caption
in V-FLUTE is ≈ 61 characters. Average length
of an explanation is ≈ 367 characters. Figure 8
shows the distribution of caption lengths, and Fig-
ure 9 shows the distribution of explanation lengths
by source dataset. We manually verified that the
outlier instances are correct.
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Figure 8: Distribution of lengths of captions by source
dataset.

C API models Hyperparameters

C.1 Claude

• Model Name: claude-3-opus-20240229

• Max Tokens: 256
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Figure 9: Distribution of lengths of explanations by
source dataset.

• Images greater than 5MB were resized main-
taining aspect ratio

C.2 GPT-4
• Model Name:
gpt-4-1106-vision-preview

• Max Tokens: 256

• Seed: 42

• Image URL detail: ’high’

C.3 Gemini
• Model Name: gemini-pro-vision

• Max Tokens: 256

• Safety Settings: ’BLOCK NONE’

• Images greater than 5MB were resized main-
taining aspect ratio

D Fine-tuning Hyperparameters

LLava-v1.6-6B and 34B respectively utilize
instruction-tuned LLMs as their backbone, Mistral-
7Binstruct6 and Yi-34B7.

We utilize LoRA (Hu et al., 2022) to fine-tune
the models. We utilize the same hyperparameters
for all fine-tunes outlined in Appendix D and use
early stopping based on a V-FLUTE validation
set to prevent overfitting. For evil and e-ViL+V-
FLUTE we only fine-tuned for 2 epochs due to size
of the e-ViL dataset and took the best checkpoint
based on early stopping on V-FLUTE validation
set. For eViL we only fine-tuned for 1 epoch to
prevent overfitting. For VFLUTE, we trained for
3 epochs, and VFLUTE -Image for 10 epochs (to

6huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
7huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
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ensure performance does not increase even with
larger number of epochs), for both we took the best
checkpoint based on early stopping.

We utilize 4 NVIDIA A100 40GB GPUs for all
experiment.

Fine-tuning
• Seed: 42

• Vision Tower: openai-clip-vit-large-patch14-
336

• Number of Training Epochs: 3

• Train Batch Size (per device): 16

• Eval Batch Size (per device): 4

• Learning Rate: 2e-5

• Weight Decay: 0

• Warmup Ratio: 0.03

• Scheduler Type: cosine

• Number of epochs: 4 for eViL and eViL +
vFLUTE, 10 for VFLUTE

• mm-projector-type: mlp2x gelu

• mm-vision-select-layer: -2

• mm-use-im-start-end: False

• mm-use-im-patch-token: False

• image-aspect-ratio: pad

• group-by-modality-length: False

LoRA
• lora r: 128

• lora alpha: 256

• mm-projector-lr: 2e-5

Deepspeed Configuration
• FP16 enabled: auto

• BF16 enabled: auto

• Micro Batch Size Per GPU: auto

• Train Batch Size: auto

• Gradient Accumulation Steps: auto

• Zero Optimization Stage: 3

Training and Inference Instructions

All models are evaluated using beam search with
n = 3, temperature 0, max length 256. In the
case of generating scene graphs for the composi-
tional chain-of-thought method, we set the max
length to 256 for the graph generation step as rec-
ommended by Mitra et al. (2023). API models are
evaluated with default hyperparameters. We format
all fine-tuning data in the instruction format follow-
ing LLaVA (Liu et al., 2023a). To avoid overfitting
on a particular instruction for this task, we generate
20 similar instructions using an LLM (ChatGPT-4)
and randomly assign one of them to every instance
in the training, validation, and testing set. Same
instructions were sampled for the e-ViL dataset.
Table 8 shows the 20 instructions used.

The instructions were almost always followed. If
they were not followed during the data creation pro-
cess, we discarded those instances. For evaluation,
we looked at the sample outputs of each model and
designed rules to extract the label and the explana-
tion from the output, which was not too difficult
since mostly the instructions were followed well.
In the rare cases the model failed to follow instruc-
tions, that label would likely be incorrect.

Evaluation Hyperparameters

Following prior work, we utilize BERTScore
(Zhang* et al., 2020) based on the
microsoft-deberta-xlarge-mnli model (He
et al., 2021; Williams et al., 2018) and BLEURT
(Sellam et al., 2020) based on BLEURT-20 (Pu
et al., 2021) for the ExplanationScore.

E Prompts for LLMs

E.1 HAIVMET

E.1.1 One-shot Prompt for generating
explanations

We describe our one-shot prompts given to an LLM
(gpt-3.5-turbo-instruct-0914) for generating
explanations of entailment-contradiction relation-
ship. Refer to Table 9 for the detailed prompt.

E.2 IRFL

E.2.1 Zero-shot Prompt for generating
explanations

We provide our zero-shot prompt given to an LLM
(gpt-4-vision-preview) for generating the en-
tailment explanations given the claim and the im-
age. Refer Table 10 for the detailed prompt.
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No. Instruction

1 Does the image’s narrative confirm or disprove the claim REPLACE_CLAIM? Discuss your reasoning
and identify it as either entailment or contradiction.

2 Does this image confirm or deny the claim REPLACE_CLAIM? Discuss your reasoning and determine
a label: entailment or contradiction.

3 Is the image’s message supporting or opposing the claim REPLACE_CLAIM? Discuss your rationale
and determine the appropriate label: entailment or contradiction.

4 Is there agreement or disagreement between the image and the claim REPLACE_CLAIM? Provide
your analysis and choose between entailment or contradiction.

5 Does the visual evidence support or counter the claim REPLACE_CLAIM? Provide your explanation
and assign it a label of entailment or contradiction.

6 Does the image agree with or dispute the claim REPLACE_CLAIM? Explain your analysis and mark
it as entailment or contradiction.

7 Does the illustration affirm or contest the claim REPLACE_CLAIM? Provide your argument and
choose a label: entailment or contradiction.

8 Is the visual content in agreement or disagreement with the claim REPLACE_CLAIM? Offer your
explanation and categorize it under entailment or contradiction.

9 Is the image in harmony with or in conflict with the statement REPLACE_CLAIM? Explain your
justification and label it as entailment or contradiction.

10 Is the portrayal in the image consistent with or contradictory to the claim REPLACE_CLAIM? Offer
your insights and select between entailment or contradiction.

11 Does the image’s depiction validate or refute the claim REPLACE_CLAIM? Explain your point of
view and select a label: entailment or contradiction.

12 Is the content of the image endorsing or challenging the claim REPLACE_CLAIM? Justify your
position and label it as entailment or contradiction.

13 Is the image consistent with the statement REPLACE_CLAIM? Justify your answer and classify it as
either entailment or contradiction.

14 Does the illustration affirm or negate the claim REPLACE_CLAIM? Articulate your reasoning and
apply a label: entailment or contradiction.

15 Does the picture support or refute the assertion REPLACE_CLAIM? Offer your rationale and select a
label: entailment or contradiction.

16 Is the visual portrayal compatible with or adverse to the claim REPLACE_CLAIM? Justify your
viewpoint and label it as entailment or contradiction.

17 Does the image corroborate or dispute the claim REPLACE_CLAIM? Outline your reasoning and
categorize it under entailment or contradiction.

18 Is the depiction aligned with or against the claim REPLACE_CLAIM? Share your evaluation and
identify it as either entailment or contradiction.

19 Does the image entail or contradict the claim REPLACE_CLAIM? Explain your reasoning and
provide a label between entailment or contradiction.

20 Can the image be seen as validating or opposing the claim REPLACE_CLAIM? Explain your thought
process and assign a label of entailment or contradiction

21 Is the image’s representation supportive of or contradictory to the claim REPLACE_CLAIM? Articu-
late your analysis and assign the label: entailment or contradiction.

Table 8: Instruction variations for the figurative visual entailment task.
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You will be provided a Caption describing what
is in the image in detail. You will also be
provided with a Claim that contradicts or
is entailed by the image (as indicated by
the Label). Your task is to explain why
the claim contradicts or is entailed by
the image. Be very brief in your explanation.
Start your explanation by describing what the
image depicts, displays or shows.
Caption: An illustration of a group of soldiers
with red skin, horns, and pitchforks in hand
with a fierce expression on their faces.
Claim: The soldiers were angels.
Label: Contradiction
Explanation: The image depicts soldiers
with red skin, horns, and pitchforks, which
are traditional characteristics associated
with demons, not angels. Therefore, the
claim that the soldiers were angels contradicts
the image.
Caption:......

Table 9: One shot prompt given to an LLM
(gpt-3.5-turbo-instruct-0914) for generating ex-
planations of entailment-contradiction relationship of
the HAIVMET dataset.

You will be provided an image. You will also be
provided with a simile that contradicts or is
entailed by the image (as indicated by the Label).
Your task is to explain why the simile contradicts
or is entailed by the image. Be very brief in your
explanation and remain consistent to the Label in
your explanation. Start your explanation by
describing what the image depicts, displays or
shows.
Simile: ....
Label: ....
Explanation:

Table 10: Zero shot prompt given to an LLM
(gpt-4-vision-preview) for generating explanations
of entailment-contradiction relationship of the IRFL
Dataset. The dataset contains similes, metaphors and
idioms. For metaphors and idioms, the word simile in
the prompt is replaced with the corresponding type.

E.3 MuSE

E.3.1 Few-shot Prompt for generating
opposite claims

We provide our few-shot prompt given to an LLM
((gpt-4-0613)) for generating the opposite claims.
Refer Table 11 for the detailed prompt.

u are an online redditor or flickr user and u
always type in informal style. Convert the
following sarcastic claim into a non-sarcastic
claim. Preserve the informal style, including
capitalization. Be super laid back and informal!!!
1. Sarcastic claim: stairs vs . escalator in
airport . i wonder why we have an # obesity
problem ? # publichealth # ncds # globalhealth
# isometimesdothistoo
Explanation: no wonder we have an obesity
problem since everyones using escalator
instead of stairs in airport.
Non-sarcastic claim: it s clear why we have an
# obesity problem look at stairs vs. escalator
in airport
Claim:......
Explanation:......

Table 11: Few shot prompt given to an LLM
(gpt-4-0613) for generating opposite claims utilizing
the sarcastic claim and crowd worker explanation.

E.3.2 Zero-shot Prompt for Rephrasing

We provide our zero-shot prompt given to an LLM
(gpt-4-vision-preview) for rephrasing the ex-
planations given the claim and the crowd worker ex-
planation. Refer Table 12 for the detailed prompt.

Paraphrase the draft explanation of why the image
contradicts the literal interpretation of the claim.
Be sure to first describe the image in one sentence.
Keep your answer short. Do not refer to the claim
or the draft explanation in your paraphrase. Stay
close to the draft explanation.
Claim: ....
Draft Explanation:

Table 12: Zero shot prompt given to an LLM
(gpt-4-vision-preview) for rephrasing the explana-
tions given the claim and the.

E.4 MemeCap

E.4.1 Few-shot Prompt for generating
entailing claims

We describe our few-shot prompts given to an LLM
(gpt-4-0613) for generating entailing captions as
part of the pipeline. Refer to Table 13 for the de-
tailed prompt.
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You will be provided with a meme caption. Your
task is to write the meme caption as a claim such
that the meme poster is not mentioned in the
claim.
Caption: Meme poster is saying that searching
Google plus the term you want to search on
reddit is better than searching reddit itself.
Claim: Searching on Google with the term
you want to search plus ’reddit’ is more effective
than searching directly on Reddit.
Caption: The person who wrote the post is saying
people on Instagram are soft and reddit are funny.
Claim: People on Instagram are soft, whereas
those on Reddit are funny.
Caption:......

Table 13: Two shot prompt given to an LLM
(gpt-4-0613) for generating entailing claims utilizing
the meme captions part of the MemeCap dataset.

E.4.2 Zero-shot Prompt for validating the
entailing captions

We describe our zero-shot prompt given to an
LLM (gpt-4-vision-preview) for validating the
claims generated in the previous step. Refer Table
14 for the detailed prompt.

You will be provided a meme image and a claim.
Your task is to check whether the claim entails the
image. Answer with a Yes or No.
Claim: .....

Table 14: Zero shot prompt given to an LLM
(gpt-4-vision-preview) for validating the claims
generated in E.4.1. The corresponding meme image
is also attached with the prompt.

E.4.3 Few-shot Prompt for generating
opposite claims

We provide our few-shot prompt given to an LLM
((gpt-4-0613)) for generating the opposite claims.
Refer Table 15 for the detailed prompt.

E.4.4 Zero-shot Prompt for generating
explanations

We provide our zero-shot prompt given to an LLM
(gpt-4-vision-preview) for generating the en-
tailment explanations given the claim and the im-
age. Refer Table 16 for the detailed prompt.

F Model Taxonomy

The taxonomy of all models used for automatic
evaluation is shown in Figure 10.

Claim: A useful feature has been removed
on YouTube, causing disappointment.
Explanation: The image shows a painting
of a character with a distraught face and
a speech bubble that reads "y tho," placed
over text saying "When YouTube removed
sort by oldest option." This implies that the
removal of the sort by oldest option is a
decision that users are questioning, hence
indicating disappointment over the loss of
a useful feature.
Opposite claim: An unhelpful feature has
been removed on YouTube, causing happiness.
Claim:......
Explanation:......

Table 15: Few shot prompt given to an LLM
(gpt-4-0613) for generating opposite claims utilizing
the generated claim and explanation.

You will be provided a meme. You will also be
provided with a claim that entails the image.
Your task is to explain why the claim is entailed
by the image. Be very brief in your explanation
and start your explanation by describing what
the image depicts, displays or shows.
Claim: ....
Explanation:

Table 16: Zero shot prompt given to an LLM
(gpt-4-vision-preview) for generating the entail-
ment explanations. The corresponding meme image
is also attached with the prompt.
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Models

Off-the-shelf

API-based

Claude Opus

GPT-4

Gemini

Open (LLaVA-ZS)

7B

7B-SG

34B

34B-SG
Fine-tuned (LLaVA-7B)

eViL

VFLUTE

eViL+VFLUTE

Figure 10: Taxonomy of models used for the study.

G Multimodal Structured
Chain-of-Thought Performance

In addition to zero-shot testing, we also test these
models using Compositional Chain-of-Thought
Prompting proposed by Mitra et al. (2023). The
method prompts the model zero-shot to generate a
scene graph in JSON format and then utilizes that
scene graph in another prompt to answer the rele-
vant question. We refer to these models as LLaVA-
ZS-7B-SG and LLaVA-ZS-34B-SG for the 7B and
34B LLaVA configurations described above.

Scene graph prompting and few-shot prompting
improves performance on the figurative visual
entailment task. Observing the results in Table 4,
we can see that the multimodal few-shot prompting
and scene graph prompting, having demonstrated
their effectiveness for literal inputs, also show im-
proved performance on the figurative visual entail-
ment task. However, the explanations generated
by SG-models tend to overly focus on the contents
of the scene graph rather than the underlying figu-
rative phenomena, possibly causing a decrease in
explanation score.

H Additional Models

In addition to the LLaVA architecture, we conduct
experiments with the Instruct-BLIP model (Dai
et al., 2024), specifically, the Instruct-BLIP-Vicuna-
7B version. As can be seen in Table 17, Instruct-
BLIP shows a weaker performance compared to
LLaVA-7B, especially in explanation quality (4.14
F1@53 for InstructBLIP while 35.56 for LLaVA-
7B-ZS, and 2.07 F1@60 while 18.38 for LLaVA
as can be seen in Table 4). It struggled to gener-

ate scene graph descriptions, unlike LLaVA-7B.
Despite extensive instruction-tuning, it performed
below a random baseline in our figurative entail-
ment task (F1@0: 43.37).

Model Name f1@0 f1@53 f1@60

InstructBlip-7B-ZS 43.37 4.14 2.07
InstructBlip-7B-SG 38.03 4.15 1.38

Table 17: F1 Scores for Different Models

We also experimented with a state-of-the-art mul-
timodal model GPT-4o that was released after our
dataset was created. As expected, the results are
better than those of GPT-4 due to improvements
in the multimodal processing of GPT-4o. How-
ever, the F1@53 and F1@60 scores suggest there
could still be improvements in explanation qual-
ity. Compared to the 7B fine-tuned LLaVA model,
the zero-shot GPT-4o still underperforms the fine-
tuned models in terms of F1@53 and is comparable
in terms of F1@0. GPT-4o in the few-shot scenario
(5 example) shows better results than the fine-tune
model. These results can add to the discussion in
our field between smaller open-source models and
bigger and proprietary models in terms of perfor-
mance accuracy and capabilities.

Model Name f1@0 f1@53 f1@60

GPT-4o 75.41 60.97 37.20
99K 5-shot 79.42 69.35 56.31

Table 18: F1 Scores for GPT-4 Models
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I By-Phenomenon Performance

In Figure 11, we show the performance of the
models by phenomenon and dataset across various
thresholds.
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Figure 11: Performance of the models by phenomenon.

J How Do Models Perform When Only
Predicting the Label?

In our experiments, we found that predicting only
the label improves accuracy compared to predict-
ing label and explanation (this is expected and ob-
served in other work on textual explanations such
as e-SNLI (Camburu et al., 2018)). However, these
predictions are less reliable since they could be
due to spurious correlations (which is why we re-
quire the model to generate textual explanations).
We also found when fine-tuning the model in a
multi-task fashion with explanations (i.e., two tasks,
one of generating explanations and one of predict-
ing the label), the accuracy improves compared to
when fine-tuning only for the prediction task (F1

score of 80.85 vs. 83.26, p < 0.1), in line with
previous findings by Hsieh et al. (2023).

K Annotation Interfaces

We provide the annotation interfaces below for
HAIVMET (Figure 12), IRFL (Figure 13), Meme-
Cap (Figure 14) and MuSE (Figure 15). In addition,
instructions were explained in more detail to the
annotators via chat on Upwork, and any of their
doubts and questions were answered.
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Figure 12: Annotation interface for HAIVMET.

Figure 13: Annotation interface for IRFL.
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Figure 14: Annotation interface for MemeCap.

Figure 15: Annotation interface for MuSE.
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