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Abstract

This study addresses two key challenges in
structuring radiology reports: the lack of a prac-
tical structuring schema and datasets to evalu-
ate model generalizability. To address these
challenges, we propose a “Finding-Centric
Structuring,” which organizes reports around
individual findings, facilitating secondary use.
We also construct JRadFCS, a large-scale
dataset with annotated named entities (NEs)
and relations, comprising 8,428 Japanese Com-
puted Tomography (CT) reports from seven
facilities, providing a comprehensive resource
for evaluating model generalizability. Our ex-
periments reveal performance gaps when apply-
ing models trained on single-facility reports to
those from other facilities. We further analyze
factors contributing to these gaps and demon-
strate that augmenting the training set based on
these performance-correlated factors can effi-
ciently enhance model generalizability.

1 Introduction

A radiology report documents abnormal findings
and suspected diseases observed in medical images.
Radiology reports contain expert insights; however,
they are often recorded in free-text format, limit-
ing their secondary application. Structuring these
reports through information extraction (IE) can sup-
port a wide range of applications, such as report
generation (Delbrouck et al., 2022; Zhang et al.,
2020) and multimedia reports (Folio et al., 2018).

Despite advancements in IE from radiology re-
ports (Yada et al., 2020; Cheng et al., 2022; Del-
brouck et al., 2024), two critical challenges hin-
der the practical application of structured reports:
the lack of a well-designed structuring schema for
practical use and datasets suitable for evaluating
the generalizability of structuring models.

We propose Finding-Centric Structuring
(FCS), which organizes reports around individual
findings to address the first challenge. Figure 1

shows an overview of FCS. Our approach struc-
tures reports into individual findings along with
related attributes such as characteristics and diag-
noses. Structured data created by FCS can be useful
for a variety of applications. For example, FCS can
be applied to Medical Visual Grounding (Zhang
et al., 2022), which aligns sentences in reports with
corresponding objects in images. By decomposing
these reports into finding-centric data, fine-grained
Medical Visual Grounding for individual findings
is promoted. Furthermore, FCS allows radiolo-
gists to efficiently track changes in the size of each
finding and monitor the effectiveness of treatments.
FCS enables us to go beyond existing secondary
uses such as report retrieval, supporting applica-
tions focused on individual findings.

The second challenge involves assessing the gen-
eralizability of structuring models. Nakamura et al.
(2022) reports that radiologists use diverse termi-
nologies. For example, they may describe sub-
solid nodules using synonyms such as “GGN.” This
variability raises concerns about the ability of the
model to accurately structure reports with varied
writing styles and across facilities. Most exist-
ing studies on structuring reports (Sugimoto et al.,
2023; Lau et al., 2023; Park et al., 2024) use reports
from a single facility or focus on specific diseases
to validate their models, limiting the evaluation of
model generalizability.

We construct JRadFCS, a large-scale dataset
annotated with NEs and relations based on our
schema, comprising 8,428 Japanese CT reports
from seven facilities, to address second challenge.
JRadFCS includes a wide variety of reports cov-
ering different organs and diseases by collecting
all reports written during a specific period. This
diversity makes JRadFCS suited for evaluating the
generalizability of models across various reports.

In developing a model for practical use, it is diffi-
cult to use data from multiple facilities as a training
set due to contractual and cost constraints. There-
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Figure 1: An overview of our proposed FCS. In step 1, our approach structures the report through Named Entity
Recognition (NER) and Relation Extraction (RE). In step 3, our approach transforms the output graphs of NER and
RE into Finding-Centric Graphs to structure reports into each finding. Structuring in this manner allows us to build
a Finding-Centric Structured Database. This DB can serve as a foundation for various applications.

fore, as a more practical setting, we evaluate the
performance of a model trained on single-facility
reports when applied to reports from other facil-
ities. We evaluate various BERT (Devlin et al.,
2019) models, including our BERT for the radiol-
ogy domain and a Large Language Model (LLM),
revealing large performance gaps between facilities.
Additionally, to identify the factors contributing to
these performance gaps, we analyze the relation-
ship between metrics indicating the complexity of
reports, such as the length of the report, and model
performance. Furthermore, we demonstrate that
training set augmentation based on the identified
complexity metrics can efficiently improve perfor-
mance on reports from other facilities.

2 Related Work

Various annotation schemes for radiology reports
have been proposed. Yada et al. (2020) propose a
schema for NEs, which has been applied in various
studies (Yada et al., 2022; Cheng et al., 2022; Naka-
mura et al., 2022). This scheme treats multiple find-
ings such as “結節と網状影 (nodule and reticular
shadows)” as a single NE. Sugimoto et al. (2023)
and Lau et al. (2023) annotate multiple segments
such as “左第7、8肋骨 (left 7th, 8th ribs)” as a sin-
gle NE. These schemas define coarse-grained NEs,
which hinder FCS and limit applications requiring
precise statistics.

RadGraph (Jain et al., 2021) and its extension,
RadGraph-XL (Delbrouck et al., 2024), focus on
structuring chest X-ray and CT/MR reports, respec-
tively. Unlike X-rays, CT scans provide 3D imag-
ing, which enables radiologists to observe detailed
characteristics such as the shape and condition of
findings. However, RadGraph-XL lacks specific
labels for characteristics and temporal changes, in-
stead labels them as findings (“observations” in
their schema). Our approach extracts relevant at-
tributes, such as characteristics, as distinct labels

NE Label Definition

Finding (F) Abnormalities or abnormal conditions.

Diagnosis (D) Diseases inferred from the findings.

Characteristics (C) Features of findings, such as state, nature, or
degree of brightness.

Temporal change (T) Changes compared to past tests.

Segment (S) Regions based on anatomical definitions, or-
gans or parts of organs.

Measurement result (R) Measured values or qualitative size expres-
sions.

Measurement item (I) Items for measured values.

Quantity (Q) The number of findings.

Table 1: NE labels and their definitions. The symbols
in parentheses are abbreviations.

from findings, ensuring FCS and a finer granularity
suited for the complexity of CT scans.

Other efforts include report labeler (Irvin et al.,
2019; Johnson et al., 2019), NE and/or RE schemas
(Patel et al., 2018; Bustos et al., 2020; Datta et al.,
2020; Park et al., 2024) have been proposed. Con-
trary to prior studies, we uniquely focus on FCS.

3 Finding-Centric Structuring

Following discussions with three board-certified
radiologists, we developed a set of entities and
relations to capture critical information.

3.1 NEs and Relations
Table 1 shows the NE labels and their respective
definitions. For the labels F, D, C, and T, we as-
sign a factuality attribute: Positive if the concept is
observed, and Negative if it is not.

We define relations from NE labels D, C, T, S, R,
and Q to label F to capture the relevant attributes of
each finding. Furthermore, we define hierarchical
anatomical relations from higher anatomical label
S to lower anatomical label S, and relations from
label I to R to associate measured items with their
values (e.g., “diameter → 3cm”). In Figure 1, the
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label F assigned to “nodules” is connected to “low-
density” and “metastasis,” capturing attributes of
“nodules.” The relations “right lung → apex → nod-
ule” represents the detailed position of “nodules”
along with the hierarchical anatomical relations.

3.2 Generating Finding-Centric Graphs

Radiology reports often describe multiple findings
within a single sentence, necessitating additional
processing to separate each finding. For example,
the report in Figure 1 states that nodules are in
two distinct segments. Relying on NER and RE
is insufficient to accurately determine the number
of findings described in the report. Therefore, we
introduce rule-based processing that transform the
output of NER and RE into finding-centric graphs
(step 3 in Figure 1). The following is an example
of the rules. Details are provided in Appendix A.

• Segment-Path Rule

For the graphs containing multiple Segments,
finding-centric graphs are generated based on the
paths from each terminal segment to the findings.
For example, in Figure 1, two paths are identi-
fied:, “right lung → apex → nodule” and “right
lung S2 → nodule”; thus, two finding-centric
graphs are generated by adding each segment
path.

3.3 Evaluating Finding-Centric Structuring

We introduce the Finding-centric Graph Score
(FGS) to evaluate FCS. A predicted graph is con-
sidered correct if it exactly matches the gold graph.
This implies that all NEs must have the correct
labels, factuality, and spans, and that all relations
must correctly connect the NEs. The FGS F1 Score
FFGS is the harmonic mean of FGS Precision PFGS
and FGS Recall RFGS. PFGS is the ratio of correctly
predicted finding graphs Ntp to the total predicted
graphs Npred: PFGS =

Ntp
Npred

, and RFGS is the ratio

of Ntp to the total gold graphs Ngold: RFGS =
Ntp
Ngold

.
FGS evaluates the comprehensiveness of rele-

vant attributes for individual findings and the cor-
rectness of the number of generated finding-centric
graphs. This is critical for practical applications
that rely on the integrity of structured data.

RadGraphF1 (Yu et al., 2023) is an evaluation
metric based on RadGraph for report generation
models. RadGraphF1 calculates the F1 score based
on the matching of NEs (nodes) and their relations
(edges) in the RadGraph outputs, which interprets

Facility #Training #Validation #Test Collection Period

OUH 1,344 200 1,536 Jun. 2-15, 2021 (14 days)
A 0 200 781 Jun. 1-7, 2021 (7 days)
B 0 200 583 Oct. 1-7, 2020 (7 days)
C 0 200 420 Jun. 1-7, 2021 (7 days)
D 0 200 1,141 Jun. 1-7, 2021 (7 days)
E 0 200 624 Dec. 1-7, 2020 (7 days)
F 0 200 599 Jun. 1-7, 2021 (7 days)

Table 2: The number of reports in the JRadFCS dataset.
The facility name “OUH” refers to Osaka University
Hospital, while the other A to F are placeholders for
different hospitals. In the training set, we randomly
sampled reports regardless of the period.

Research Anatomy #Facilities #Reports

Hassanpour and Langlotz
(2016)

Chest 3 150

Yada et al. (2020) Lung 2 1,498
Cheng et al. (2022) Lung Not mentioned 1,000
Nakamura et al. (2022) Lung 1 (Radiopaedia) 135
Sugimoto et al. (2023) Chest, abdomen 1 1,040
Lau et al. (2023) Chest 1 500
Park et al. (2024) Whole body 1 203

Delbrouck et al. (2024) Chest, 2 1,200
abdomen/pelvis

Zhao et al. (2024) Whole body 1 (MIMIC-IV) 1,816

JRadFCS (Ours) Whole body 7 8,428

Table 3: Comparison of CT report datasets, manually
annotated NEs and/or relations. Anatomy denotes the
imaging part of the reports. #Facilities and #Reports
denote the number of source facilities and reports.

it a metric for the local correctness of the gener-
ated report. In contrast, FGS measures the exact
matching of graphs, allowing for a comprehensive
evaluation of findings and their relevant attributes.
Especially for CT scans, which provide 3D imag-
ing, many kinds of findings and their attributes can
be described in the report. Thus, it is also impor-
tant to evaluate generative or structuring models in
terms of the comprehensiveness of attributes and
the correctness of the number of findings. Overall,
FGS offers a more holistic evaluation compared to
RadGraphF1.

4 JRadFCS

We constructed JRadFCS, a dataset of Japanese CT
reports annotated by our schema. Two annotators,
each with over 10 years of experience in annotation
for medical NLP tasks, were employed to annotate
NEs and their relations. Each report was annotated
by a single annotator.

We collected all CT reports written during a spe-
cific period from each facility. Table 2 shows the
statistics for the reports included in JRadFCS. This
sampling approach allows us to simulate the perfor-
mance of a structuring model when deployed over
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a defined period, which is crucial for assessing its
real-world applicability. Moreover, this approach
ensures that JRadFCS includes reports covering a
wide range of organs and diseases.

Table 3 compares JRadFCS with existing
datasets. JRadFCS contains the largest number
of CT reports and multi-facilities reports. The di-
versity in facility sources, coupled with the variety
of organs and diseases represented, provides a key
advantage for developing models that can be gener-
alized across various clinical scenarios.

The training set consists only of the OUH re-
ports to evaluate the performance for other-facility
reports (Table 2). Note that the validation sets for
facilities A to F are only used for later analyses
and are not utilized for model training, nor even for
checkpoint selection. Further details of JRadFCS
are provided in Appendix B.

5 Experiments

In this section, we evaluate the performance of the
structuring model trained on OUH reports when
applied to those from other facilities. Specifically,
we compare the performance of different BERT-
based models, including UTH-BERT (Kawazoe
et al., 2021), Tohoku-BERT (2024) and our BERT
trained on radiology reports. Additionally, we ana-
lyze the performance gaps among the facilities and
explore potential reasons for these gaps.

5.1 Experimental Settings

We utilized a pipeline for NER and RE based on
BERT (Devlin et al., 2019). Fine-tuned BERT mod-
els have demonstrated strong results in various IE
tasks (Cheng et al., 2022; Shibata et al., 2024).

For the NER model, we trained BERT-CRF
(Souza et al., 2020) with labels that combine NE
labels with factuality labels (e.g., Finding-Positive),
allowing it to handle the NER and factuality pre-
diction simultaneously.

For the RE model, we trained a binary classifi-
cation model to predict the relations between NEs.
We used BERT embeddings for the subject, object,
and the span between them, computed through av-
erage pooling of the token embeddings. These em-
beddings were concatenated and fed into a softmax
classifier to predict the probability of relation exis-
tence. We fine-tuned the model using cross-entropy
loss. During inference, the model predicted rela-
tions for all subject and object pairs.

In domain-specific tasks, pre-trained language

models (PLMs) trained on domain-specific texts
typically outperform those trained on general-
domain data (Gu et al., 2021; Ghosh et al., 2023).
From this perspective, we constructed JRadBERT,
a PLM with a character-level tokenizer, trained
on approximately 758K Japanese radiology re-
ports (over 10.6M sentences and 103.3M words)
from OUH. Importantly, the pre-training dataset
for JRadBERT does not overlap with the reports
or patients included in JRadFCS. JRadBERT is a
BERT-base model trained on Masked-LM, where
15% of the words in the text are masked. The vocab-
ulary size is 3,930. Details on the training of NER,
RE, and JRadBERT are presented in Appendix D.

We compared JRadBERT with UTH-BERT and
Tohoku-BERT. UTH-BERT is a BERT-base model
trained on approximately 120M lines of Japanese
clinical text and uses J-Medic (Ito et al., 2018)
to treats medical terms as one token. This model
outperforms general-BERT in some clinical tasks
(Nishigaki et al., 2023). Tohoku-BERT is a BERT-
base model trained on 79.2GB of general-domain
Japanese text, and achieves high performance in
some NLP tasks (Tsukagoshi et al., 2023).

5.2 Experimental Results
Table 4a shows the F1 scores for NER, RE, and
FGS using models fine-tuned on reports from OUH.
Tohoku-BERT achieved the highest scores at sev-
eral facilities; however, our JRadBERT demon-
strated superior performance in both Macro and
Micro-F1 scores, with lower SD, despite its smaller
pre-training text of 0.32GB, which is approxi-
mately 1/250 of the size of that of Tohoku-BERT.
These results suggest that domain-specific PLM
enhances performance and robustness across facil-
ities. The performance of NER and RE for each
label is provided in Appendix E.

One reason for the lower performance of UTH-
BERT is its use of J-Medic, which treats medical
terms as one token. For instance, it tokenizes “腹
水なし (no ascites)” as one token, whereas our
schema requires it to be extracted as “腹水 (as-
cites).” This difference in token granularity leads
to NER errors. Conversely, our JRadBERT uses a
character-level tokenizer to mitigate these errors.

LLMs have been proven effective in various NLP
tasks (Liu et al., 2023). Table 4b shows the FFGS
of JRadBERT and GPT-4o with 20-shots on the
validation set. The FFGS of GPT-4o at the best-
performing facility was 57.36, significantly lower
than JRadBERT. We observed that GPT-4o tends to
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UTH-BERT Tohoku-BERT JRadBERT
FNER FRE FFGS FNER FRE FFGS FNER FRE FFGS

OUH 84.92 90.04 64.88 95.76 95.18 85.47 96.01 95.30 85.84
A 74.27 81.41 45.59 93.82 94.33 83.89 94.01 94.29 83.83
B 77.91 86.19 47.31 93.21 94.82 81.25 93.28 94.92 81.12
C 71.09 84.63 43.54 89.60 92.83 74.28 91.90 94.15 80.08
D 68.84 84.57 39.71 91.42 93.61 78.91 91.13 94.13 78.44
E 73.96 83.59 38.00 91.65 91.68 69.23 92.23 94.53 77.20
F 68.90 84.84 39.14 90.89 91.59 74.52 90.74 93.32 76.33

Micro w/o OUH 72.59 84.27 42.51 92.00 93.46 78.33 92.28† 94.31† 79.92†
Macro w/o OUH 72.49 84.21 42.21 91.76 93.14 77.01 92.21 94.22 79.50

SD w/o OUH 3.54 1.60 3.81 1.54 1.35 5.35 1.25 0.53 2.76

(a) F1 scores on the test set.

JRadBERT GPT-4o (20-shots)
FFGS FFGS

83.31 57.36
83.94 44.19
81.51 46.51
82.48 50.85
79.09 40.40
74.96 38.90
74.18 40.26

80.15 45.81
79.36 45.26
4.04 5.77

(b) F1 scores on the validation set.

Table 4: F1 scores of NER (FNER), RE (FRE) and FGS (FFGS). SD represents the standard deviation. Bold indicates
the best performance.† indicates a significant difference with the other models (McNemar’s test, p < 0.01).

Figure 2: An example of an annotated report. Multi-
ple graphs are generated from the line 1 and 2, each
centered on the “consolidation” and “GGO.” Therefore,
these are counted as MG. Besides, since the factuality
is Positive, these are also counted as PG and PMG. In
the last sentence, three graphs are generated according
to Segment-Path Rule, and these are counted as MG,
however, not as PG and PMG because their factuality is
Negative. In this report, there are seven graphs in total,
resulting in RG being 7, PG being 3/7 ≈ 0.43, and PMG
being 2/7 ≈ 0.29.

make errors in the spans of NE that not appeared in
the few-shot samples. Details of comparison with
GPT-4o are provided in Appendix F.

Our domain-specific model achieves the highest
performance; however, performance gaps remain
across facilities. Surprisingly, there is a significant
gap of nearly 9.5 pt in FGS between OUH and
facility F. These results indicate that evaluating
models using reports from only a few facilities
might not adequately reflect their generalizability.

5.3 Performance Degradation Factor Analysis
We defined metrics indicating the complexity of
a report to examine factors contributing to perfor-
mance degradation on reports from other facilities.
If the F1 scores decrease as the complexity metric

values increase, the correlation indicates a negative
value. Therefore, metrics with high negative corre-
lation can be considered as factors contributing to
performance degradation.

Table 5 shows the defined metrics, their defi-
nitions, and Pearson’s correlation coefficients on
validation sets from facilities A to F. We defined
the metrics from three perspectives: entity-level,
report-level, and graph-level. An example of an
annotated report and the values of the complex-
ity metrics for this report are shown in Figure 2.
Detailed observations are listed as follows:

• Entity-level metrics have an influence on NER
and FGS.

OOE exhibits the highest negative correlation of
all the metrics in NER and FGS. This indicates
that reports with a higher proportion of unknown
NEs tend to exhibit lower performance.

Similarly, EL exhibits a negative correlation with
NER, indicating that reports with longer NE tend
to have lower performance. For instance, com-
plex Diagnosis NEs include noun phrases such
as “薬剤性肺炎の再燃 (Recurrence of drug-
induced pneumonia).” Such expressions make
it challenging for the model to accurately deter-
mine the boundaries.

• Graph-level metrics have a greater impact
than report-level metrics.

Report-level metrics, indicating the complexity
of the overall report, exhibit a lower correla-
tion. Conversely, graph-level metrics, indicating
the complexity of individual findings, exhibit a
higher negative correlation. Sentences describ-
ing abnormal findings such as the first and sec-
ond lines in Figure 2, tend to be linguistically
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Complexity Metric Definition of Metric rNER rRE rFGS

Out of Entity (OOE) The percentage of entities not included in the training set. -39.9† -20.5† -40.7†

Entity Length (EL) The average number of characters per entity. -28.5† -10.4† -26.2†

Report Length (RL) The number of characters in the report. -6.4 -17.2† -16.7†

Report Relations (RR) The number of relations in the report. -0.2 -15.5† -17.1†

Report Graphs (RG) The number of graphs in the report. 8.5† -6.6 4.0†

Graph Relations (GR) The average number of relations per graph. -4.7 -18.7† -29.7†

Positive Graphs (PG) The percentage of graphs where the factuality of the Finding is positive. -22.1† -17.3† -37.7†

Positive Graph Length (PGL) The average number of characters per sentences containing positive graph (PG). -18.1† -34.9† -40.3†

Multiple-Finding Graphs (MG) The percentage of graphs generated from sentences containing multiple graphs. -5.5 -22.2† -18.8†

Positive Multiple-Finding Graphs (PMG) The percentage of graphs that are both positive graphs (PG) and multiple graphs (MG). -19.7† -30.9† -39.8†

Table 5: Pearson’s correlation coefficients r between F1 scores of NER, RE and FGS and complexity metrics in the
validation set from facilities A to F. † denotes p < 0.01 in a significance test of the correlation.

Figure 3: Average NER F1 scores of augmented models
on reports from facilities A to F. “No Additions” rep-
resents the performance without any augmentation, as
shown in Table 4a. The x-axis shows the percentage of
the additional set relative to the original training set.

complex, as they need to convey the relevant at-
tributes such as Characteristics for differential
diagnosis. Consequently, the graphs generated
from these complex sentences tend to be complex
structures. The negative correlation observed in
PGL and PMG suggests that the model struggles
to accurately structure these complex sentences.

5.4 The Effect of Metric-Based Augmentation

In this section, we explore strategies to reducing
performance degradation by augmenting the train-
ing set based on correlated metrics. A straightfor-
ward approach is to add reports from each facility
to the training set. However, it is difficult to use
data from multiple facilities as a training set due to
contractual and cost constraints. Thus, we focused
on adding only OUH reports to improve perfor-
mance on reports from other facilities. This setting
addresses a more challenging scenario and practical
issues with a limited available training set.

We aim to achieve more efficient training by
sampling additional OUH reports based on the key
metrics identified in the previous section. Specifi-
cally, we examined whether this strategy improves

Facilities No additions Rand OOE EL PGL PMG

A to F 79.50 80.07 80.01 80.27† 80.11 79.59
E 77.20 77.82 78.29† 78.22† 78.17 78.46†

F 76.33 76.95 77.20 77.38 77.38† 77.18

Table 6: FGS F1 scores across facilities A to F, using
40% augmented NER model, whereas the RE model
remained unchanged. † indicates a significant difference
compared with Rand. (McNemar’s test, p < 0.01)

performance on reports from other facilities more
efficiently than random sampling. The performance
gap is greater for FNER than for FRE (Table 4a).
Therefore, we focused on NER in this experiment.

5.4.1 Experimental Settings
We added a portion of the OUH test set to the train-
ing set and examined performance for facilities A
to F. The sampling process is as follows: First, we
made predictions on the OUH test set using a model
trained on the training set. Next, we calculated each
metric for each report from the prediction results.
Finally, we selected reports with high values of the
metrics preferentially and add them to the training
set along with their gold annotations.

5.4.2 Experimental Results
Figure 3 shows the Macro-F1 scores on augmented
NER models. The metrics-based augmentation
tends to result in higher performance compared
to random sampling. The augmented models using
OOE and EL, which exhibited the highest negative
correlation in the NER task (Table 5), achieved the
best performance.

Table 6 shows the FGS scores when using the
NER model with 40% augmented data, whereas the
RE model remained unchanged. Similar to NER,
performance improvements in FGS were observed.
Facilities E and F, which initially had lower FGS
F1 scores compared to others, demonstrated greater
performance improvement.
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We observed significant improvement in facility
E with the OOE-based augmentation, but smaller
improvement in facility F. Since only OUH reports
were augmented, the increased diversity of NEs in
OUH reports may not translate to other facilities.
Therefore, for reports containing many facility-
specific terms, the performance improvement from
OOE-based augmentation may be limited. This
is a limitation of using only single-facility reports
to improve the performance of reports from other
facilities. Additionally, PMG-based augmentation
showed a lower score than random sampling across
facilities A to F. As shown in Table 5, RE showed a
higher correlation with PMG compared to NER.
Thus, although the performance gap in FRE is
smaller than FNER, incorporating this augmenta-
tion in RE could potentially improve FFGS.

6 Conclusion

We addressed two key challenges in structuring
radiology reports: the lack of a practical schema
and datasets to evaluate model generalizability. To
address these challenges, we proposed a FCS that
structures radiology reports by each finding and
constructed JRadFCS, a large-scale dataset contain-
ing 8,428 Japanese CT reports from seven facilities.
We evaluated the performance of a model trained
on single-facility reports applied to reports from
other facilities, revealing performance gaps. We
identified factors causing performance gaps and
confirmed improvements of F1 scores on NER and
FGS through augmentation based on these factors.
Moreover, we observed that the improvement is
larger for facilities with lower initial performance.

Our future work is to extend the JRadFCS
dataset to include reports from other imaging
modalities such as magnetic resonance and ul-
trasound. Additionally, we plan to demonstrate
whether the FCS schema actually improves any
downstream tasks.

Limitations

The JRadFCS dataset comprises only Japanese CT
reports, raising uncertainty about how well the pro-
posed FCS and the experimental observations gen-
eralize to reports in other languages or from other
imaging modalities, such as magnetic resonance
and ultrasound. In future work, we plan to expand
the dataset to include reports in other languages
and from these modalities. This direction could en-
able a more comprehensive evaluation of the FCS

and its model generalizability.
Additionally, the JRadFCS dataset cannot be

made publicly available due to ethical and privacy
constraints, as it is derived from sensitive medi-
cal data. While this ensures compliance with data
governance policies and the protection of patient
confidentiality, it limits the broader adoption and
reproducibility of our study.

Ethical Consideration

This study adheres to the Association for Comput-
ing Machinery (ACM) Code of Ethics and Profes-
sional Conduct1, which has been adopted by the
Association for Computational Linguistics (ACL).

All reports used in this study were de-identified;
patient names, doctor names, contact information,
and other identifiers were removed to protect pa-
tient privacy. Additionally, we did not use any
accompanying information such as patient sex, age,
purpose of the request, or diagnosis fields in this
study. Radiology reports were collected with con-
sent from the patients or their representatives, and
the Institutional Review Board has approved this
study.
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A Details of Rule-Based Processing to
Generate Finding-Centric Graphs

To transform the output of NER and RE into
finding-centric graphs, we applied the following
two rules:

• Segment-Path Rule For the graphs contain-
ing multiple segments, finding-centric graphs
are generated based on the paths from each
terminal segment to the findings. For example,
in Figure 1, two paths are identified:, “right
lung → apex → nodule” and “right lung S2
→ nodule”; thus, two finding-centric graphs
are generated by adding each segment path.

• Size-Path Rule For the graphs containing
multiple Measurement results indicating size
of findings, finding-centric graphs are gener-
ated based on the edges from each size expres-
sion labeled Measurement result to the finding.
Size expressions are combinations of numbers
(e.g., “1.0,” “1.0×1.5×2.0”) and units (“mm”
and “cm”), and we determine whether they
are size expressions using regular expressions
applied to the NEs labeled as Measurement
results. For example, in the report “Nodules
of 2cm and 3cm are seen,” two finding-centric
graphs are generated: one is the “2cm → nod-
ule” and another is “3cm → nodule.”

When multiple segments and size expressions
appear within a single graph, we create pairs of
segments and sizes according to their order of ap-
pearance and generate finding-centric graphs for
each pair. For example, for the sentence “Nodules
of 1cm in the right lung, and 2cm and 3cm in the
left lung are seen,” we create the graphs “right lung
→ nodule ← 1cm,” “left lung → nodule ← 2cm,”
and “left lung → nodule ← 3cm” based on the
order of appearance.

The aforementioned rules are simple, but there
were no erroneous reports on the validation set. We
concluded that radiologists avoid using complex
structures that would make it difficult for readers
to understand the size and location of abnormali-
ties; therefore, no reports required more complex
processing.

B JRadFCS Dataset

B.1 Named Entities and Factuality
Table 7 shows statistics of NE labels on the JRad-
FCS dataset. Unique expressions assigned the
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NE Label #NEs #Unique NEs Example of NEs

Finding 75,619 5,295
結節 (nodule),腫瘤 (mass),すりガラス影 (ground-glass opacity),嚢胞 (cyst)Finding (Positive) 43,801 4,613

Finding (Negative) 31,818 1,222

Diagnosis 14,675 3,078
転移 (metastasis),肺癌 (lung cancer),良性病変 (benign lesion),活動性病変 (active lesion)Diagnosis (Positive) 11,882 2,893

Diagnosis (Negative) 2,793 364

Characteristics 5,908 1,170
低吸収 (low absorption),不整 (irregular),限局性 (localized),石灰化 (calcification)Characteristics (Positive) 6,219 1,074

Characteristics (Negative) 857 219

Temporal change 14,301 149
変化 (change),増大 (increase)Temporal change (Positive) 5,056 121

Temporal change (Negative) 9,245 57

Segment 56,191 6,954 肺 (lung),主膵管 (main pancreatic duct),頭部 (head),大腿骨 (thigh bone)

Measurement result 5,185 872 大きい (large),高い (high),縮小 (reduction), 10mm, 1.2×2.5cm

Measurement item 3,290 194 長径 (major axis), CT値 (CT value)

Quantity 2,283 55 複数 (several),多数 (many), 2個 (two)

Table 7: Statistics of NE labels on JRadFCS dataset. #NEs and #Unique NEs denote the number of NEs and unique
NEs, respectively.

Factuality Example of Frequency Clue Expression

Positive 認められる (is seen),疑われる(is suspected),出現 (appear), (+)

Negative 明らかでない (is not clear),消失 (disappear), (-)

Table 8: Examples of clue expressions for annotating factuality labels.

Quantity and Temporal change labels are limited,
however, the Finding , Diagnosis, Characteristics
labels have diverse expressions.

We assigned a factuality attribute to Finding,
Characteristics, Temporal change, and Diagnosis:
Positive if the entity is observed, and Negative if
it is not. The factuality can be assigned based on
clue expressions. Examples of these frequently
occurring clue expressions are presented in Table
8.

B.2 Relations

Table 9 shows the statistics of relations in the JRad-
FCS dataset. As stated in the examples of Table 7
and Table 9, the JRadFCS dataset includes segment
and disease terms for various organs. This indi-
cates that JRadFCS encompasses radiology reports
addressing the anatomy of the entire body and a
broad spectrum of diseases.

C Annotation Process

We employed two annotators with over 10 years of
experience in medical domain NLP tasks to anno-
tate NEs and relations. We used Brat (Stenetorp
et al., 2012) for annotation.

We randomly sampled 5 reports from each facil-
ity, resulting in a total of 35 reports, to calculate

the Inter-Annotator Agreement between the two an-
notators. Since this task involved annotating both
NEs and relations, we calculated the F1 score based
on perfect matches in the span, label, and factuality
of both the subject and object NEs, as well as the
relations between NEs. The precision, recall, and
F1 score are 0.88, 0.87, and 0.88, respectively.

C.1 Statistics

Table 10 shows the statistics of reports in the JRad-
FCS dataset. It can be observed that the statistics
of reports vary by facility. This variation suggests
that different facilities and radiologists have differ-
ent styles of reporting, such as whether multiple
findings are summarized in one sentence or listed
individually. Similar analysis were reported by
Nakamura et al. (2022). This statistics and diver-
sity emphasize the importance of evaluating model
performance across diverse reports.

D Details of Training

D.1 JRadBERT

We trained a BERT-based model using Japanese ra-
diology reports to construct a PLM specialized for
radiology. The details of JRadBERT are described
below.
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Subject Object #Relations Example of Relations

Segment Finding 48,446 脾→異常 (spleen→abnormality),両腎→嚢胞 (bilateral kidneys→cyst)

Diagnosis Finding 18,011 肺転移→結節 (lung metastasis→nodule),嚢胞→低吸収域 (cyst→low absorption area)

Characteristics Finding 6,936 石灰化→腫瘤 (calcification→mass),病的→液体貯留 (pathological→fluid accumulation)

Temporal change Finding 16,157 変化→結節 (change→nodule),増大→腫瘤 (increase→mass)

Measurement result Finding 4,981 粗大→出血 (coarse→hemorrhage),少量→腹水 (small amount→ascites)

Quantity Finding 2,361 多発→嚢胞 (multiple→cyst),散見→低吸収域 (scattered→low absorption area)

Measurement item Measurement result 1,924 径→1cm (diameter→1cm),サイズ→小さく (size→small)

Segment Segment 2,628 縦隔→リンパ節 (mediastinum→lymph nodes),甲状腺→両葉 (thyroid→bilateral lobes)

Table 9: Statistics of relations in the JRadFCS dataset. #Relations denotes the number of relations.

Facility Sents Words NEs Relations Graphs

OUH 12.6 / 13.1 / 9.9 128.7 / 132.7 / 92.1 26.3 / 27.6 / 18.9 14.3 / 15.1 / 9.8 10.3 / 10.0 / 8.7
A 0 / 9.4 / 9.3 0 / 96.9 / 97.6 0 / 19.5 / 19.9 0 / 11.0 / 11.6 0 / 11.6 / 11.8
B 0 / 13.3 / 13.1 0 / 148.5 / 147.1 0 / 29.4 / 29.0 0 / 18.9 / 18.7 0 / 15.3 / 15.0
C 0 / 11.6 / 12.0 0 / 103.7 / 109.7 0 / 20.8 / 21.5 0 / 11.3 / 11.6 0 / 11.4 / 11.4
D 0 / 9.9 / 9.7 0 / 102.8 / 102.9 0 / 20.5 / 20.5 0 / 11.5 / 11.7 0 / 10.9 / 10.7
E 0 / 11.1 / 10.3 0 / 107.9 / 98.2 0 / 19.3 / 17.8 0 / 11.7 / 10.8 0 / 9.0 / 8.5
F 0 / 7.8 / 8.1 0 / 75.3 / 77.8 0 / 13.3 / 13.9 0 / 7.6 / 8.2 0 / 6.5 / 6.8

Table 10: Statistics of reports in the JRadFC dataset and their distribution into training, validation, and test sets.
Sents, Words, NEs, Relations, and Graphs represent the average number of sentences, words, NEs, relations,
and finding-centric graphs, respectively.

NER RE

Batch size 8 32
Epoch size 10 10
Learning rate Linear warmup for the first 10% of train

steps to 5e-5, then linear decay to 0
Dropout rate 0.1 0.1
Optimizer AdamW AdamW

Table 11: The hyperparameters of NER and RE.

Dataset We used approximately 15 years of radi-
ology reports from OUH for training. This dataset
consists of 758,017 Japanese radiology reports
(over 10.6M sentences and 103.3M words). Addi-
tionally, no overlapping reports or patients between
this pre-training dataset and the reports were in-
cluded in JRadFCS.

Pre-processing As pre-processing steps for the in-
put reports, we sequentially applied NFKC normal-
ization, converted text to lowercasing, and replaced
spaces with underscores.

Tokenizer We constructed a character-level tok-
enizer with a vocabulary of 3,930 tokens. The
pre-processed input reports are first tokenized by
MeCab with the IPA dictionary and then split into
characters.

Training JRadBERT was trained using a masked

language model with a Whole-Word-Masking strat-
egy, where 15% of the words in the input report
were masked. This model was trained for 30
epochs. The batch size was set to 256 and the
max token length to 512.

D.2 NER and RE

We fine-tuned JRadBERT using OUH training set
to train the NER and RE models. We did not use
the validation sets for facilities A to F for training
or selecting the best model. The hyperparameters
of NER and RE are defined in Table 11. These
parameters were determined by a Grid search, eval-
uating the performance against the OUH validation
set across several variations.

E Performance of Each Label on NER
and RE

E.1 NER

Table 12 shows F1 scores for each label on the test
set using the JRadBERT model fine-tuned on the
train set. It can be observed that the performance
for the Characteristics is low compared to other
lables, across all facilities. From Table 12, it is
evident that Characteristics has a high number of
unique NEs despite its low frequency compared to
other labels. This result suggests that to correctly
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NE Label OUH A B C D E F Average

Finding (Positive) 92.49 91.45 88.82 87.36 87.18 89.10 87.46 89.26
Finding (Negative) 97.74 95.26 96.17 95.24 94.38 92.21 94.90 95.33

Diagnosis (Positive) 93.64 82.87 90.06 88.26 87.18 88.65 85.69 88.80
Diagnosis (Negative) 95.22 92.70 87.88 94.99 92.91 88.77 90.45 91.06

Characteristics (Positive) 80.98 75.22 75.51 73.68 76.22 79.03 67.99 76.50
Characteristics (Negative) 72.62 68.18 54.29 51.85 57.67 59.15 52.94 62.37

Temporal change (Positive) 96.68 94.67 92.17 94.85 90.23 94.41 94.41 94.01
Temporal change (Negative) 98.56 97.58 96.00 97.93 93.08 98.57 96.08 97.02

Segment 98.01 96.46 96.35 94.18 93.96 94.89 92.69 95.48

Measurement result 98.05 94.37 94.28 93.27 91.94 94.30 92.60 94.43

Measurement item 87.17 83.93 80.00 67.03 70.73 79.01 70.59 78.72

Quantity 98.21 96.36 98.87 97.74 97.94 97.85 96.00 97.50

Table 12: F1 scores for each label on the test set using the JRadBERT model fine-tuned on the train set.

Subject Object OUH A B C D E F Average

Segment Finding 96.29 96.19 96.24 95.02 95.20 95.47 94.69 95.59

Diagnosis Finding 93.32 90.41 93.59 93.59 92.97 93.06 91.91 92.69

Characteristics Finding 89.90 86.78 87.94 87.97 89.91 89.46 86.97 88.42

Temporal change Finding 96.72 94.99 94.70 95.57 94.61 95.26 95.73 95.37

Measurement result Finding 97.46 94.82 97.82 95.45 96.10 98.20 93.63 96.21

Quantity Finding 98.55 90.66 98.03 95.61 96.37 96.44 97.50 96.16

Measurement item Measurement result 99.08 96.40 96.30 98.31 93.12 98.95 81.48 94.80

Segment Segment 86.77 84.36 81.64 83.74 85.78 86.69 84.08 84.72

Table 13: F1 scores for each relation on the test set using the JRadBERT model fine-tuned on the train set.

JRadBERT GPT-4o
1-shot 10-shots 20-shots

OUH 83.31 43.79 53.77 57.36
A 83.94 32.54 41.04 44.19
B 81.51 37.79 44.94 46.51
C 82.48 34.60 46.82 50.85
D 79.09 33.59 37.96 40.40
E 74.96 22.53 36.28 38.90
F 74.18 30.79 39.15 40.26

Table 14: Comparison of FGS F1 scores between GPT-
4o and JRadBERT, on validation set. To evaluate
GPT4o, we append few examples of reports and their
gold outputs as a few-shot setting.

predict Characteristics, the model needs to rely not
only on the surface form of the words but also on
the contextual information.

E.2 RE

Table 13 shows F1 scores for each relation on the
test set using the JRadBERT model fine-tuned on
the train set. It can be observed that the perfor-
mance for the relations between Characteristics

and Finding is particularly low among the relations
targeting Finding. Predicting the relation from Di-
agnosis to Finding is relatively easy compared to
predicting the relation from Characteristics to Find-
ing. This is because diagnoses are determined by
synthesizing information from all findings. Conse-
quently, in cases where both finding and diagnosis
appear in a sentence, a relation is usually linked
between them. On the other hand, characteristics
differ for each finding, the model only needs to link
related characteristics and findings. This difficulty
is causing performance degradation.

Additionally, our RE model can not takes the NE
label information. Therefore, to utilize NE label
information in the RE model, we could improve
performance to change the model into a NE marker
model (Zhong and Chen, 2021; Ye et al., 2022) or
a multi-task model for NER and RE (Wadden et al.,
2019; Ma et al., 2022).
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F GPT-4o Evaluations

We benchmarked the performance of GPT-4o on
the JRadFCS validation set. Given an input radi-
ology report, we used GPT-4o to extract the entire
finding-centric graphs. Table 15 shows the prompt
used for GPT-4o evaluations. Table 16 shows an
English translation of the Japanese prompt.

Table 14 shows the FGS F1 scores of GPT-4o
and JRadBERT on the validation set. GPT-4o per-
formed significantly lower than JRadBERT. Our
error analysis revealed that GPT-4o fails to extract
NEs according to our schema. For example, in the
sentence “気道病変を思わせる粒状影あり。
(There are granular shadows suggestive of airway
disease.),” GPT-4o incorrectly extracted “気道病
変を思わせる (suggestive of airway disease)” as
a Diagnosis. The term “思わせる (suggestive of)”
is a clue of positive factuality and signifies a re-
lation between “気道病変 (airway disease)” and
“粒状影 (granular shadows),” but it does not need
to be extracted as a separate entity. We qualita-
tively confirmed that GPT-4o is particularly prone
to making such mistakes with expressions that are
not included in the few-shot samples.
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# 質問

## タスク
- あなたのタスクは入力される読影レポートを所見毎に関連する情報と共に構造化することです。下記の指示に従って構造化処理を行って下
さい。

## 指示
- Segment、Finding、Diagnosis、Characteristics、Temporal change、Measurement result、Measurement item、Quantityに該当する用語
を抽出する。
- 用語クラスの定義は以下に定める。

- Segment：臓器または臓器を解剖学定義に基づいて区画した領域
- Finding：画像上で医師が指摘した異常（正常ではない状態・変化）を指す用語
- Diagnosis：findingから推定・判断される情報を指す用語。標準病名マスタの用語とその同義語
- Characteristics：findingの状態や性質などの特徴や撮影画像上での明暗や染まりの度合を示す用語
- Temporal change：findingの経時的な変化表現
- Measurement result：findingの計測された値や定性的なサイズを示す用語
- Measurement item：findingの計測した項目を示す用語
- Quantity：findingの数を示す用語
- 複合名詞に対して、重複したスパンで用語を抽出することはなく、1つのクラスを割り当てる。
- 抽出した用語のクラスがFinding、Diagnosis、Characteristics、Temporal changeの場合は、factualityとして0か1で判定する。
- factualityは「認めない、ない」など対象の用語が存在しない場合は0、「認める、疑う」など存在している場合は1とする。
- factualityを判断するための手がかりとなる表現は抽出しない。

- 抽出した用語に対して、findingを中心とした用語間の関係性を抽出する。
- Segment→Finding：抽出した所見とその所見が確認された区域との関係
- Diagnosis→Finding：抽出した所見から疑われる診断情報との関係
- Characteristics→Finding：抽出した所見とその所見の性状との関係
- Temporal change→Finding：抽出した所見とその所見の経時変化との関係
- Measurement result→Finding：抽出した所見とその所見の計測項目との関係
- Quantity→Finding：抽出した所見とその所見の個数との関係
- Measurement item→Measurement result：抽出した計測項目に対応する計測結果との関係
- Segment→Segment：解剖学的に上位の解剖区域から下位の解剖区域への関係

- 抽出した用語と関係性から読影レポートを所見毎に構造化する。

## 入力レポートと出力の例
{"input": "肝臓に嚢胞あり。 ...", "output": ["Segment": ["word": "肝臓"],"finding":"word": "嚢胞", "factuality": 1, ...],...}

## 出力形式
- 出力形式はjsonである。
- キーの"output"に対する値はlist型とし、そのlistの各要素はdict型とする。このdictにある1つのFindingとそのFindingに関連する情報
が格納される。
- "word"には入力レポートに含まれる用語クラスに概要する表現を格納する。
- キーの"finding"は必ずdict型とする。その他は複数の要素が存在する可能性があるため、全てlist型とする。
- 入力レポートにFindingに該当する用語がなく、 Diagnosisに概要する用語がある場合はwordとfactualityをFindingとして抽出し、
Diagnosisとしては抽出しない。
- 「肝臓のS1」というようにSegmentに該当する用語が階層関係にある場合は、同一のリストに上位階層の区域から順に格納する。
- 入力レポート中に含まれるFindingの数だけdictを作成し、格納する。

- 同一のFindingが異なる複数のSegmentで確認されているレポートの場合
- Findingと関係するSegmentの数と同数の構造化結果を作成する。

- 同一のFindingが異なる複数のサイズを示すMeasurement result(3cm 等)と関係をもつ存在する場合
- Findingと関係するサイズを示すmeasurement resultの数と同数の構造化結果を作成する。

上述の指示通りに質問に答えてください。
繰り返しになりますが、この会話内で、構造化するとは、出力形式に従った構造化を指し、必ずjsonで出力して下さい。

Table 15: Japanese input prompt used by GPT-4o in order to extract finding-cetric graphs. For few-shot prompting,
we append example reports and its ideal outputs to the end of this prompt.
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# Question

## Task
- Your task is to structure the incoming radiology report with related information for each finding as instructed below.

## Instructions
- Extract terms that correspond to Segment, Finding, Diagnosis, Characteristics, Temporal change, Measurement result, Measurement
item, and Quantity.
- The definitions of term classes are specified as follows:

- Segment: Terms indicating regions based on anatomical definitions, such as organs or parts of organs.
- Finding: Terms indicating abnormalities or abnormal conditions.
- Diagnosis: Terms indicating diseases inferred from the findings.
- Characteristics: Terms indicating features of findings, such as state, nature, or degree of brightness.
- Temporal change: Terms indicating changes compared to past tests.
- Measurement result: Terms indicating measured values or qualitative size expressions.
- Measurement item: Terms indicating items for measured values.
- Quantity: Terms indicating the number of findings.
- For compound nouns, do not extract terms in duplicate spans but assign a single class.
- If the extracted term class is Finding, Diagnosis, Characteristics, or Temporal change, determine factuality as 0 or 1.
- Factuality should be 0 if terms like "not observed" or "absent" indicate the term does not exist, and 1 if terms like

"recognized" or "suspected" indicate it exists.
- Do not extract expressions that provide clues for determining factuality.

- For the extracted terms, extract the relationships between terms centered on the finding.
- Segment→Finding: Indicates where the finding is located with in the anatomical structure.
- Diagnosis→Finding: Represents the suspected diagnosis from the finding.
- Characteristics→Finding: Represents the characteristics of the finding.
- Temporal change→Finding: Represents the temporal changes of the finding.
- Measurement result→Finding: Represents the measurement results of the finding.
- Quantity→Finding: Represents the number or amount of the finding.
- Measurement item→Measurement result: Links the items of measurement to its result.
- Segment→Segment: Shows the spatial relationship between two segments. Links from higher-level to lower-level segments.

## Input Report and Output Example
{"input": "There is a cyst in the liver. ...", "output": ["Segment": ["word": "liver"], "finding": "word": "cyst", "factuality":
1, ...], ...}

## Output Format
- The output format should be JSON.
- The value corresponding to the key "output" should be a list, and each element of this list should be a dictionary. This
dictionary will contain one Finding and related information for that Finding.
- The "word" will store the expression corresponding to the term class found in the input report.
- The key "finding" should always be a dictionary, and other keys should be lists as they may contain multiple elements.
- If there is no term corresponding to Finding in the input report but there is a term corresponding to Diagnosis, extract it
as "word" and "factuality" for Finding, and do not extract it as Diagnosis.
- If terms corresponding to Segment have hierarchical relationships such as "S1 of the liver", store them in the list in order
from the higher-level region to the lower-level region.
- Create and store a dictionary for each finding present in the input report.

- In the case of reports where the same Finding is confirmed in different Segments:
- Create as many structuring results as the number of Segments relating to the Finding.

- If the same Finding has multiple related Measurement results indicating different sizes (e.g., "3cm"):
- Create as many structuring results as the number of size-indicating Measurement results relating to the Finding.

Answer the question according to the instructions above.
Once again, in this conversation, structuring refers to structuring as per the output format, and always output in JSON.

Table 16: An English translation of the Japanese prompt.
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