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Abstract

Application of LLMs for complex causal ques-
tion answering can be stymied by their opacity
and propensity for hallucination. Although re-
cent approaches such as Retrieval Augmented
Generation and Chain of Thought prompting
have improved reliability, we argue current ap-
proaches are insufficient and further fail to sat-
isfy key criteria humans use to select and eval-
uate causal explanations. Inspired by findings
from the social sciences, we present an imple-
mented causal QA approach that combines iter-
ative RAG with guidance from a formal model
of causation. Our causal model is backed by
the Cogent reasoning engine, allowing users
to interactively perform counterfactual analysis
and refine their answer. Our approach has been
integrated into a deployed Collaborative Re-
search Assistant (Cora) and we present a pilot
evaluation in the life sciences domain.

1 Introduction

As Large Language Models (LLMs) demonstrate
impressive performance on a wide variety of chal-
lenging tasks, there is intense interest in apply-
ing them to causal question-answering in complex
domains such as life sciences. Examples of real
queries asked in drug discovery research include:

• “How does epigenetic dysregulation of neu-
rotrophins impact AD risk?”

• “What are the molecular pathways involved in
the tumor environment of breast cancer?”

Questions like these, which we refer to as complex
causal questions, are defined by several challeng-
ing characteristics. First, good answers are causal
and predictive, requiring the resolution of causal
factors to predict an unseen outcome. This reso-
lution often requires multi-step inference as well
as integrating information from multiple sources.
Additionally, multiple correct answers arise from
differing but consistent sets of assumptions.

Applying LLMs to problems with these char-
acteristics can be stymied by the opacity of their
decision making process and propensity for hallu-
cination (Marcus, 2020). As such, there has been
substantial effort to develop techniques that reduce
hallucinations and equip LLMs with observable
inferential steps such as Retrieval Augmented Gen-
eration (RAG) and Chain of Thought prompting
(CoT) (Lewis et al., 2020; Wei et al., 2023). How-
ever, causal question answering remains particu-
larly challenging (Bondarenko et al., 2022). We
believe one reason is that prior research often ne-
glects the processes by which humans select and
evaluate causal explanations.

In this paper, we summarize criteria identified
from a lengthy history of research in the social
sciences as well as the shortcomings of existing
LLM approaches (Miller, 2019). We then present
a novel neuro-symbolic approach that addresses
these shortcomings by using an executable causal
model to guide iterative RAG. The resulting causal
graph is backed by the Cogent Reasoning Engine,
enabling interactive exploration of counterfactual
scenarios. Our approach has been deployed for
pilot users as a part of an existing life sciences
research tool, Cora (Arsanjani and Brown, 2023).
We evaluate performance on real queries from these
pilot users.

2 Background

What makes an answer good or not depends on the
task and context of its question. We begin by briefly
summarizing findings from the social sciences that
shed light on this topic for causal explanations and
discuss where current LLM approaches fall short.

2.1 What Makes a Good Explanation?

Answers to complex causal questions have some
obvious requirements: they must be coherent, rel-
evant, and non-circular (Keil, 2006). Adding to
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these, we summarize the findings by Miller (2019)
who suggest key criteria that guide selection and
evaluation of explanatory answers.

First, explanations are generated and evaluated
selectively, based on a causal lens reflecting pre-
existing biases and conceptual models (Miller,
2019). While there are potentially infinite framings
for a given question, in general, Miller (2019) argue
that good answers appeal to causal factors rather
than probabilistic associations (see also Lombrozo
(2006)). Bechtel and Abrahamsen (2005) highlight
the central role of the notion of causal mechanism
in scientific explanations in particular. Further-
more, they argue explanations are contrastive in
that they are interpreted relative to an explicit or
implicit foil (Miller, 2019).

Finally, explanations are transactional as they
involve an attempt to communicate an understand-
ing (Keil, 2006). Their causal framing is dependent
on the expectations of the listener. Aligning on a
conceptual lens is often interactive, making expla-
nation generation a social process (Miller, 2019).

2.2 LLMs for Complex Causal QA

Retrieval Augmented Generation (RAG) decom-
poses LLM inference into a retrieval step over ex-
ternal resources (e.g. Wikipedia) and a generation
step which produces output based on them (Lewis
et al., 2020). RAG allows LLM applications to
use information not stored within their parameters,
resulting in answers more likely to be relevant and
grounded in real world documents.

Zhu et al. (2021) review showed that such “re-
trieve and read” RAG approaches have demon-
strated impressive performance in one-hop QA
tasks. However, they still struggle in complex
QA where coherent non-circular answers require
threading inferences across documents. Going
beyond iterative RAG (Qi et al., 2021), Trivedi
et al. (2023) interleave RAG with chain of thought
prompting (Wei et al., 2023) to answer multi-hop
questions, which both improves performance and
results in a trace of the inferential justification.

However, performance remains far from perfect
and these approaches miss many of the key criteria
for human explanations described above. While
chat systems can answer successive questions, the
lack of a consistent causal lens increases the risk
of hallucination over multiple turns and leads to
answers that lack the inter-connectivity and focus
of human causal explanations.

3 Approach

These shortcomings influenced our approach to
creating a causal QA system. It must answer the
question by providing an explanation structured by
a coherent causal lens, adjust to user expectations
via interactive feedback, and allow contrastive ex-
ploration. For life sciences research, it must also
justify its answer with relevant citations.

These criteria merge aspects best expressed sym-
bolically (e.g structured inference) with others best
handled by generative methods (e.g. Natural Lan-
guage Generation and Information Extraction). For
this reason, we designed a neuro-symbolic architec-
ture in which a verbal explanation is generated from
an interactive solution graph, as shown in Figure
1, whose semantics are grounded in a cognitively
inspired causal formalism.

The graph allows the user to add, remove, and
edit each node and edge. Each concept and relation
in the graph is backed by a formal model defined
in the Cogent reasoning engine (Chu-Carroll et al.,
2024). Thus, as the user manipulates the graph, the
effect on the target concepts is recomputed in real
time, producing a final labeling which we use to
update an evidenced natural language answer.

We begin by describing the solution graph and
its underlying formal model. We then describe how
that model acts as a scaffold for iterative RAG to
construct the solution graph and NL answer.

3.1 Solution Graph

As discussed above, human explanations are se-
lected and evaluated through restrictive causal
lenses. To that end, we ground our search process
and interface in a general causal model based on
Qualitative Process Theory (QPT) (Forbus, 1984,
2019). In the following sections, we describe how
QPT informs our solution graph and how it enables
interactive reasoning. An instantiated example so-
lution graph connecting smoking to lung carcino-
genesis is shown in Figure 1.

3.1.1 Qualitative Process Theory
QPT is a formalism intended to capture how hu-
mans reason about continuous causal dynamics
without precise numerical values. Under QPT,
quantities are causally influenced by processes,
and the effects of that influence propagate between
quantities (Forbus, 1984, 2019). Approaches based
on QPT have been used to annotate causal models
in natural language (Friedman et al., 2022).
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Figure 1: Example solution graph connecting smoking and lung cancer. Quantity nodes are blue if they have positive
polarity and red otherwise. State nodes are grey, with a toggle indicating whether the are active or not. Users
can view evidence for each edge, manually add or remove nodes and edges, and perform contrastive analysis by
manipulating node polarity. On the left is evidence for the initial edge from smoking to carcinogen exposure.

Like prior work, we take inspiration from QPT’s
influence mechanism, but we expand our ap-
proach to include States and a corresponding
Triggers causal relationship. In life sciences,
Quantities encompass fluents like blood pressure,
while States represent booleans or specific fluent
values such as having diabetes or high blood pres-
sure. In our solution graph, quantities and states
are nodes. Quantities can be one of increasing, de-
creasing, or stable. States can be either active or
inactive.

In Figure 1, the initial state (smoking cigarettes)
is active. It triggers increases in downstream quan-
tities (e.g. oxidative stress). Each edge in the solu-
tion graph is either an Influences or a Triggers
relation. Influences hold between two quantities
and are either direct or inverse. For instance, in life
sciences, an increase in medication dosage might
inversely influence (decrease) symptom severity.
Triggers define causal relationships involving

states, allowing them to act as tipping points for
quantity changes. For example, the detection of for-
eign pathogens (a State) might trigger an increase
in white blood cells.

3.1.2 Interactive Graph Reasoning

The solution graph is backed by a formal model
defined in the Cogent reasoning engine (Chu-

Carroll et al., 2024). Cogent is a commercial
multi-heuristic reasoning engine built on Gebser
et al. (2012)’s clasp answer set programming solver.
Cogent executes models written in a constrained
English language with broad semantics that sup-
ports term definitions, rules, (hard/soft) constraints
and objective functions (Chu-Carroll et al., 2024).
Cogent propagates known values (e.g. increas-
ing/decreasing) through the graph and outputs a
complete labeling for quantities and states.

3.2 Iterative Graph Building

Figure 2: Examples of text annotated with proto-roles
and the resulting solution graph relation

The solution graph is built incrementally using a
forward-backward graph expansion approach based
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on A* search (Hart et al., 1968). Given a ques-
tion, we begin by extracting independent and de-
pendent variables as initial graph nodes (Analyze
step). With these nodes as initial frontiers, graph
expansion proceeds in a loop as shown in Figure 2
and explained below.

Although the approach can be used with any IR
system, in this paper we present pilot results from
integrating with an existing life sciences research
tool, Cora, which processes and indexes PubMed
documents with extracted domain concepts and
document embeddings (Kalyanpur et al., 2024).

1. Analyze Prompt an LLM to extract indepen-
dent and dependent entities from the user
query. The goal is to understand how the inde-
pendent entities (sources) control the behavior
of the dependent entities (targets). These be-
come the initial graph frontiers. This steps
also allows the system to abstain from answer-
ing questions that are do not call for causal
explanations.

2. Discover Query Cora for (a) documents rel-
evant to understanding how sources causally
affect targets and (b) documents addressing
the causal effects of the sources or (c) the pos-
sible causes behind observation of the targets.

3. Extract Prompt an LLM to generate causal
chain annotations using the retrieved docu-
ments, the QPT annotation format, and the
current state of the causal graph. We require
all chains to provide a full causal path from
source to target.

Initial attempts to generate influence and trig-
gers relationships directly, as well as casual
chains with unstructured source and target en-
tities, struggled to produce precise and dis-
tinct chains. The result was often overlapping
paths with near-synonymous nodes. One pos-
sible reason comes from the flexible nature
of agent and patient argument selection in En-
glish verbs. This flexibility lead Dowty (1991)
to deconstruct these classic semantic roles into
collections of “proto-role” properties.

Inspired by this work, we decompose our
concepts and relations into combinations of
“change” (quantities) and “value” (states) prop-
erties. The LLM is prompted to find causal
relations between entities with these modi-
fiers, which enforces a consistent framing for

interpreting agents and patients in causal state-
ments. Figure 3 contains example sentences,
proto-role annotations, and the resulting solu-
tion graph nodes and edges.

4. Interpret As shown in Figure 3, each combi-
nation of attributes and causal relation corre-
sponds to an edge between two nodes in our
causal graph. We deterministically map each
annotation to its Cogent QP concepts (quan-
tity/state) relationships (influence/triggers).

5. Verify Given the new concepts and causal rela-
tionships generated, query Cora to retrieve ev-
idence supporting each claim. Then, prompt
the LLM to further refine selected evidence
by extracting supporting passages. Relations
lacking evidence are pruned, and remaining
supported relations are advanced to the inte-
grate step.

6. Integrate Extend the graph forward from the
source frontier and backwards from the tar-
get frontier using the causal relations. At this
point, the partial graph is amenable to user
modification. Any remaining disconnected
nodes become frontiers for the subsequent it-
eration: repeat the Discover, Extract, Interpret,
Verify and Integrate steps.

3.3 Answer Generation
Cogent computes a labeling from the completed
graph which is given, along with the graph and
evidence, to an LLM for answer generation. Each
statement in the answer derives from a causal path
in the solution graph, citing evidence along that
path. Thus, the rhetorical structure reflects the
underlying causal model.

4 Evaluation: Life Sciences

We report the results of an evaluation based on a set
of 25 multi-hop causal queries sampled from pilot
life sciences researchers using Cora in production.
We compare the natural language answer generated
by our approach to those from three commercially
available services: GPT4-Turbo1 (state of the art
LLM) , Perplexity2 (Commercial RAG using web-
search), Elicit3 (Commercial RAG using Semantic
Scholar), and Our solution.4

1openai.com
2https://www.perplexity.ai/
3https://elicit.com/
4Answers generated without interactive user feedback.
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Figure 3: Decomposition of solution graph relations into proto-roles and examples of text along with proto-role
annotations and the resulting graph relation

This dataset was curated to include answers that
required multi-hop inference. In order to avoid
confounds due to surface form variations and to
facilitate the evaluation, the queries of our dataset
were uniformly reformatted using the construction
“How does X impact Y?”.

4.1 Methodology
Each system was given each query and prompted
to produce an answer with supporting/refuting ev-
idence and cited sources. Our system implemen-
tation uses GPT4 for each of the prompted LLM
calls. The approach requires no fine-tuned model,
making it highly adaptable to new domains and
opening avenues for reductions in speed and cost
via fine-tuning.

Since each question could have multiple correct
answers, our evaluation focuses on validity, verifi-
ability, and relevance rather than a comparison to
a single gold standard. To assess these character-
istics, we designed the following rubric and had
domain experts review each systems’ results.

1. Claim Density: Average number of claims
per answer. A measure of the quantity of in-
formation provided. (CLM Density)

2. Citation Density: Average number of real
citations per claim. (CT Density)

3. Source Hallucination Rate: Percentage of
citations that are not valid (real) scholarly
sources. (HL Rate)

4. Citation Rate: Percentage of claims in the
answer that are accompanied by real citations.
(CT Rate)

5. Justification Rate: Percentage of claims that
are a correct paraphrase of a real citation. A
measure of interpretation quality. Claims with
non-existent sources are unjustified. Since ver-
ification requires manual effort, we imposed a
5-minute time-limit for the domain expert to
verify each claim. (JT Rate)

6. Relevance Rate. Percentage of claims that are
justified and relevant to answering the ques-
tion. (REL Rate)

Note that the measures from 4-6 get progressively
stricter, as a justified claim must also be cited, and
a relevant claim must also be justified. We also
asked a domain expert to quantify the complexity
of the explanation generated, recording:

1. Maximum Number of Hops: Maximum
number of hops (relations) tying the source
(X) to the target (Y) in a reasoning chain.
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2. Number of Concepts: Number of concepts
presented in the answer that are directly rele-
vant to the explaining the mechanism.

4.2 Results

Our approach outperforms the comparison systems
across all evaluated categories except for citation
density, in which Elicit has a narrow advantage.

Beginning with our first 3 measures in Table
1, our solution beats competitors in Claim Den-
sity which measures the quantity of information
presented in the answer. Looking at each claim’s
citations Ours, Elicit and Perplexity all reliably
cite articles that exist (HL Rate) while GPT-4 has
a high rate of hallucination. Perplexity, however,
cites fewer articles for fewer claims, as evidenced
by low CT Density.

System CLM Density CT Density HL Rate
GPT4-Turbo 4.16 1.01 31.4%

Perplexity 4.76 0.59 0.01%
Elicit 5.00 1.36 0.01%

Our System 5.36 1.14 0.00%

Table 1: Multi-hop Query Results Measures 1-3

Evaluation measures 4-6 in Table 2 measure the
supportability and quality of claims. Our system
has the highest rate of cited, justified claims. The
Relevance Rate is a more subjective measure of
usefulness by our experts, obtained by considering
how many justified claims in an answer they also
label as relevant. Results show that our system
outperforms the next best tool by nearly 26%.

System CT Rate JT Rate REL Rate
GPT4-Turbo 64.42% 27.88% 22.12%

Perplexity 32.77% 17.65% 11.76%
Elicit 98.40% 86.40% 60.80%

Our System 98.51% 90.30% 86.57%

Table 2: Multi-hop Query Results Measures 4-6

The answer complexity analysis shown in Ta-
ble 3 adds another dimension to the results. A
pure LLM solution such as GPT-4 Turbo generates
answers with a high number of concepts and the
longest reasoning chains. However, as shown in
Table 1, most of its claims are unjustified and/or
irrelevant. Elicit has a higher rate of justification
and relevance but produces fewer concepts with
fewer hops. Our system’s answers combine high
coverage and depth with justified relevant claims.

System Max Hops Number of Concepts
GPT4-Turbo 2.5 ±2.1 5.1 ±3.1

Perplexity 1.5 ±1.2 4.0 ±3.3
Elicit 0.8 ±0.6 3.3 ±3.2

Our System 2.1 ±0.7 7.5 ±2.4

Table 3: Multi-hop Query. Answer Complexity

4.3 Example: Multi-hop answer comparison
We conclude our evaluation with an illustrative
comparison of the two best performing systems,
Ours and Elicit. The answers are generated by both
systems for the query “How does epigenetic dysreg-
ulation of neurotrophins impact AD (Alzheimer’s
Disease) risk?” shown in Table 4. At first glance,
Elicit may provide a satisfying answer. However,
analysis by a domain expert reveals:

• Concept Granularity Mismatch Whereas
the question asked about “epigenetic dysregu-
lation of neurotrophins” specifically, Elicit’s
answer opens (E1) with the overly broad phe-
nomenon of epigenetic dysregulation. The
“particularly” clause adds generic processes,
not those specific to neurotrophin dysregula-
tion. This contrasts with our system’s opening
statement (C1) which targets the right concept
and further specifies specific processes.

• Unjustified or Irrelevant Claims A domain
expert concluded that the references cited in
E2, E3, and E4 do not back the associated
claims. Conversely, all evidences cited by
our system supported their associated claim.
Elicit’s last statement (E4) about therapeutic
strategies is out of scope.

• Vagueness and Lack of Depth Most state-
ments in the Elicit answer are vague and at-
tempt to link source and target concepts di-
rectly. For example, E3 simply indicates “a
link to AD risk” without expanding further.
In contrast, our approach generates specific
claims (e.g. a “decrease synthesis of BDNF”)
which appear in complex multi-hop chains.

5 Conclusions and Future Work

In this paper we have presented a novel approach to
complex causal QA, implemented and evaluated as
part of a life sciences Collaborative Research As-
sistant (Cora). We argue existing LLM approaches
are insufficiently performant and fail to address key
criteria by which humans generate and evaluate ex-
planations. Drawing from the social sciences, we
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Query: How does epigenetic dysregulation of neurotrophins impact AD risk?
Our System’s Answer

C1 Epigenetic dysregulation of neurotrophins, particularly through increased promoter CpG methylation,
leads to a down-regulation of brain-derived neurotrophic factor (BDNF) expression, which is associated
with decreased synthesis of BDNF in neurons [1][2].

C2 This dysregulation is linked to reduced neuroprotection and has been implicated in the emergence of
various neurological and psychiatric diseases [3][4].

C3 BDNF is crucial for cognitive function, promoting neurogenesis, neuronal survival, axonal and dendritic
growth, synaptic plasticity, and maintenance in the central nervous system [5].

C4 Consequently, decreased levels of BDNF result in the reduction of synaptic proteins, leading to synaptic
connection loss, impaired neuronal survival, and adaptability, which are critical factors in neurodegenera-
tion [6].

C5 This pathway of dysregulation contributes significantly to Alzheimer’s disease (AD) neuropathology,
particularly through the increase of hippocampal neurofibrillary tangles (NFTs) and plaques (NPs),
which are strongly correlated with cognitive decline and are hallmark features of AD [7][8].

C6 Thus, epigenetic dysregulation of neurotrophins, by decreasing BDNF expression and signaling, directly
impacts AD risk by promoting mechanisms that lead to neuronal and synaptic degeneration.
Elicit’s Answer

E1 Epigenetic dysregulation, particularly in the form of DNA hypermethylation and histone deacetylation,
has been implicated in the pathophysiology of Alzheimer’s disease (AD) (Chouliaras 2010, Sanchez-Mut
2015, Millan 2014).

E2 This dysregulation can lead to a repressed chromatin state and reduced plasticity, potentially contributing
to the onset and progression of AD (Sanchez-Mut 2015).

E3 The dysregulation of neurotrophins, a family of proteins that support the survival and growth of neurons,
is a key aspect of this epigenetic dysregulation (Zusso 2018). In particular, the dysregulation of brain-
derived neurotrophic factor (BDNF) has been linked to AD risk (Nativio 2018).

E4 This suggests that targeting the epigenetic dysregulation of neurotrophins, including BDNF, could be a
potential therapeutic strategy for AD (Lardenoije 2015, Qureshi 2011, Daniilidou 2011).

Table 4: Comparison of Elicit’s and Our system’s answers to the query “How does epigenetic dysregulation of
neurotrophins impact AD risk?”

designed our approach around an executable causal
model which guides iterative RAG and grounds an
interactive solution graph. Using real queries from
pilot life sciences users, we demonstrate that our
approach provides broader, deeper, and better evi-
denced answers than existing commercial systems.

In future work, we plan to expand causal frame-
works to include alternatives to QPT. Ross (2021),
for example, argue that life science research also
uses a “pathway” model of causation that differs
from a mechanistic view. We would like to allow
users to design and align their own causal formal-
ism to the solution graph. We also plan to extend
our approach to include refuting evidence to coun-
teract confirmation bias and identify competing
causal theories.
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