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Abstract
Hand-crafting high quality prompts to opti-
mize the performance of language models is
a complicated and labor-intensive process. Fur-
thermore, when migrating to newer, smaller,
or weaker models (possibly due to latency or
cost gains), prompts need to be updated to
re-optimize the task performance. We pro-
pose Concept Distillation (CD), an automatic
prompt optimization technique for enhancing
weaker models on complex tasks. CD involves:
(1) collecting mistakes made by weak mod-
els with a base prompt (initialization), (2) us-
ing a strong model to generate reasons for
these mistakes and create rules/concepts for
weak models (induction), and (3) filtering these
rules based on validation set performance and
integrating them into the base prompt (de-
duction/verification). We evaluated CD on
NL2Code and mathematical reasoning tasks,
observing significant performance boosts for
small and weaker language models. Notably,
Mistral-7B’s accuracy on Multi-Arith increased
by 20%, and Phi-3-mini-3.8B’s accuracy on
HumanEval rose by 34%. Compared to other
automated methods, CD offers an effective,
cost-efficient strategy for improving weak mod-
els’ performance on complex tasks and enables
seamless workload migration across different
language models without compromising perfor-
mance.

1 Introduction

Large language models (LLMs) have shown re-
markable capabilities for various downstream tasks.
An inexpensive alternative to training and fine-
tuning, prompt engineering has emerged as a pow-
erful method to control and optimize the outputs
from LLMs. Prompt engineering is enabled by
the in-context learning (ICL) capability of LLMs
(Dong et al., 2022), which allows us to apply LLMs
to new tasks by providing them with a suitable in-
put prompt that contains relevant information and
instructions (Xie et al., 2021).

Figure 1: High-level illustration of concept distillation
for prompt construction.

As such, crafting high-quality prompts can be a
challenging and labor-intensive process. Finding
the right instructions can require several rounds of
trial-and-error experimentation. Further, the same
prompt may not work for different tasks, models,
or domains (Lu et al., 2023; Rubin et al., 2021). Im-
portantly, weak models such as GPT-3.5 or Mistral-
7B often lack the same reasoning capabilities as
strong models such as GPT-4o, and as a result,
struggle with complex and high-reasoning tasks
(Edwards and Camacho-Collados, 2024; Liang
et al., 2023). This leads to significant performance
gaps between stronger and weaker models for such
tasks. Conversely, practical reasons (e.g., lower
runtime latency, cost, and memory footprint) may
still motivate and impose the use of weak mod-
els in practical applications (Xia et al., 2023; Hadi
et al., 2023). While fine-tuning methods such as
LoRA (Hu et al., 2022) may close this gap, they
involve modifying the model’s parameters — thus
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making it task-specific and limiting its reuse across
different contexts. In particular, these approaches
require fine tuning infrastructure and know-how,
which may not be available or accessible in many
practical scenarios. In contrast, our CD approach
preserves the model’s parameters, allowing the
model to remain flexible for various tasks, and re-
quiring only prompt-engineering level of access.

Another key area that the current work addresses
is the efficient adaptation of prompts for vari-
ous models. A primary challenge is transitioning
prompts from an existing model, such as GPT-4, to
a newly released variant like GPT-4o. It is essen-
tial to recognize that different models may respond
uniquely to the same prompts. As such, there is
the need for strategies that effectively modify and
tailor existing prompts to maintain alignment with
new or evolving models.

In this paper, we introduce concept distilla-
tion (CD), an automated prompt optimization tech-
nique. CD improves the performance of weak/s-
mall language models on complex tasks by dis-
tilling key rules, concepts, or examples from
a strong/large model via hypotheses-to-theories
prompting. These distilled concepts are then ver-
ified and used to guide a weak model, enabling
it to produce more accurate responses, all with-
out the need for fine-tuning. The structured ap-
proach within the CD framework ensures that these
distilled concepts are sufficiently general to be
transferable across various other language models.
Figure 1 shows a high-level illustration of the con-
cept distillation for prompt optimization approach.
Overall, this paper makes the following contribu-
tions:

• We introduce the notion of concept distilla-
tion, in which a strong model is used to derive
new concepts (i.e., specific prompt instruc-
tions) to help a weak model improve its per-
formance on complex tasks, thereby enabling
greater adaptability of the weak model in vari-
ous applications (see Fig. 3).

• Building on time-tested principles of scien-
tific discovery, we propose the hypotheses-
to-theories prompt optimization framework,
which leverages the strong model’s ability to
perform inductive and deductive reasoning
over the weak model’s deficiencies (see Sec-
tions 3 and 4).

• We demonstrate that the prompt optimiza-

tion framework enables efficient adaptation
of prompts across different language models
(LMs). The distilled concepts are transferable,
allowing for quick and effective updates in
response to new model releases or changes,
ensuring continued optimal performance (see
Section B.2).

• We perform a systematic experimental
evaluation on different tasks (NL2Code:
HumanEval, Mathematical Reasoning:
GSM8K/Multi-Arith) with various weak
models (GPT-3.5 Turbo, Claude 2.1, Phi-3-
mini-3.8B, Mixtral-8x7B, and Mistral-7B),
and show that the proposed approach signifi-
cantly reduces the performance gap between
the weak and strong models (see Sections 5
and 6).

2 Related Work

Given the significance and broad-scale effective-
ness of prompt engineering, there have been sev-
eral efforts to perform automated prompt optimiza-
tion and generation. These methods typically in-
volve an iterative algorithm consisting of several
steps - an initially generated prompt, scoring of
the prompt, and regeneration of the prompt using
the score as an improvement signal, till a stopping
criteria is met (Zhou et al., 2022a; Hu et al., 2023;
Pryzant et al., 2023a; Ye et al., 2023; Wang et al.,
2023; Deng et al., 2023; Guo et al., 2023). We pro-
pose an approach that augments this framework for
prompt optimization through the distillation of con-
cepts, and introduces an explicit verification step
to demonstrate relative performance improvements
for a small model.

Our method is inspired by several recent works.
APE (Zhou et al., 2022a) deduces an initial prompt
from training samples, and then uses an LLM to re-
fine and generate new semantically similar prompt
candidates. However, prompts are simply para-
phrased during the refinement process, which is
akin to random search in the prompt space. Evoke
(Hu et al., 2023) uses the same LLM to review
and score the quality of a prompt, as well as to
refine the prompt based on the reviewer feedback.
(Zhu et al., 2023) first uses an LLM to induce a
rule library from a set of training examples, which
are later sampled for dynamic prompt construc-
tion. This is followed by a deduction phase where
these rules are evaluated based on their coverage
and confidence. (Zhang et al., 2024) generates
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high and low-level concepts from mistakes using
an LLM, and later uses the same LLM for solv-
ing tasks. There is no deduction phase to filter
out the generated concepts. PE2 (Ye et al., 2023)
explores meta-prompt variants to guide LLMs to
perform automatic prompt engineering. They in-
troduce 3 meta-prompt components - two-step task
description, context specification and step-by-step
reasoning template to improve task performance.

In contrast to all these works, our method fo-
cuses on transferring capability from a large/strong
model to a small/weak one by inducing concepts
mainly from the mistakes made on a task by the
weak model. Additionally, our deduction phase
filters out the generated concepts in a metric-driven
way, which is a crucial additional step in our frame-
work that improves task adaptability and perfor-
mance of weak models.

Many other works explore various fundamen-
tally different frameworks for automatic prompt
optimization, and are noteworthy to mention here.
There are text-based error-propagation techniques
such as PromptAgent (Wang et al., 2023) which
uses Monte Carlo Tree Search, and ProTeGi
(Pryzant et al., 2023b) which mirrors the steps of
gradient descent-like updates for prompts. TRAN
(Yang et al., 2023) takes a different approach by
accumulating failure-driven rules at inference time,
enabling LLMs to iteratively improve without fine-
tuning. Another category of related works employs
parametric (non-interpretable) prompt optimization
techniques, as opposed to edit-based ones (Su et al.,
2022; Zhong et al., 2024; Wen et al., 2024).

3 Background

In this section, we explore the foundational con-
cepts and terminologies central to this paper. This
technique draws inspiration from human cognitive
processes (Hunt, 2003; Cherukunnath and Singh,
2022), particularly in how we acquire, refine, and
apply knowledge and concepts across various do-
mains.

Concept Distillation: distinction from Knowl-
edge Distillation depicted in Fig. 2. The core of
our technique is encapsulated in the process of ‘con-
cept distillation’. This process involves the transfer
of concepts from a stronger LM (referred to as
the ‘teacher’) to a weaker LM (referred to as the
‘student’). The differentiation between knowledge
and concept distillation is critical. Unlike tradi-
tional knowledge distillation (Phuong and Lampert,

2019), which focuses on the explicit transfer/up-
date of learned weights and biases through inten-
sive training or fine-tuning procedures, concept
distillation emphasizes the induction of general
concepts, rules, examples, or key ideas from the
teacher model, applying them to the student model
solely via in-context learning (ICL), without neces-
sitating extensive training or fine-tuning. Figure
3 depicts the distinction between knowledge and
concept distillation.

Hypotheses, Theories, and Reasoning: frame-
works for conceptual transfer. Our approach
is deeply rooted in the scientific methodologies
of hypothesis generation, experimental validation,
and theory (Scerbo et al., 2019). A hypothesis,
in this context, is a proposition based on limited
evidence, serving as a foundation for further in-
vestigation that could culminate in a theory, i.e., a
well-substantiated explanation of a phenomenon.
This framework is critical in concept distillation,
where hypotheses derived from observations are
validated through experimental evidence to form
theories that explain the underlying principles or
phenomena.

The transformation from hypotheses to theories
is facilitated by two modes of reasoning: induc-
tive and deductive reasoning. Inductive reason-
ing involves deriving general rules from specific
observed facts, whereas deductive reasoning en-
tails deriving new facts from established facts and
rules. Deductive reasoning allows us to apply gen-
eral principles to specific cases to derive accurate
conclusions. These modes of reasoning allow the
extrapolation of concepts from inductive reason-
ing and the application of these concepts to new,
unseen instances.

Drawing parallels to the human process of sci-
entific discovery (Bradford and Hamer, 2022), our
technique mirrors the iterative cycle of observa-
tion, hypothesis formulation, experimentation, and
theory development. This analogy highlights the
integration of inductive and deductive reasoning
in forming robust concepts that not only explain
observed phenomena but also predict outcomes in
unseen scenarios.

4 Concept Distillation Framework

Our technique consists of three main phases: initial-
ization, induction, and deduction from verification.

Initialization phase. Phase 1 starts with a base
prompt template, which can be either an existing

640



Initialization

Phase 1

Begin with a prompt template, 
and identify weaknesses of the 
weak model

Induction 

Phase 2

Distill concepts from a strong 
model based on weaknesses of 
the weak model

Deduction

Phase 3

Use deduction to verify 
concepts

Figure 2: Workflow of concept distillation for prompt optimization.

prompt we aim to modify (for a strong, large model
we aim to replace), a generated prompt using an
off-the-shelf algorithm, or one manually crafted by
domain experts, serving as a foundation for sub-
sequent refinement. In this phase, we assess the
strengths and weaknesses (mistakes) of the weaker
model regarding the intended task. The primary
goal here is to pinpoint areas and examples where
the weaker model struggles, enabling us to induce
concepts that aid in reasoning in these specific ar-
eas. It is important to focus on the model’s weak-
nesses, avoiding unnecessary adjustments in areas
where the model already performs well.

Induction phase. Phase 2 involves the induction
of concepts from a strong model, such as GPT-4,
tailored to address the identified weaknesses and
mistakes of the weaker model. The aim is to en-
hance the weaker model’s performance by equip-
ping it with these newly induced concepts. During
this process, we use the strong model to reason
through the facts or questions presented to the weak
model, the incorrect responses it generated, and the
correct answers, in order to generate general con-
cepts that can overcome the mistakes of the weak
model.

Deduction from verification phase. Phase 3
is the deduction-from-verification process. The
assumption is that not all induced rules/concepts
or examples qualify as useful distilled concepts.
This phase uses a deduction process to verify the
induced rules and examples. Rules that qualify as
having broad coverage and high prediction confi-
dence are accepted as distilled concepts. Conse-
quently, they are added to the initial prompt tem-
plate that we started with to form an improved, up-
dated prompt. After adding the induced concepts
to the base prompt template, a verification process
is applied to filter the concepts. Either the strong
model can be used to generate test examples sim-
ilar to the weaknesses identified earlier or similar
examples from a validation set can be used for the

verification. The weaker model is required to accu-
rately address all validation examples with a level
of certainty or probability that meets or exceeds
a specific predefined threshold before we accept
the induced concepts as distilled concepts and in-
tegrate them into its prompt. This ensures that the
final prompt effectively addresses the weak model’s
shortcomings, leading to improved performance.

Algorithm 1 succinctly captures the pro-
posed CD framework. It details the three key
phases—initialization (see Fig. 5), induction (see
Fig. 6), and deduction/verification (see Fig. 7).
The definitions and descriptions of the notations
and processes as well as the prompts used in the
algorithm are provided in Appendix A. A detailed
description of the concept distillation process with
a walk-through example is provided in Appendix
C.

Algorithm 1 Hypotheses-to-Theories CD

Require: Strong model Ms, Weak model Mw,
Training set D, Initial prompt p0
(i) Initialization:

1: C ← ∅ ▷ Set of distilled concepts
2: p← p0 ▷ Initialize prompt
3: for each (xi, yi) ∈ D do
4: yw ←Mw(xi, p)
5: if yw ̸= yi then

(ii) Induction:
6: R← InduceConcept(Ms, xi, yi, yw, p)
7: C←C ∪R
8: end if
9: end for

(iii) Deduction –> Verification:
10: for each concept c ∈ C do
11: ValidateConcept(Ms,Mw, c,D)
12: end for

Prompt Update:
13: p← UpdatePrompt(p0, C)
14: return p
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Strong Model  (Teacher)

Loss

Weak Model (Student)

Training 
data

Distilled  
Concepts

Improved  
Output

Weak Model (Student)

Strong Model (Teacher)

Default 
Prompt

Knowledge Distillation Concept Distillation (this work)

Figure 3: Distinction between knowledge and concept distillation.

5 Experiments

We focus on three benchmark datasets: NL2Code
(HumanEval) (Chen et al., 2021), Multi-Arith (Roy
and Roth, 2015), and GSM8K (Cobbe et al., 2021).
HumanEval involves generating code from natural
language prompts, while Multi-Arith and GSM8K
evaluate arithmetic and mathematical reasoning,
requiring step-by-step solutions.

We compare our approach with methods such
as Automatic Prompt Engineering (APE) (Zhou
et al., 2022b), Iterative APE (Zhou et al., 2022b),
Chain of Thought (CoT) (Wei et al., 2022), Prompt
Engineering a Prompt Engineer (PE2) (Ye et al.,
2023), and Automatic Prompt Optimization (APO)
(Pryzant et al., 2023b). We evaluate CD using GPT-
3.5 Turbo, Claude 2.1, Phi-3-mini-3.8B, Mixtral-
8x7B*, and Mistral-7B, with GPT-4o for concept
distillation. Our experiments focus on improving
weak models’ performance through CD and test-
ing the transferability of optimized prompts across
models. We split each dataset into training and test
sets for prompt optimization and evaluation, com-
paring our method with state-of-the-art techniques.

6 Results and Analyses

In Table 1 we summarize the performance of vari-
ous models on the HumanEval test set, using only
the base prompt and after CD (using the updated
prompt with concepts). Notably, with base prompt
alone, the strong model GPT-4o achieved a perfect
score (100%); in comparison, the weak models per-
formed poorly. However, when using the updated
prompt with concepts distilled using the CD tech-
nique, we observe significant performance boosts
for the weak models.

Firstly, we observe a performance increase of
11% for the GPT-3.5 Turbo model, raising its accu-

Model Base prompt CD
GPT-3.5 0.85 0.96(+11%)

Claude 2.1 0.89 0.99(+10%)

Phi-3-mini-3.8B 0.48 0.82(+34%)

Mixtral-8x7B* 0.83 0.95(+12%)

Mistral-7B 0.89 0.96(+7%)

Table 1: Accuracy results on the HumanEval dataset for
each model using both a base prompt and its optimized
prompt based on CD. Corresponding results for the
GSM8K dataset are presented in Appendix B.1

.

Model Base prompt CD
GPT-3.5 0.89 0.95(+6%)

Claude 2.1 0.62 0.91(+29%)

Phi-3-mini-3.8B 0.81 0.83(+2%)

Mixtral-8x7B* 0.72 0.88(+16%)

Mistral-7B 0.41 0.67(+20%)

Table 2: Accuracy results on the Multi-Arith dataset:
Results are presented for each model using both a base
prompt and its corresponding optimized prompt based
on CD.

racy from 0.85 to 0.96. Claude 2.1 nearly achieved
a perfect score, improving from 0.89 to 0.99, an
increase of 10%, indicating that CD is effective
in optimizing prompts even for models that ini-
tially perform well. The most notable performance
gain was observed with the smallest model, Phi-3-
mini-3.8B, which saw a substantial improvement
of 32%, from 0.48 to 0.82. Across all models eval-
uated, there was a significant performance increase
compared to the base prompt evaluation, with an
average performance increase of 13%.

In Table 2 we summarize the results on the Multi-
Arith dataset. We observe a 6% performance gain
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Model
Method GPT-3.5 Claude-2.1 Phi-3-mini-3.8B Mixtral-8x7B* Mistral-7B

APE 0.93 0.96 0.83 0.73 0.71
CoT 0.45 0.82 0.91 0.88 0.87
CD 0.96 0.99 0.82 0.95 0.96

Table 3: Accuracy comparison on the HumanEval dataset between APE, CoT, and CD. Comparison with alternative
methods based on specifically-built method implementations.

Model
Method GPT-3.5 Claude-2.1 Phi-3-mini-3.8B Mixtral-8x7B* Mistral-7B

APE 0.63 0.43 0.78 0.84 0.65
CoT 0.71 0.48 0.83 0.85 0.72

Iterative APE 0.69 0.39 0.79 0.83 0.69
APO 0.79 0.53 0.77 0.86 0.68
PE2 0.78 0.49 0.83 0.86 0.67
CD 0.95 0.91 0.83 0.88 0.67

Table 4: Accuracy comparison on the Multi-Arith dataset of different models and methods. Comparison with
alternative methods based on optimized prompts as reported in (Ye et al., 2023).

for the GPT-3.5 Turbo model, a significantly larger
gain for the Claude 2.1 model with a 29% increase
in accuracy from 0.62 to 0.91, and a similarly large
20% accuracy gain for the Mistral-7B model. On
average, weak models observed a performance lift
of 15% on the Multi-Arith mathematical reasoning
task.

The results in Table 1 and 2 provide evidence
that Concept Distillation enhances the capabilities
of weaker and smaller models, helping them over-
come mistakes, and boosting their performance on
complex, structured tasks like code generation and
mathematical reasoning.

Table 3 presents a comparative analysis of accu-
racy on the HumanEval dataset among three differ-
ent methods: APE, CoT, and our work (CD). The
results demonstrate that CD consistently outper-
forms both APE and CoT across multiple models.
For instance, GPT-3.5 shows an increase in accu-
racy from 0.93 with APE, 0.45 with CoT, but it
observes the greatest lift to 0.96 with CD. Simi-
larly, Claude-2 achieves near-perfect accuracy with
CD at 0.99, compared to 0.96 with APE and 0.82
with CoT.

The results also highlight significant improve-
ments for Mixtral-8x7B* and Mistral-7B, where
CD boosts their accuracies to 0.95 and 0.96, re-
spectively, compared to lower accuracies with APE
(0.73 and 0.71) and CoT (0.88 and 0.87). Notably,
Phi-3-mini-3.8B’s accuracy slightly decreases with
CD compared to CoT due to its initial weaknesses

during training, which resulted in a lower baseline
accuracy of 38% on the training set. As a result, the
extensive concept distillation required to address
these weaknesses introduced slight confusion in
some edge cases. Despite this, Phi-3-mini-3.8B
still maintains competitive performance.

Table 4 provides a comprehensive comparison
of different models and methods, including APE,
CoT, Iterative APE, APO, PE2, and CD, across the
various models on the Multi-Arith dataset. The re-
sults demonstrate that CD consistently outperforms
other methods across most models. Particularly,
GPT-3.5 achieves the highest accuracy with CD at
0.95, compared to 0.63 with APE and 0.71 with
CoT. Similarly, Claude-2 shows a substantial im-
provement with CD, reaching an accuracy of 0.91,
while other methods like APE and CoT achieve
lower accuracies of 0.43 and 0.48, respectively.

Mixtral-8x7B* also benefits significantly from
CD, achieving an accuracy of 0.88, compared
to 0.84 with APE and 0.85 with CoT. However,
Mistral-7B’s performance slightly decreases with
CD, achieving an accuracy of 0.67, compared to
0.72 with CoT. Similar to Phi-3-mini-3.8B in the
previous section, we observed that the introduced
concepts led to confusion for the Mistral-7B model
on certain edge cases. Overall, Table 4 highlights
the effectiveness of the CD framework, demonstrat-
ing its superior performance in enhancing model
accuracy compared to other prompt optimization
methods.
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We also evaluated the transferability of op-
timized prompts from GPT-3.5 Turbo to other
models like Claude 2.1, Phi-3-mini-3.8B, Mixtral-
8x7B*, and Mistral-7B. Results show significant
performance gains, with smaller models like Phi-
3-mini-3.8B improving by 34% and Claude 2.1
achieving 100% accuracy. Detailed results and
further analysis are provided in the Appendix B.2.
These findings highlight the generalizability of the
distilled concepts across models.

Finally, in Appendix B.3, we provide a qualita-
tive analysis of the prompt changes generated for
the HumanEval benchmark. This analysis demon-
strates how CD extracts generalizable concepts to
improve reasoning and adaptability in weak mod-
els, achieving substantial performance gains while
addressing the limitations of rigid few-shot demon-
strations.

7 Conclusion

In conclusion, our study demonstrates the robust-
ness of Concept Distillation in significantly enhanc-
ing the performance of weaker language models
across various tasks, as evidenced by substantial
accuracy improvements on the HumanEval, Multi-
Arith, and GSM8K datasets. By distilling and
transferring essential concepts from stronger mod-
els, CD not only boosts the capabilities of smaller
models but also ensures the transferability of these
improvements across different models. Our exten-
sive experiments show that CD consistently outper-
forms various state-of-the-art prompt optimization
methods. This robust framework, therefore, ad-
dresses critical challenges in prompt engineering,
offering a scalable and resource-efficient solution
that advances the state-of-the-art in prompt opti-
mization for language models.
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A Notations and Prompt Templates

A detailed explanation of the notations used in Al-
gorithm 1 is presented in Table 5. The prompt
templates are organized by the three phases of the
algorithm: Initialization, Induction, and Deduc-
tion/Verification, and are presented next.

A.1 Initialization Prompt
The initialization prompt (p0) depends on the spe-
cific task. It can either be a baseline starting prompt
or an existing production prompt for the weak
model (Mw). The baseline prompt could be manu-
ally crafted or automatically generated to evaluate
the weak model. An example of an initial prompt
for a code generation task on HumanEval bench-
mark is shown in B.3.

A.2 Induction Prompts
The induction phase consists of two steps: (i) gen-
erating the reasons for failures and (ii) generating
concepts. In both steps, the strong model (Ms) is
used to identify the issues in the weak model’s re-
sponses and then induce the concepts for improve-
ments. These prompts take inputs such as the origi-
nal task (xi), the initial instruction prompt (p0), the
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Notation Meaning Description
Ms Strong Model The larger or more capable model (e.g. GPT-4o) used for

generating and reasoning over concepts based on presented
facts.

Mw Weak Model The smaller or less capable model (e.g. Mistral-7B) whose
performance on a given task is being optimized through
concept distillation.

D Training Dataset The dataset containing pairs of inputs (xi) and expected
outputs (yi) used for assessing and optimizing the weak
model performance on a given task.

p0 Initial Prompt The base prompt template used as a starting point for the
Weak Model before optimization.

p Updated Prompt The prompt updated with distilled concepts during the opti-
mization process.

xi Input Example A single example from the training dataset used as input for
the weak (Mw) and strong model (Ms).

yi Expected Output The correct output corresponding to an input example, xi.
yw Weak Model’s out-

put
The output generated by the weak model for a given output
example using the current prompt p in a given iteration of
the CD process.

C Set of Distilled
Concepts

A collection of rules or concepts derived from the Strong
Model that aim to address the Weak Model’s deficiencies.

R Induced Concepts Key concepts, rules, or examples generated by the Strong
Model (Ms) during the induction phase to improve the Weak
Model’s performance.

ValidateConcept Concept Valida-
tion Function

A process that verifies the relevance and generalizability of
the induced concepts R based on validation set performance

InduceConcept Concept Induction
Function

The function that leverages the strong model (Ms) to gen-
erate high-level, generalizable concepts from the failure
reasons identified during the weak model’s (Mw) evalua-
tion

UpdatePrompt Prompt Update
Function

A function that incorporates distilled concepts C into the
weak model’s initial prompt (p0) to create the updated
prompt (p) which is then used for further evaluation

Table 5: CD Algorithm notations with their meanings and descriptions

generated response (yw) by the weak model, and
the ground truth (yi) to guide the process. The gen-
erated list of reasons for the weak model’s failure
from step 1 is also added to step 2’s prompt to aid
in the generation of key concepts.

A.3 Deduction/Verification Prompts

The deduction/verification phase refines the in-
duced concepts (R) in order to minimize overfit-
ting. This phase uses the strong model (Ms) to ana-
lyze, and validate the induced concepts for the task
before they are introduced into the weak model’s
(Mw) prompt p.

After refining and validating the induced con-

cepts, an optional verification step is conducted. In
this step, similar examples (task) to the negative
sample are selected either from the validation set
or from synthetically generated examples using the
strong model (Ms). The refined concepts are then
introduced into the weak model’s (Mw) prompt
and tested against these similar examples. This
step assesses whether the weak model can not only
address the original mistake but also generalize
to similar cases by achieving a predefined perfor-
mance threshold. Only if this threshold is met are
the refined concepts accepted as part of the final set
of distilled concepts (C). The recommended thresh-
old for this method is 80%, ensuring that the weak
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model achieves consistent performance improve-
ments across both the original mistake (negative
sample) and similar examples.

Prompt for Induction Phase: Step 1 - Gener-
ate Reasons→Ms

<system>
You are a skilled evaluator that can analyze
instruction prompts and generated responses to
identify issues. For context, you will be given a
task, an instruction prompt used to complete
that task, a response to the task, and the ground
truth expected response. Your task is to identify
reasons why the response failed to meet the
ground truth.

<user>
The original task is: {original_task}
The instruction prompt used was:
{instruction_prompt}
The response generated based on the prompt is:
{generated_response}
An example of a correct ground truth is:
{ground_truth}
The evaluation result was:
{evaluation_result}

Based on the evaluation result and the provided
example ground truth, can you identify a list of
{n} reasons why the generated response failed?

Prompt for Induction Phase: Step 2 - Gener-
ate Concepts→Ms

<system>
You are a helpful assistant that can analyze
instruction prompts and identify high-level,
generalizable concepts that can be added to the
prompt to ensure the task is completed
successfully. A concept is a general instruction
derived or inferred from specific instances or
occurrences. Concepts should be general
enough to be applicable to a wide range of
tasks.

<user>
- The original instruction prompt was:
{original_prompt}
- The response was: {generated_response}
- The ground truth expected response was:
{ground_truth}
- Reasons for the failure include:

{failure_reasons_step_1}

Can you identify a list of {n} concepts that can
be added to the prompt to ensure the task as
well as related ones passes?

Deduction Phase: Refine and Filter Concepts
→Ms

<system>
You are an intelligent assistant that processes a
list of high-level, generalizable concepts for a
given task. Your task is twofold:
1. Analyze the list of concepts and remove
semantically similar duplicates, ensuring that
each remaining concept is unique and distinct.
2. Verify that each concept is general enough to
be valid for improving the given task. A valid
concept should:

• Be generalizable to similar examples
within the task.

• Directly address weaknesses or improve
performance for the task.

A concept is defined as a general instruction
derived or inferred from specific instances or
occurrences of a task. Your goal is to preserve
the clearest, most concise, and generalizable
version of each valid concept.

<user>
Here is the list of concepts generated for the
task: {concepts}
The original task is: {original_task}

Please return a list of unique, valid concepts.
Your output should only include the refined
concepts without any additional explanations or
preambles.

During the verification process, if a newly intro-
duced concept does not contribute to a measurable
performance improvement, it is more likely to be
discarded. This ensures that only useful concepts
are retained, effectively filtering out detrimental
refinements. Redundant concepts, on the other
hand, are handled explicitly through instructions
provided in the deduction phase prompt, which en-
sure that semantically similar concepts are merged
or eliminated while preserving generalizability. By
combining empirical validation with structured fil-
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tering mechanisms, the framework optimally re-
fines distilled concepts without compromising use-
ful knowledge.

Updated Prompt Template for Verification
→Mw

<system>
You are a helpful assistant that performs
{task}. Follow the given instructions to
complete the task successfully.

<user>
Key concepts to follow: {key_concepts}
Instructions: {initial_prompt}

B Additional Results

In this section, we provide further quantitative and
qualitative results complementing our experiments.

B.1 GSM8K Dataset

Table 6 presents the accuracy comparison on the
GSM8K dataset between CD and APE. The results
demonstrate that CD consistently outperforms APE
across multiple models. For instance, the GPT-3.5
model shows a significant improvement in accuracy
from 0.67 with APE to 0.76 with CD. Similarly,
GPT-4’s accuracy increases from 0.84 with APE to
0.90 with CD, highlighting the effectiveness of CD
in enhancing model performance on mathematical
reasoning tasks.

Despite these improvements, the Claude 2.1
model experienced a slight decrease in perfor-
mance, dropping from 0.86 with APE to 0.84 with
CD. This suggests that while CD is generally ef-
fective, it may introduce prompt overload that can
sometimes negatively impact certain models, partic-
ularly in scenarios involving highly comprehensive
datasets like GSM8K. Future work will explore
methods to encourage the consolidation of distilled
concepts or the development of a hierarchical struc-
ture of concepts to enhance their effectiveness.

Model APE CD
GPT-3.5 0.67 0.76

Claude 2.1 0.86 0.84
GPT-4 0.84 0.90

Table 6: Accuracy comparison on the GSM8K dataset
between CD and APE

B.2 Transferability of Distilled Concepts

We tested how well the optimized prompts, origi-
nally designed for GPT-3.5 Turbo, work on other
models like Claude 2.1, Phi-3-mini-3.8B, Mixtral-
8x7B*, Mistral-7B, and GPT-4. This helped us see
if the distilled concepts are effective across differ-
ent language models.

Table 7 provides compelling evidence for our hy-
pothesis that distilled concepts from CD are trans-
ferable and generalizable across different models.
In this experiment, GPT-3.5 Turbo served as the
base model for distilling concepts using a strong
model (GPT-4o), and the optimized prompts were
then transferred to other models for evaluation.
We observe significant performance improvements
across all models. Notably, Claude 2.1 achieved a
perfect score of 100%, demonstrating an 11% im-
provement. The smallest model, Phi-3-mini-3.8B,
exhibited the most remarkable improvement, with a
performance boost of 34%, increasing its accuracy
from 0.45 to 0.79. This result further validates the
observation that smaller models gain substantial
benefits from the CD process. Overall, the results
show an average performance increase, confirming
that the distilled concepts are not only effective for
the base model but also enhance the performance
of other models significantly.

Model Base prompt CD
GPT-3.5 0.85 0.96(+11%)

Claude 2.1 0.89 1.00(+11%)

Phi-3-mini-3.8B 0.45 0.79(+34%)

Mixtral-8x7B* 0.83 0.87(+5%)

Mistral-7B 0.89 0.96(+7%)

GPT-4 0.90 0.94(+4%)

Table 7: Accuracy results on the HumanEval dataset:
The results demonstrate the effectiveness of transferring
an optimized prompt (with distilled concepts) based on
the GPT-3.5-Turbo model to other models

Table 8 provides a comparative analysis of the
accuracy improvements achieved through distilled
concepts transfer from GPT-3.5 Turbo prompt opti-
mized using CD to both smaller and larger models,
compared to APE on the HumanEval dataset. The
CD method significantly outperforms APE, with
notable improvements in models such as Mistral-
7B, which saw a substantial increase of 25% (from
0.71 to 0.96). Mixtral-8x7B* also benefited greatly,
with a 14% boost in accuracy (from 0.73 to 0.87).
These results show the superior performance of the
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CD approach in enhancing model performance by
distilling and transferring essential concepts from
stronger to weaker models.

B.3 Qualitative analysis for the HumanEval
Benchmark

Below, we present the simple prompt initially used
for completing the HumanEval task, followed by
the optimized prompt enriched with distilled con-
cepts for GPT-3.5-Turbo from the HumanEval
benchmark. The optimized prompt includes spe-
cific examples of distilled concepts that highlight
CD’s ability to generalize and improve model per-
formance.

As shown in the optimized prompt for the case
of HumanEval benchmark above, these distilled
concepts are insightful yet concise concepts that ad-
dress several non-trivial dimensions of the problem
at hand. The distilled concepts ensure that explicit
constraints, such as ensuring type compatibility in
arithmetic operations, are enforced to minimize
errors. Furthermore, our additional experiments
(refer to Appendix B.2) demonstrate the transfer-
ability of distilled concepts from GPT-3.5 Turbo to
other models such as Claude 2.1, Phi-3-mini-3.8B,
Mixtral-8x7B, and Mistral-7B. Results show that
Phi-3-mini-3.8B improved by 34%, while Claude

2.1 achieved 100% accuracy on key benchmarks.
These findings indicate that the distilled concepts
enable weaker models to perform well on complex
reasoning tasks, thus validating that CD introduces
meaningful reasoning improvements beyond sim-
ple formatting error corrections.

C Natural Language to Cypher
Translation: Case Study

In this section, we present an industry case study
covering a task aiming to translate natural lan-
guage queries to a graph database query language
(Cypher).

C.1 Walk-through of the method

To illustrate our proposed method, we employ a hy-
pothetical example, guiding you through the three
phases of the concept distillation process shown in
Fig. 2.

The example involves a chatbot designed to
translate natural language into Cypher query com-
mands. Cypher is a declarative graph query lan-
guage used for querying and managing data in
graph databases, such as Neo4j. It enables users to
efficiently and intuitively query, update, and man-
age graph data by expressing patterns in the graph
structure through a readable syntax. This chatbot
utilizes an LLM, specifically GPT-3.5, to interpret
a user’s natural language query and generate a cor-
responding Cypher query based on a predefined
graph schema. This example will demonstrate how
our technique optimizes the prompt of the assumed
weak model in question (GPT-3.5). Figure 4 de-
picts the hypothetical natural language to Cypher
query translator utilized for the purpose of explain-
ing the method.

Figure 4: A hypothetical natural language to cypher
query translator
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Method GPT-3.5 Claude 2.1 Phi-3-mini-3.8B Mixtral-8x7B* Mistral-7B GPT-4
APE 0.93 0.96 0.83(+4%) 0.73 0.71 0.91
CD 0.96(+3%) 1.00(+4%) 0.79 0.87(+14%) 0.96(+25%) 0.94(+3%)

Table 8: Accuracy comparison on the HumanEval dataset between CD (evaluated by transferring the optimized
prompt with distilled concepts from the GPT-3.5-Turbo model to other models) and APE.

C.1.1 Initialization

In this initial phase, we set up essential compo-
nents for our technique. This includes defining
the task (natural language to Cypher query trans-
lation in this case), preparing a ’golden dataset’
which contains pairs of natural language queries
and their corresponding Cypher queries (serving
as the task’s ground truth), and creating a prompt
template with basic information and instructions
for the task. This template might include a few
examples, and specify the input-output format. The
golden dataset represents the training dataset for
the method. Depending on the size of the train-
ing dataset set, we cluster it into various entities
and then use stratified sampling technique to split
the dataset into train and validation sets The initial
task-specific prompt used for this phase could be
generated by an off-the-shelf algorithm, manually
crafted, or an already existing prompt being used
by a different LM.

We then evaluate the weak model, in this case,
GPT-3.5, using this golden dataset of NL-Cypher
pairs, as illustrated in Fig. 5. We start by selecting
a pair of natural language and Cypher queries from
the dataset and feeding them to the weak model
using the prompt template. We then observe the
output of the weak model and compare it to the
ground truth. If the output is correct, we move
on to the next pair. If the output is wrong, we
record the error and proceed to the next step. In our
hypothetical example, the first data point is deemed
a strength of GPT-3.5 as it correctly generates the
expected Cypher query. However, the second data
point reveals a weakness, with the model failing to
generate the correct Cypher query in response to
the natural language query “who are the devs I am
meeting in 1:1s.”

C.1.2 Induction

In this phase, we use the strong model to induce key
concepts and rules from the given task and dataset,
by prompting it to reason through the facts. Here,
we start constructing the prompt for the strong
model by going through the following steps:

• First, we define the persona of the strong
model, for example, “you are an expert in gen-
erating and reasoning over natural language
to Cypher queries translation. . . ”

• Next, we present to the strong model the ac-
curate NL-Cypher pair - specifically, the one
that the weak model failed to predict correctly.
Along with this, we include in the strong
model’s prompt the incorrect Cypher query
generated by the weak model, as well as the
original prompt template that was used for the
weak model.

• Following this, we request the strong model
to analyze and identify the reasons behind
the weak model’s incorrect response. This
analysis is based on all the information and
facts that have been included in the prompt.

• The strong model then reasons through the
facts presented and tries to provide a sense of
meaning into why the weak model is strug-
gling with the input query, which we are con-
sidering in this case as “who are the devs I
am meeting in 1:1s.” Here, we ask the strong
model to explain why the response of the weak
model is wrong, and what are the missing
or incorrect concepts or rules that the weak
model should have used.

• We then follow up with another turn of discus-
sion, in this case, we prompt the strong model
to induce some concepts (concepts here could
be rules, examples, etc. depending on the ap-
plication) to guide the weak model in explicit
reasoning, in such a way that it is able to an-
swer all similar questions correctly.

• The strong model finally induces these con-
cepts based on the presented facts and its rea-
soning over the cause of the weak model’s
inability to generate the correct response.

Figure 6 illustrates the induction phase of the
concept distillation method. As noted earlier in
the preceding sections, not all induced concepts
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Figure 5: Initialization phase of concept distillation

are general enough to be considered as distilled
concepts and so we got through the final step of
this approach, which is deduction from verification,
to verify these concepts to either accept or reject
them.

C.1.3 Deduction from Verification

The final phase, Deduction from Verification, em-
ploys deductive reasoning to validate the concepts
induced in the previous phase. This involves using
the strong model to generate test cases that are sim-
ilar to the incorrectly predicted input in questions
(as “who are the devs I am meeting in 1:1s.”). The
generated test cases mimic the initial failure but
with varied contexts or phrasings. Alternatively,
a sample from the same entity in the validation
dataset that closely resembles this test case could be
used for this process. Similar examples generated
in this scenario could be “Who are the co-workers
I have meetings with this week?”, and “What are
the project updates scheduled for today?” We then
observe the output of the strong model, and select
a subset of the generated examples that are valid
and relevant for the task.

Following this, we incorporate the concepts
derived from the induction phase into the weak
model’s (GPT-3.5) original prompt template, cre-
ating what we’ll refer to as the ’test prompt.’ Us-
ing this test prompt, we then re-evaluate the weak
model on both the original incorrectly predicted
input and all the newly generated similar examples.
The aim is to verify whether the model’s responses,
now informed by the revised test prompt, correctly

align with the expected answers. If the weak model
is now able to deduce correct responses for all test
examples with a level of certainty or probability
that meets or exceeds a specific predefined thresh-
old, the we have our theories defined and as a result,
we can go ahead and accept the induced concepts
as distilled concepts; otherwise, the induced con-
cepts are rejected and we go back to the induction
phase, and generate more concepts and rules from
the strong model, until the weak model passes all
the test cases. Figure 7

We repeat this process for different pairs of
queries that the weak model struggles with until
we have a sufficient number of distilled concepts
for the task, that can significantly boost the per-
formance of the weak model for the task-specific
domain. In practice, an intriguing observation we
have made is that distilling concepts for one spe-
cific negative sample in the golden dataset often
corrected not only that particular sample but also
other negative samples where the weaker model
had previously failed.

This iterative process of distilling concepts from
a strong model to a weak model forms the corner-
stone of our methodology. It enables a precise,
targeted enhancement of the weak model’s capabil-
ities, addressing specific deficiencies with tailored
improvements. Through this approach, we not only
rectify isolated errors but also fortify the model’s
overall performance for the given task.
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Figure 6: Induction phase of concept distillation

Figure 7: Deduction from Verification phase of concept distillation

C.2 Quantitative Analysis

In this study, we also employed the concept distil-
lation approach on a dataset designed for Natural
Language to Cypher (NL2Cypher) query transla-
tion, aiming to leverage the generative capabili-
ties of LLMs for producing syntactically correct
Cypher codes from natural language queries. The
dataset encompassed various subsets, including
queries pertaining to calendars (e.g., "when is my
next meeting with person"), files, and people, struc-
tured according to a specific schema.

Our observations highlighted that the GPT-4
model demonstrated superior performance across
all dataset subsets during validation, with its low-
est accuracy—approximately 80%—occurring in

NL2Cypher query translations concerning people.
Conversely, the GPT-3.5 Turbo model, utilizing
identical prompts to GPT-4, exhibited markedly
lower performance across these subsets. Notably,
it failed entirely to translate queries related to files
and people within an organization, resulting in
zero accuracy for these categories. Figure 8 shows
the accuracy comparison between GPT-3.5-Turbo
(with baseline prompt), GPT-3.5 Turbo model (with
optimized prompt) and GPT-4 model (with baseline
prompt).

Subsequent to the application of concept distilla-
tion from GPT-4 into the prompt optimization pro-
cess for GPT-3.5 Turbo—the performance of the
latter model saw substantial improvements across
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Figure 8: Accuracy (pass rate) comparison between
GPT-3.5 Turbo model (with and without CD) and GPT-
4

all validation datasets. In particular, for queries
related to the calendar category, the GPT-3.5 Turbo
model not only improved but also exceeded GPT-
4’s performance, achieving an accuracy rate of
95.65%. Moreover, in scenarios involving people-
related queries, where the GPT-3.5 Turbo model
initially failed to translate correctly any query, the
incorporation of distilled concepts significantly en-
hanced its accuracy to approximately 76%. For
the GPT-3.5 Turbo model, the optimization of the
prompt involved exclusively the incorporation of
distilled concepts, resulting in what is termed the
"optimized prompt." This approach demonstrates
how the process of concept distillation can effec-
tively guide a weaker model to regress towards the
expected output during ICL.

C.3 Qualitative Analysis

In this section, we present a qualitative analysis of
CD’s behavior in comparison to conventional few-
shot demonstrations for the NL2Cypher case study.
By examining the limitations of few-shot demon-
strations and comparing them to CD’s approach,
we illustrate how CD enhances generalization and
improves reasoning.

In this work, we initially started with a baseline
prompt which did contain few-shot demonstrations,
an example of which is shown below, with about
125 tokens:

The specificity of these few-shot demonstrations
in the prompt led to poor performance across sev-
eral benchmarks due to its lack of generalization to
different entities. The weaker model (in this case,
GPT-3.5 Turbo model) tended to overfit to such spe-
cific scenarios, limiting its reasoning ability when
handling other queries with different entity men-
tions.

In contrast, by applying CD, we distilled general,
high-level concepts that helped the weaker model
understand how to utilize demonstrations in a more
flexible and general way. For example, one distilled
concept for this case study took the forms of an
improved example:

In this case, the distilled concept abstracts away
the specifics of the demonstration by introducing
a placeholder, [Person Name] which can dynam-
ically accommodate any person’s name. The cor-
responding Cypher query also uses similar place-
holder logic, enabling it to match to any name. This
makes the distilled concept generalizable, enabling
the weaker model to apply the same reasoning to
a wide variety of queries involving different en-
tity mentions without overfitting to specific exam-
ples or requiring additional examples for each case.
Other concepts took the form of rules at different
form of generality, as can be seen for the three
examples below:

Also, the above four concepts had a smaller to-
ken footprint: 96, 19, 32, and 74 tokens respec-
tively. By employing CD in this case study, we
observed significant performance improvements
across all benchmarks, including increase in pass
rate from 0% with few shot demonstrations to 100%
with distilled concepts as shown in Fig. 8. This
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shows how CD enhances the weaker model’s rea-
soning ability by providing it with general, reusable
rules instead of rigid demonstrations.

This practical case demonstrates how CD of-
fers a more efficient and scalable solution that
complements adding specific demonstrations, both
in terms of token cost and performance improve-
ments.
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