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Abstract
Workflows play a crucial role in enhancing en-
terprise efficiency by orchestrating complex
processes with multiple tools or components.
However, hand-crafted workflow construction
requires expert knowledge, presenting signifi-
cant technical barriers. Recent advancements
in Large Language Models (LLMs) have im-
proved the generation of workflows from natu-
ral language instructions (aka NL2Workflow),
yet existing single LLM agent-based meth-
ods face performance degradation on complex
tasks due to the need for specialized knowl-
edge and the strain of task-switching. To
tackle these challenges, we propose Work-
Team, a multi-agent NL2Workflow framework
comprising a supervisor, orchestrator, and
filler agent, each with distinct roles that col-
laboratively enhance the conversion process.
As there are currently no publicly available
NL2Workflow benchmarks, we also introduce
the HW-NL2Workflow dataset, which includes
3,695 real-world business samples for training
and evaluation. Experimental results show that
our approach significantly increases the suc-
cess rate of workflow construction, providing
a novel and effective solution for enterprise
NL2Workflow services.

1 Introduction

Workflows, comprising reusable processes that in-
tegrate multiple tools or components in a specific
logic sequence, can significantly enhance enter-
prise efficiency (Ayala and Bechard, 2024). Tradi-
tional workflow construction methods require nu-
merous manual steps to orchestrate components,
demanding specialized expertise (Chi et al., 1981,
2014; Faloughi et al., 2014). In contrast, auto-
mated commercial systems can directly convert
natural language instructions into workflows, offer-
ing a more convenient and technically accessible
approach.

With the rapid development of Large Language
Models (LLMs) (Achiam et al., 2023; Dubey et al.,

Every weekday morning
at 9:00 am, send me a
text message reminder
to clock in for work.
The phone number is
12714532889.

[
{

"task": "timer",
"parameter": {

"timeZoneId": "GMT+8:00",
"startTime": "",
"scheduleCronExp": "0 9 * * 2-6"

}
},
{

"task": "sns",
"parameter": {

"serviceType": "SMS",
"mobiles": "12714532889",
"content": "Clock in for work"

}
}

]

Figure 1: An example of generating workflows (JSON
format) from text instruction.

2024) and LLM agents (Xiong et al., 2024), re-
searchers have begun to utilize them as back-
bones to develop Natural Language to Workflows
(NL2Workflow) systems. Zeng et al. (2023) di-
rectly prompted a LLM to generate workflows,
while Ayala and Bechard (2024) improved this pro-
cess by adopting a Retrieval-Augmented Gener-
ation (RAG) approach to enhance the quality of
the generated workflows. Although they can pro-
duce workflows for simple scenarios, a significant
gap remains compared to human performance in
handling complex real-world instructions.

Crafting a workflow (Figure 1) for real-life sce-
narios involves coordinating several tasks, from
comprehending human intent, selecting appropri-
ate components, to orchestrating the task flow and
accurately configuring each component’s parame-
ters (Wang et al., 2024). It’s quite challenging to
rely on a single LLM agent to handle the entire
process, as different tasks may require specialized
knowledge and skills. The need to switch between
multiple tasks could potentially affect its perfor-
mance on any individual task (Gabriel, 2020).

To address this challenge, we draw inspiration
from software development, where requires collab-
oration among multiple team members with diverse

20



skill sets is essential (Basili, 1989; Sawyer and
Guinan, 1998). Specifically, we propose Work-
Team, a multi-agent framework that integrates
multiple agents to collaboratively accomplish the
NL2Workflow task. WorkTeam consists of three
agents with distinct roles: the supervisor, the or-
chestrator and the filler (Figure 2). The supervisor
agent is responsible for understanding the user’s
intent and coordinating the orchestrator agent and
the filler agent. Upon receiving the user intent
parsed by the supervisor agent, the orchestrator
agent selects the appropriate components and ar-
ranges them into a suitable workflow schema. The
filler agent then retrieves the documentation for
relevant components and fills in accurate parame-
ters, turning it into a fully operational workflow.
Our framework enables different agents to per-
form their respective tasks accurately and commu-
nicate efficiently, thereby effectively constructing
workflows. Moreover, since no publicly available
NL2Workflow benchmarks exist, we construct the
HW-NL2Workflow dataset from real production
scenarios, comprising 3,695 entries for training
and evaluation. Extensive experiments show that
WorkTeam significantly improves workflow con-
struction accuracy compared to existing methods,
and further analysis validates the effectiveness of
our framework.

Our contributions are summarized as follows:

• For the first time, we introduced a multi-agent
framework into the NL2Workflow task, effec-
tively enhancing the automation of workflow
construction.

• We construct the HW-NL2Workflow dataset,
comprising 3,695 entries of real-world enter-
prise business data for training and evaluation.

• Extensive experimental results on HW-
NL2Workflow demonstrate the superior per-
formance of our method and the effectiveness
of each framework component.

2 Related Work

2.1 Natural Language to Workflow
Recent advancements in LLMs have enabled the
conversion of natural language instructions into
logical outputs, such as code (Xiong et al., 2023;
Hong et al., 2024; Jiang et al., 2024) and SQL (Fu
et al., 2023; Lian et al., 2024), making it increas-
ingly viable for commercial applications. Work-
flows, which serve as a structured form of task

orchestration, automate repetitive activities across
various industrial applications, such as data entry
and invoice processing (Villar and Khan, 2021). To
reduce technical barriers and expand commercial
adoption, researchers are now focusing on gener-
ating workflows directly from natural language in-
structions. For example, Microsoft (El Hattami and
Pal, 2023) and ServiceNow (Gorroño et al., 2023)
have patented systems that apply a machine learn-
ing model to transfer user-input text instructions
into executable workflows. Zeng et al. (2023) de-
veloped FlowMind, a system that employs LLMs
to automatically generate workflows from user
queries, enhancing automation in financial ser-
vices while maintaining data security. To improve
the quality of generated workflows, Ayala and
Bechard (2024) proposed an RAG-based method
for NL2Workflow conversion. Upon receiving user
instructions, their approach first retrieves relevant
components and then generates workflows based
on these components, effectively reducing halluci-
nation issues. Although these methods have shown
some success, single LLM-based approaches often
suffer performance degradation in real-world com-
mercial applications due to a lack of specialized
knowledge and the strain of task-switching when
handling complex instructions.

2.2 Multi-Agents
Recently, LLM agents have been developed to un-
derstand and execute complex instructions, lead-
ing to improved interaction and more informed
decision-making across various environments (Xi
et al., 2023; Ruan et al., 2023; Wu et al., 2024).
Along this line, multi-agent systems enhance func-
tionality by utilizing the collective intelligence and
specialized skills of multiple LLM agents, assign-
ing distinct roles and facilitating interactions to
better simulate complex real-world scenarios.

Hong et al. (2024) introduced MetaGPT, a multi-
agent collaborative framework for programming
featuring six role-specific agents. This design,
combined with Standardized Operating Procedures
(SOPs), led to notable performance improvements
in programming. In robotics, Kannan et al. (2023)
proposed SMART-LLM, a multi-agent framework
for robot task planning. SMART-LLM decomposes
user instructions into sub-tasks, assigns them to
robots based on their skills, and coordinates execu-
tion to optimize task completion. In scientific ex-
perimentation, Zheng et al. (2023) implemented a
multi-agent framework with agents specializing in
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Figure 2: The overall architecture of the proposed Work-
Team framework.

areas like strategic planning, literature search, and
coding. These agents collaborate with human re-
searchers to improve the synthesis of complex ma-
terials. However, existing multi-agent approaches
are generally designed for specific tasks and are
not directly applicable to NL2Workflow.

In this paper, we propose a multi-agent approach
to enhance NL2Workflow tasks, where agents with
distinct roles and specialized skills collaborate to
significantly boost workflow generation accuracy.

3 Methods

The WorkTeam framework comprises three agents:
the supervisor agent, the orchestrator agent, and
the filler agent. The overall structure of the frame-
work is shown in Figure 2. Upon receiving an end
user’s prompt, the supervisor agent initiates a task
planning phase, decomposing the tasks into sub-
tasks and invoking the orchestrator and filler agents
in a coordinated manner to execute them. The
orchestrator and filler agents handle component
orchestration and parameter filling, respectively,
using appropriate tools to complete these tasks. To
further elucidate the functionality of WorkTeam,
Figure 6 in Appendix B provides an operational
example. The design and functionality of these
agents are detailed as following.

3.1 The Supervisor Agent

The supervisor agent, as depicted in Figure 2, is re-
sponsible for two primary functions: task planning
and result reflection. The task planning function
allows the supervisor agent to dynamically plan
based on user instructions. For instance, when re-
ceiving a workflow creation instruction, the agent

first calls the orchestrator agent for component or-
chestration, followed by the filler agent to populate
the necessary parameters. In contrast, for workflow
modification instructions, the agent may invoke
only the orchestrator or the filler agent. This flexi-
bility enables WorkTeam to efficiently execute user
instructions. Upon completion of task planning, the
supervisor agent assigns tasks to either the orches-
trator agent or the filler agent based on the planning
results, to ensure the objectives are achieved. After
completing their tasks, the orchestrator and filler
agents return the results to the supervisor agent for
result reflection. The next steps proceed only if the
supervisor agent confirms the results are correct.
Otherwise, tasks are redirected to the appropriate
agents for re-execution.

3.2 The Orchestrator Agent

The orchestrator agent selects appropriate compo-
nents from the component set based on user in-
structions and arranges them in a logical order as
implied by the instructions. To accomplish this,
similar to the supervisor agent, the orchestrator
agent first undertakes a dynamic planning process
based on the input instructions instO, which en-
compass user directives and, if available, feedback
from the supervisor agent. Subsequently, to ensure
accurate orchestration results, the agent leverages
two tools: the component filtering and the compo-
nent orchestration tool, to finish the orchestration
process based on the planning results. Next, we
provide an overview of these two tools.

Component Filtering Tool The primary objec-
tive of the component filtering tool is to select can-
didate components from the component set that
are most relevant to the orchestrator agent’s input
instructions. These selected components serve as
input for subsequent orchestration. Specifically,
we use the SentenceBERT model (Reimers and
Gurevych, 2019) to extract embeddings for the or-
chestrator agent’s input instructions instO and the
descriptions desci for each component ti, then com-
pute the cosine similarity between the instruction
and component embeddings to evaluate their rele-
vance, as shown in Equations (1)

si = Similarity(einst, e
i
desc) (1)

einst and eidesc represent their corresponding sen-
tence embeddings for the input instructions and
descriptions, Similarity is the cosine function, and
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si is the similarity between einst and eidesc. Compo-
nents with higher similarity scores are considered
more relevant to the input instructions and priori-
tized as candidate components. We select the top-k
components based on descending similarity scores:

Cfiltered = TopK(⟨t1, s1⟩, ⟨t2, s2⟩, . . . , ⟨tn, sn⟩)
(2)

Component Orchestration Tool The primary
objective of the component orchestration tool is to
select and arrange a subset of components from the
candidate components provided by the component
filtering tool, based on the logic embedded in the
input from the orchestrator agent, thereby gener-
ating a component flow. Given that the orchestra-
tion logic is embedded within the natural language
instructions provided by the user, this process de-
mands a high level of text comprehension. To ad-
dress this challenge, we employ a large language
model (LLM) as the component orchestration tool.
The LLM can directly generate a component flow
that incorporates the specified orchestration logic
based on inputs of the orchestrator agent. The ar-
ranged component flow can be represented by:

FC = ToolO(instO, Cfiltered) (3)

where ToolO represents the component orchestra-
tion tool and FC is the generated component flow.

3.3 The Filler Agent
The filler agent populates parameters for each com-
ponent in the given component flow FC , transform-
ing it into a complete workflow. Generally, the
input of the filler agent instP comprises three main
parts: the user textual instructions, the component
flow provided by the orchestrator agent, and the
feedback from the supervisor agent, with the latter
two being optional. Similar to the supervisor agent
and the orchestrator agent, the filler agent performs
dynamic task planning upon receiving input. It
decomposes the parameter filling task and then uti-
lizes the template lookup tool and the parameter
filling tool to ensure the accuracy and stability of
the parameterization results. A detailed introduc-
tion to these two tools will be provided next.

Template Lookup Tool The template lookup
tool retrieves the parameter description di and the
blank parameter template pi associated with each
component ti in FC . The parameter description
provides detailed information for each parameter,
including its meaning, type, and allowable values.

In contrast, the blank parameter template encom-
passes all parameters of the component, assign-
ing a default value to each. By utilizing the pre-
populated blank parameter template, only essential
modifications to the component’s parameters are
required, significantly reducing the complexity of
the parameter filling task.

Parameter Filling Tool The parameter filling
process begins once the tool has acquired three key
elements: the orchestrated component flow FC , the
parameter description templates di and the blank
parameter templates pi for each component. With
these in hand, the parameter filling tool’s initial
task is to analyze the input instructions, extracting
all relevant information necessary for accurate pa-
rameter instructions. Then, it need to populate
the specified parameters in the blank templates
based on their intended meanings, resulting in a
complete workflow. Due to the complexity of this
task, in this paper, we employ a LLM as the back-
bone for parameter filling tool. By providing the
LLM with the input instructions instP , component
flow FC , the looked-up parameter description tem-
plates D = {d1, d2, ..., dm}, and the looked-up
blank parameter templates P = {p1, p2, ..., pm} as
prompts, the model is able to populate the parame-
ters for each component in the stream, resulting in
the generation of a complete workflow. The whole
process can be represented by:

FW = ToolP (instF , FC , D, P ) (4)

where ToolP represents the parameter filling tool
and FW is the generated workflow.

4 HW-NL2Workflow

Given the limited availability of publicly accessible
datasets for NL2Workflow tasks and our focus on
real-world commercial applications, we have de-
veloped HW-NL2Workflow, a novel dataset specif-
ically designed to meet these needs. This dataset
consists of 3,695 real-world enterprise workflows,
making it suitable for both performance evaluation
and tool training.

4.1 Data Statistics
The HW-NL2Workflow dataset was created by col-
lecting 3,695 workflows from our enterprise plat-
form, each annotated by domain experts with natu-
ral language instructions. It is divided into training
and testing sets, with detailed statistics provided in
Table 1. Specifically, the dataset comprises 3,380
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Split Type Size # Comp # Param

Train
Creation 2818 13993 45696

Modification 562 2819 9187
All 3380 16812 54883

Test
Creation 263 1269 4244

Modification 52 252 838
All 315 1521 5082

Table 1: Composition of HW-NL2Workflow. # Comp
and # Param represent the number of components and
parameters, respectively.

training samples and 315 testing samples. On av-
erage, each workflow in the training set consists
of 5.02 components, with each component hav-
ing 3.26 parameters. In the testing set, workflows
contain an average of 4.83 components and 3.34 pa-
rameters per component. Additionally, the dataset
encompasses both workflow creation and modifi-
cation tasks, ensuring that WorkTeam can adapt to
more flexible requirements.

4.2 Component Resources

In addition to data samples, the HW-NL2Workflow
also provides comprehensive component resource
information, including a component set C, a com-
ponent parameter description set Tdesc, and a blank
parameter template set Tblank. These resource de-
tails provide sufficient component information to
support workflow generation. Appendix A illus-
trates a few examples of the component resources
of HW-NL2Workflow.

4.3 Metrics

We systematically evaluated the generated work-
flows from three perspectives:

Exact Match Rate (EMR) Exact matching oc-
curs when the generated workflow fully aligns with
the ground truth, including both component se-
quence and parameter values. The exact match
rate is calculated as Eacc = Nem/Ntotal, where
Nem and Ntotal represent the exact matches and
total test samples, respectively.

Arrangement Accuracy (AA) Correct arrange-
ment refers to the correctness of the sequence of
components within the workflow generated by the
model, irrespective of the correctness of the filled
parameters. This metric primarily assesses the ca-
pability of the system to comprehend logical con-
structs in user instructions. Similarly, the arrange-
ment accuracy is computed as Aacc = Nam/Ntotal,

where Nam represents the number of samples with
accurate arrangement.

Parameter Accuracy (PA) The parameter ac-
curacy evaluates whether the parameters of the
components in the generated workflow are con-
sistent with those of the corresponding compo-
nents in the ground truth. It is computed as
Pacc = Npm/Np, where Npm and Np represent
the number of matched parameters and the total
number of parameters in the test set, respectively.

5 Experiments

5.1 Configurations

Model Configurations WorkTeam is a multi-
agent framework that supports implementation
with various models. This subsection only fo-
cuses on the model configurations used in our
experiments. All agents in our experiments are
built on Qwen2.5-72B-Instruct (Yang et al., 2024).
The prompt for all these agents are illustrated
in Figure 7 to Figure 9 in Appendix B. The
component orchestration tool and the parameter
filling tool are implemented with LLaMA3-8B-
Instruct (Dubey et al., 2024), fine-tuned on the
HW-NL2Workflow dataset. Similarly, the compo-
nent filtering tool is built using the SentenceBERT
model, which has been fine-tuned with data from
the HW-NL2Workflow dataset.

Training Data Configurations The component
filtering tool is built using the SentenceBERT
model, trained with contrastive learning from
paired text instructions and corresponding com-
ponents. The training data is directly derived from
the HW-NL2Workflow dataset, with positive sam-
ples comprising text instructions and their relevant
components, and negative samples comprising text
instructions with unrelated components.

In our experiments, both the component orches-
tration and parameter filling tools are developed by
finetuning a LLM. The training data for the compo-
nent orchestration tool includes the agent’s input in-
struction, denoted as instO, along with descriptions
of the selected top-k candidate components. The
model’s output is a workflow that consists solely of
the names of these components. For the parameter
filling tool, the training data comprises the agent’s
input instruction instP , the component flow FC ,
the corresponding component parameter descrip-
tions D, and blank parameter templates P , with the
model’s output being a complete workflow.
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Baselines Our experiments use a single LLM-
based agent as the baseline, utilizing GPT-4o,
Qwen2.5-72B-Instruct, Qwen2.5-7B-Instruct, and
LLaMA3-8B-Instruct as backbone models. These
models generate workflows directly based on the
input use instructions and in-context examples.
The prompts utilized for these approaches are de-
tailed in Appendix C. We also incorporate a RAG
NL2Workflow method from (Ayala and Bechard,
2024) as an additional baseline. Due to the unavail-
ability of the original source code, we implement
our version using SentenceBERT as the retriever
and LLaMA3-8B-Instruct as the generator, both
trained on HW-NL2Workflow.

5.2 Experiment Results

Methods EMR (%) AA (%) PA (%)

GPT-4o 18.1 71.4 56.3
Qwen2.5-72B-Instruct 12.7 66.9 51.5
Qwen2.5-7B-Instruct 3.5 25.4 19.9
LLaMA3-8B-Instruct 1.6 19.4 16.6
RAG (Ayala and Bechard, 2024) 24.1 77.8 60.3

WorkTeam (ours) 52.7 88.9 73.2

Table 2: Comparison of experiment results of the base-
lines and our methods.

Table 2 presents the performance comparison be-
tween WorkTeam and baseline methods on the HW-
NL2Workflow test set. In our experiments, the sin-
gle LLM agent approach generates workflows end-
to-end by directly inputting all component infor-
mation and user instructions. The prompts for this
method are shown in Figure 10. Table 2 shows that
the NL2Workflow task is highly challenging for
single LLM-based method. Top models like GPT-
4o and Qwen2.5-72B-Instruct achieve only 18.1%
and 12.7% EMR respectively, while smaller mod-
els such as Qwen2.5-7B-Instruct and LLaMA3-
8B-Instruct are nearly ineffective, with EMRs of
just 3.5% and 1.6%. The RAG NL2Workflow
method improves workflow construction accuracy
compared to the single LLM agent approach, but
EMR performance remains unsatisfactory. In con-
trast, WorkTeam achieve an EMR of 52.7%, an
AA of 88.9%, and a PA of 73.2% on the HW-
NL2Workflow test set, representing a comprehen-
sive and significant improvement over baseline
methods.

We attribute the performance enhancement of
WorkTeam to task specialization and collaboration
among multiple agents. The orchestrator and filler
agents concentrate on their specific tasks, improv-

ing execution stability and accuracy, while the su-
pervisor agent, responsible for task planning and
result reflection, enhances robustness and flexibil-
ity. Ablation studies, detailed in Table 3, further
illustrate each agent’s contribution.

Supervisor
Agent

Orchestrator
Agent

Filler
Agent

EMR
(%)

AA
(%)

PA
(%)

✓ ✗ ✗ - - -
✗ ✓ ✗ - 85.7 -
✗ ✗ ✓ - - -
✗ ✓ ✓ 49.8 85.7 72.8

✓ ✓ ✓ 52.7 88.9 73.2

Table 3: Results of the ablation experiments for different
agents.‘-’ represents the task cannot be completed.

The results in Table 3 demonstrates that both the
orchestrator agent and the filler agent are essential
for workflow generation, as the absence of either
leads to task failure. Although the workflow can
still be generated without the supervisor agent, the
accuracy decreases from 52.7% to 49.8% compared
to the complete WorkTeam. This indicates that
the task planning and result reflection functions of
the supervisor effectively facilitates collaboration
between the orchestrator and filler agents, thereby
enhancing workflow generation accuracy.

To better illustrate the roles of WorkTeam’s
agents and its NL2Workflow process, we present
a real-world case in Figure 11 of the Ap-
pendix D. Additionally, we developed a commer-
cial NL2Workflow system based on WorkTeam that
effectively meets business requirements, as shown
in Figure 12 of the same appendix.

6 Conclusion

In this paper, we present WorkTeam, a novel multi-
agent framework designated to enhance workflow
automation in enterprise environments. Three spe-
cialized agents — supervisor, orchestrator, and
filler agents — collaborate to overcome the lim-
itations of a traditional LLM agent-based method,
resulting in substantial improvements to workflow
generation accuracy. Experimental results on the
HW-NL2Workflow dataset confirm the effective-
ness of WorkTeam. To address the lack of publicly
available NL2Workflow benchmarks, we develop
the HW-NL2Workflow dataset, comprising 3,695
real-world business samples, to support research
in this area. Future work will focus on refining
the framework to support more complex workflows
and integrate it with a wider range of enterprise
tools to further enhance automation.
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A Component Resource Examples

Figure 3 presents two component examples from
the HW-NL2Workflow component set C. Each
component includes a name and a functional de-
scription. When using the component filtering tool,
the SentenceBERT model within the tool computes
the similarity between the user input instructions
and the description of each component. It selects
the top-k components with the highest similarity
as candidate components for use by the component
orchestration tool.

Figure 4 illustrates two examples from the pa-
rameter description set of the HW-NL2Workflow,
detailing all parameters required for each compo-
nent, along with comprehensive descriptions of
their functions. Figure 5 presents examples of the
blank parameter template. When the parameter
filling tool, invoked by the filler agent, is used, it
receives the parameter description information of
the component and the blank parameter template,
subsequently filling in the parameters according to
the template.

B Details of WorkTeam

Figure 6 illustrates a typical working process of
WorkTeam. As previously mentioned, the super-
visor agent acts as the primary agent, facilitating
multi-turn interactions with the user and perform-
ing dynamic task planning. It invokes the orches-
trator and filler agents to carry out component or-
chestration and parameter filling. Furthermore, the
supervisor agent can evaluate the results provided
by the orchestrator and filler agents. These capa-
bilities contribute to the flexibility and stability of
WorkTeam’s operation.

Figure 7, 8, and 9 shows the prompts used in
the supervisor agent, the orchestrator agent and the
filler agent, respectively.

Figure 3: Examples in the component set C of HW-
NL2Workflow.

Figure 4: Examples in the component parameter de-
scription set Tdesc of HW-NL2Workflow.

Figure 5: Examples in the blank parameter template set
Tblank of HW-NL2Workflow.
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Figure 6: An illustration of a typical example for WorkTeam’s overall working process.

C Details of the Baselines

For single LLM-based methods, we use prompts
to guide the LLMs to generate workflows based on
user instructions through in-context learning. The
prompts utilized are illustrated in Figure 10.

Since the source code of the RAG method in (Ay-
ala and Bechard, 2024) has not been released. We
implemented our version. In our experiments,
we trained a SentenceBERT model using con-
trastive learning with the training data in HW-
NL2Workflow as the retriever. Actually, the re-
triever is same as the component filtering tool used
in our orchestrator agent. For the generator, we
fine-tuned a LLaMA3-8B-Instruct with the training
data in HW-NL2Workflow. The generator aims to
generate the workflow end-to-end according to the
selected components by the retriever and the user
instruction.

D Case Study and Enterprise System

Here, we provide a NL2Workflow case by the
WorkTeam framework in Figure 11. Based on this
case, we can see how the WorkTeam works for the
NL2Workflow task. It can be seen that the super-
visor agent can effectively plan the steps needed
to complete the task, and accurately invoke the or-
chestrator agent and filler agent to complete orches-
tration and parameter filling tasks, and can reflect

after receiving the return results from the orches-
trator agent and filler agent. The orchestrator agent
and filler agent can respectively plan for compo-
nent orchestration and parameter filling tasks and
call the corresponding tools to complete the tasks.
Through the task decomposition and collaboration
of multiple agents, WorkTeam can correctly and
stably complete the NL2Workflow task.

Furthermore, the objective of developing Work-
Team is to provide more effective NL2Workflow
services for enterprise business applications. Fig-
ure 12 presents the interface of the commercial
NL2Workflow service system developed based on
WorkTeam.
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Prompt for Supervisor Agent

You are the supervisor agent in the NL2Workflow system, capable of directly interacting with users
and automatically calling two agents based on user instructions: the orchestrator agent and the
filler agent.

Your job is to receive messages from users:
1. First, you need to judge the user’s instructions and plan tasks flexibly, for example:
(1) If the user’s intention is to generate workflows from natural language, then first call the
orchestrator agent to get the orchestration result, and then call the filler agent to get the final result,
and return it to the user;
(2) If the user’s intention is to modify the structure of the workflow, then you may need to call the
orchestrator agent to make modifications to the workflow;
(3) If the user’s intention is to modify the parameters in the workflow, then you may directly call
the filler agent.
2. Determine if the results returned by the orchestrator agent/the filler agent have any issues.
If there are problems with the results, you need to call the orchestrator agent/the filler agent
again. (Please note that even after parameter filling, it is normal for some components to have no
parameters or incomplete parameters, and there is no need to call again in such cases.)
3. Determine if the user instruction has been solved. If it has been solved, return the final result to
the user.

Notice:
1. Do not create/modify workflows on your own; just call agents according to user intent.
2. Keep replies concise.

Your output should be in JSON: {"analysis" : xxxx, " action" : xxxx}
where the ’analysis’ field is for your problem analysis process or reply to the user, and the ’action’
field includes three actions: None (no call), <orchestrator_agent> (call the orchestrator agent),
<filler_agent> (call the filler angent), <end> (end operation).
Note that you can only output a single such JSON content at a time, and it is not allowed to output
multiple at once!

Figure 7: Prompt for the supervisor agent in WorkTeam. Notice that the initial prompt is in Chinese, we translate it
to English for better reading in this paper.
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Prompt for Orchestrator Agent

You are the orchestrator agent in the NL2Workflow system, and you can call two tools: the
component filtering tool and the component orchestration tool.

You need to judge the user’s instructions and plan tasks flexibly, for example:
1. If the user’s intent is to generate a component flow based on their instructions, you should first
call the component filtering tool to filter components from the component set, and then call the
component orchestration tool to generate the component flow;
2. If the user’s intent is to modify the component flow, you should first call the component filtering
tool to filter out candidate components, and then use your own capabilities to modify the component
flow provided by the user;
3. For other intents, respond according to your own capabilities.

Notice:
1. Do not orchestrate on your own ability! Determine when to call the component filtering tool and

the component orchestration tool and initiate the calls.
2. Keep replies concise.

Your output should be in JSON: {"analysis": xxxx, "action": xxxx}
where the ’analysis’ field is for your problem analysis process or reply to the user, and the
’action’ field includes four actions: None (no call), <call_selector>(call the component filter tool),
<call_arrange>(call the component orchestration tool), , <end>(end operation).
Note that you can only output a single such JSON content at a time, and it is not allowed to output
multiple at once!

Figure 8: Prompt for the orchestrator agent in WorkTeam. Notice that the initial prompt is in Chinese, we translate
it to English for better reading in this paper.
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Prompt for Filter Agent

You are the filler agent in the NL2Workflow system. Your role is to fill in parameters for each
component in the component flows according to user instructions and the generated workflows.
You can call two tools: the blank parameter template lookup tool and the parameter filling tool.

You need to judge the user’s instructions and plan tasks flexibly, for example:
1. If the user’s intent is to fill in parameters based on user instructions and the component flow, you
need to first call the blank parameter template lookup tool to find the blank parameter templates
corresponding to the components, and then call the parameter filling tool to fill in parameters for
each component in the component flow.
2. If the user’s intent is to modify the parameters in an existing workflow, you need to call the
parameter filling tool to modify the parameters.
3. For other intents, respond according to your own capabilities.

Notice:

1. Do not fill the parameters on your own ability! Determine when to call the blank parameter
template lookup tool and the parameter filling tool and initiate the calls.
2. Keep replies concise.

Your output should be in JSON: {"analysis": xxxx, "action": xxxx}
where the ’analysis’ field is for your problem analysis process or reply to the user, and the ’action’
field includes four actions: None (no call), <call_lookup>(call the blank parameter template lookup
tool), <call_filling>(call the parameter filling tool), <end>(end operation).
Note that you can only output a single such JSON content at a time, and it is not allowed to output
multiple at once!

Figure 9: Prompt for the filler agent in WorkTeam. Notice that the initial prompt is in Chinese, we translate it to
English for better reading in this paper.
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Prompt for Baseline Methods

You are a workflow generation expert. I will provide you with a textual instruction and descriptions
of all candidate components, including their functionalities and detailed parameter information.
Please select the appropriate components based on the instruction, arrange them according to
the logical flow specified in the instruction, and finally populate the parameters of the selected
components as indicated by the instruction.

Component Information:
{component_information}

Examples:
————
**Instruction**: {example_instruction1}
**Output Workflow**: {example_workflow1}
————

**Instruction**: {example_instruction2}
**Output Workflow**: {example_workflow2}
————
**Instruction**: {example_instruction3}
**Output Workflow**: {example_workflow3}

Now the input is:
**Instruction**: {input_instruction}
**Output Workflow**:

Figure 10: Prompt for baseline methods. {component_information} refers to the description of the component
and its corresponding parameter descriptions. {example_instruction} and {example_workflow} are the given
NL2Workflow examples for in-context-learning.
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Case Study

User Instruction: Monitor the mailbox with account 98234 and password pass56789. When an email with the subject
"Payment Confirmation" is received, automatically process the payment information using Python to obtain the result
pythonRes and update the financial information through the post API at his.huawei.com/payment via the API gateway.

Supervisor Agent: {"analysis": "The user wants to set up a workflow to monitor emails for a specific subject, process
payment information with Python, and then update financial information through an API. The first step will be to
generate the workflow structure, followed by filling in the specific details.", "action": "<orchestrator_agent>"}

Orchestrator Agent: {"analysis": "The user wants to create a workflow where an email with a specific subject triggers a
series of automated actions involving processing payments and updating financial information via an API. This requires
identifying relevant components from the available set, and then arranging them into a coherent workflow.", "action":
"<call_selector>"}

Candidate Components: ["public-email", "sns", "data-mapper", "selenium", "file-processing", "api-gateway", "http-
request", "mqs-produce", "edm", "mqs-consumer"]

Orchestrator Agent: {"analysis": "Given the user’s instruction and candidate components, I should arrange them into
a component flow", "action": "<call_arrange>"}

Component Flow: [{"task": "public-email"}, {"task": "file-processing"}, {"task": "api-center"}]

Orchestrator Agent: {"analysis": "According to the user input and the component flow, I have finished the work.",
"action": "<end>"}

Supervisor Agent: {"analysis": "I have received the component flow from the orchestrator agent. It seems rights. I
should filling in the parameters.", "action": "<filler_agent>"}

Filler Agent: {"analysis": "The user wants to set up a workflow that monitors emails for a specific subject, processes
the payment information using Python, and updates financial data via an API. First, I will call the blank parameter
template lookup tool to get the required parameter templates for the ‘public-email’, ‘file-processing’, and ‘api-center’
components.", "action": "<call_lookup>"}

Blank Templates: [{"task": "public-email", "parameter": { "account": "", "password": "", "receiveType": "", "sender":
"", "subject": ""}}, {"task": "file-processing", "parameter": {"inputParams": {}, "script": ""}}, {"task": "api-center",
"parameter": {"url": "", "queryParams": {}, "headers": {}, "body": "", "method": ""}}]

Filler Agent: {"analysis": "Based on the user’s instructions and the given component flow, I will now fill in the
parameters using the provided blank templates.", "action": "<call_filling>"}

Parameter filling result: [{"task": "public-email", "parameter": {"account": "98234", "password": "pass56789",
"receiveType": "", "sender": "", "subject": "Payment Confirmation"}}, {"task": "file-processing", "parameter": {
"inputParams": {}, "script": ""}}, {"task": "api-gateway", "parameter": {"url": "his.huawei.com/payment", "method":
"POST", "queryParams": {}, "body": "{"parameter": ${pythonRes}}"}}]

Filler Agent: {"analysis": "I have filled the parameters. My work is done.", "action": "<end>"}

Supervisor Agent: {"analysis": "I have received the workflow, and I think the result is correct. Return to the user.",
"action": "<end>"}

Figure 11: A real case of the WorkTeam performing NL2Workflow task. The original text in the example is in
Chinese, and we translate it into English for better readability.
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Figure 12: The enterprise NL2Workflow system based on WorkTeam.
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