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Abstract

Existing Multimodal Large Language Model
(MLLM)-based agents face significant chal-
lenges in handling complex GUI (Graphical
User Interface) interactions on devices. These
challenges arise from the dynamic and struc-
tured nature of GUI environments, which inte-
grate text, images, and spatial relationships, as
well as the variability in action spaces across
different pages and tasks. To address these lim-
itations, we propose MOBA, a novel MLLM-
based mobile assistant system. MOBA intro-
duces an adaptive planning module that incor-
porates a reflection mechanism for error recov-
ery and dynamically adjusts plans to align with
the real environment contexts and action mod-
ule’s execution capacity. Additionally, a multi-
faceted memory module provides comprehen-
sive memory support to enhance adaptability
and efficiency. We also present MOBBENCH,
a dataset designed for complex mobile inter-
actions. Experimental results on MOBBENCH
and AndroidArena demonstrate MOBA’s abil-
ity to handle dynamic GUI environments and
perform complex mobile tasks.

1 Introduction

Multimodal large language models (MLLMs) have
seen significant advancements in recent years, sup-
ported by vast multimodal datasets. These mod-
els (Hu et al., 2024; Liu et al., 2024a; Ye et al., 2024,
2023; Chen et al., 2024b; Sun et al., 2024a; Liu
et al., 2023; Dai et al., 2023; Chen et al., 2023; Zhu
et al., 2024; Yao et al., 2024; OpenAI, 2023; Team,
2024) excel in tasks such as Chain-of-Thought
(CoT) reasoning (Wei et al., 2022), In-Context
Learning (ICL) (Brown et al., 2020), and various
applications (Wang et al., 2024b; Wang and Zhao,
2023; Chen et al., 2024a; Liu et al., 2024b; Pan

*Corresponding authors are Lu Chen and Kai Yu.

et al., 2024; Ge et al., 2024; Wu et al., 2024; Lee
et al., 2024b; Qian et al., 2024b,a). Their capabili-
ties have also enabled new MLLM-based agents for
real-world tasks (Li et al., 2017, 2019; Sun et al.,
2022; Zhu et al., 2023; Zhang and Zhang, 2024;
Zhang et al., 2023a, 2024a; Nong et al., 2024; Ma
et al., 2024; Wang et al., 2024a, 2025).

However, MLLMs face significant challenges
when addressing complex GUI interactions and fac-
ing diverse user demands in real-world scenarios,
particularly on devices such as smartphones (Zhang
et al., 2024b) and computers (Cao et al., 2024; Xie
et al., 2024). On the one hand, GUI environments
are highly diverse and pose different action spaces
across different apps and pages. For instance, the
number and position of clickable icons can vary
greatly across pages; some pages require text in-
put, while others involve scrollable elements. Such
variability makes proactive task planning hardly
adapt to the real environment contexts and thus be-
come infeasible to complete. On the other hand, the
action executor can also lack capabilities enough
to achieve it, even given a feasible task plan. In
all these cases, agents with trivial or static plan-
ning (Zheng et al., 2024; Zhang et al., 2024a; Nong
et al., 2024; Ma et al., 2024; Xing et al., 2024)
will fail to align with the environment contexts
and action executor’s capacity and thus can fail
the whole task easily caused by failure of a single
sub-task. Furthermore, existing MLLM-based GUI
agents (Zhang et al., 2023b,a; Wang et al., 2024a,
2025) often lack a powerful and comprehensive
memory to face the need for dynamic planning at
various levels and diverse user demands. These
problems hinder the design of a practical mobile
assistant.

To address these challenges, we propose MOBA,
a novel MLLM-based mobile assistant system with
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Figure 1: The Illustration of adaptive planning and multifaceted memory structure. There are 4 cases in
adaptive planning: (a) Plan reflection failure, the goal needs to be decomposed. (b) In execution reflection failure,
the goal needs to be decomposed. (c) Execution reflection failure, the goal needs to be refined. (d) Goal complete.

an adaptive planning module that dynamically ad-
justs task plans according to the execution results.
As proactive planning often fails to accurately de-
termine the actions required in a specific applica-
tion or page or to align with the action executor’s
capacity, MOBA leverages reflection mechanism
to recover task execution from failed sub-plans
by reassessing goals or breaking tasks into more
fine-grained sub-goals. To better support adaptive
planning with various sub-goal granularity, a mul-
tifaceted memory module providing hierarchical
memory support is proposed. We also introduce
MOBBENCH, a diverse dataset for complex mo-
bile interactions, and demonstrate MOBA’s effec-
tiveness on MOBBENCH and AndroidArena (Xing
et al., 2024), showing its capability to handle dy-
namic GUI environments.

Our contributions are threefold:
• We propose an adaptive planning module

that incorporates a reflection mechanism for
error recovery and dynamically adjusts plans
based on the current GUI environment and
action executor’s capacity.

• We develop a multifaceted memory module
that provides hierarchical memory support to
enhance task adaptability and efficiency.

• We introduce MOBBENCH, a diverse dataset
for complex mobile interactions, and validate
the effectiveness of our approach through ex-
tensive experiments on two datasets.

2 The MOBA System

The system overview of MOBA is shown in Fig-
ure 2. MOBA comprises a Global Agent (GA) and
a Local Agent (LA). The Global Agent consists
of a Plan Module and a Reflection Module. The
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Figure 2: System Overview of MOBA.

Plan Module interprets the user’s command (➀)
and resolves the task into several easier and clearer
sub-tasks adaptively with the help of experiences
in the multifaceted Memory Module (➁), while the
Reflection Module will review if the decomposi-
tion is feasible and sub-goals are achievable. Then,
under the direction of a specific sub-goal (➂), the
Local Agent will leverage the experiences in the
Memory Module (➃), predict the concrete actions,
and directly control the device (➄). After LA’s ex-
ecution, the Reflection Module will reflect if the
current sub-task has been completed (➅) and the
Plan Module can revise the plan accordingly. The
Memory Module can also be updated after the in-
vocation of the Plan Module and Local Agent (➆)
to improve MOBA’s performance through execu-
tion. To ameliorate the performance at the early
stage of the memory, it can also be initialized with
a warm-up of some basic expert experiences. Fi-
nally, MOBA can generate a response to the user
regarding the result of task execution (➇). The re-
maining parts of this section will elaborate on the
proposed adaptive plan module and multifaceted
memory module.

2.1 Task Completion with Adaptive Planning

Facing the problem that static fixed-level task plan-
ning is deficient in aligning with real environment
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contexts and the Action Module’s capacity, we
propose adaptive planning to react to concrete ex-
ecution results of the Action Module and adjust
the granularity of task decomposition adaptively.
The proposed planning workflow is demonstrated
in Algorithm 1. Given an established sub-goal,
the reflection module is first adopted to review the
sub-task feasibility. Then the Action Module will
attempt to complete the reviewed sub-goal. The
execution result will be inspected again by the Re-
flection Module. Once failure is detected, the Plan
Module is invoked to revise the task plan to adapt to
the current environment context or to further break
the sub-goal down to match the Action Module’s
execution capacity. By repeating this procedure,
MOBA can generate a multi-granularity task plan
that well aligns with the environment contexts and
the Action Module’s capacity iteratively and dy-
namically.

Input: Global Agent GA, Local Agent LA, Goal G0

task_stack.push(G0)
while task_stack not empty do

cur_task← task_stack.pop()
can_do← GA.reflect_plan(cur_task)
if can_do then

action,obs← LA.exec_task(cur_task)
cur_task_complete←

GA.reflect_exec(action,obs)
end
if not can_do or not cur_task_complete then

new_subtasks← GA.plan(cur_task)
task_stack.push(new_subtasks)

end
GA.updateMemory()

end

Algorithm 1: Adaptive Planning of MOBA

2.2 Multifaceted Memory
The Memory Module serves as the backbone of
MOBA’s adaptability and learning capabilities,
storing historical data to enhance decision-making
and reduce redundant actions. It is categorized into
five components:

Task Memory: Tracks the execution history
of tasks, including task decomposition structures,
action traces, success and failure records, and re-
flections. This hierarchical organization enables
efficient retrieval of relevant experiences for task
planning and execution.

App Memory: Maintains detailed observations
and exploration histories for various applications,
including functional descriptions and page-specific
interactions. This helps the agent adapt to similar

GUI layouts and locate target applications more
effectively.

Page Memory: Encompasses the historical steps
executed on this interface, such as the positioning
of a particular button on the page, among other
actions. This facilitates the agent’s ability to per-
form similar operations on the page based on past
interactions more effectively.

Action Memory: Incorporates the operations
executed during the current task cycle, enabling the
agent to more clearly capture the actions performed
within this task and to more precisely define the
subsequent steps required.

User Memory: Captures user-specific interac-
tion histories, such as preferences, habitual com-
mands, and implicit requirements. This allows
MOBA to better infer user intent and personalize
task execution.

3 Experiments

To comprehensively compare MOBA with other
GUI agents in handling complex user instructions
and executing GUI interactions on mobile devices,
we evaluate them using a real-life scenario test set
called MOBBENCH. Additionally, we assess our
method using a widely adopted mobile benchmark,
Android Arena.

3.1 The MOBBENCH Test Set

The MOBBENCH comprises a diverse test set of
50 tasks designed to evaluate the performance of
MOBA in real-world mobile application scenarios.
The test set includes 10 applications widely used
in China, each with four tasks of varying difficulty:
Easy, Medium, Hard, and Indirect Comprehension,
totaling 40 tasks. The tasks are categorized by the
complexity and steps required to complete them.
Indirect Comprehension is designed for common
cases where the user gives a vague instruction with-
out detailing which application or specific steps are
required. The agent is expected to decide target ap-
plication and find an effective approach. Addition-
ally, there are 10 Cross-Application tasks, which
involve interacting with two applications and are
more close to Hard level in difficulty. These tasks
focus on evaluating the ability of information ex-
traction and retrieval, as well as the awareness of
sub-goal completion and application switching.

Compared with several similar task sets men-
tioned in other papers (Zhang et al., 2023a; Wang
et al., 2024a, 2025; Zhang et al., 2024a; Lee et al.,
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2024a), which only get a score when it finishes
the task, we assign several milestone scores for
sub-tasks in MOBBENCH. This allows for a more
precise process assessment, in the cases where the
task is partially finished. We also include a detailed
preparation instruction for tasks when a more re-
producible, fair, and stable start is needed.

To establish a human expert baseline, three hu-
man operators independently perform the tasks on
three different mobile phones, documenting their
execution steps. The average number of steps taken
is used as the human expert baseline.

3.2 Metrics

Three metrics are designed to better compare the
capability of GUI agents thoroughly.

Milestone Score (MS): Scoring milestones are
assigned to several sub-tasks, evenly distributed
during the task completion process. Since each
task contains 1 to 6 milestones, the agent will get a
score as it reaches each milestone. We sum up all
milestone scores of 50 tasks as the primary metric.

Complete Rate (CR): If the agent gets all mile-
stone scores in one task, it is considered as task
complete. This is the most common and straight-
forward metric for GUI agent evaluation.

Execution Efficiency (EE): We record the ef-
fective number of steps for each task and the corre-
sponding milestone scores, that is, the total number
of steps executed at the time of getting the last ef-
fective milestone score, and calculate the average
number of steps required to obtain each effective
milestone score. The lower this number, the more
efficient the execution; the higher it is, the more it
includes ineffective actions.

The average milestone scores and execution
steps for each task type are summarized in Table 1.

Task Type # Tasks # MS Avg. Steps EE

Easy 10 10 4.3 4.30
Medium 10 23 7.3 3.17
Hard 10 41 15.2 3.71
Indirect 10 28 9.4 3.36
Cross-App 10 31 10.8 3.48

Overall 50 133 9.4 3.53

Table 1: Milestone scores and expert execution steps
for different task types of MOBBENCH.

3.3 Setups

To provide a comprehensive evaluation, MOBA
is compared against several baselines from basic

manual operations to several sophisticated agent-
based automation.

Human Baseline as mentioned in § 3.1 are con-
sidered as the optimal solution for each task.

GPT-4o + Human Baseline utilizes an itera-
tive process where the GPT model (OpenAI, 2023)
provides guidance for manual task execution.

AppAgent (Zhang et al., 2023a) uses both view
hierarchy and screenshot for planning and choosing
target actions. All interactive elements are marked
with bounding boxes and a unique index for better
grounding performance.

Mobile Agent (v2) (Wang et al., 2024a, 2025)
uses only visual information from screens as inputs.
Target elements are selected with the guidance of
OCR and CLIP (Radford et al., 2021) modules.

MOBA is evaluated under several settings by
disabling the Memory Module or/and Plan Module
to assess its performance and the impact of these
two modules. We disable the Plan Module by re-
placing the Global Agent with a plain agent, and
no sub-tasks are provided to the Action and Re-
flection Module. We disable the Memory Module
by removing all in-context examples and histori-
cal experience information (including observations,
thoughts, previous actions, and their execution sta-
tus), focusing on assessing the core capability in
zero-shot task execution.

All experiments are conducted using
gpt-4o-2024-05-13 API. The primary eval-
uation metric is the first attempt complete rate,
directly measuring the effectiveness of each system
in completing tasks on the first try without retries.

3.4 Results and Analysis

The overall experiment results are as listed in Ta-
ble 2. And for more detailed results categorized by
task type please refer to Figure 5.

Model CR MS EE

Human 50/50 133 3.53
GPT-4o + Human 49/50 131 (98.5%) 3.82 (108.2%)

AppAgent 6/50 35 (26.3%) 4.43 (125.5%)
MobileAgent (v2) 17/50 63 (47.4%) 4.84 (137.1%)

MOBA w/o M & P 13/50 52 (39.1%) 4.42 (125.2%)
MOBA w/o P 15/50 65 (48.9%) 4.17 (118.1%)
MOBA w/o M 22/50 72 (54.1%) 3.81 (107.9%)
MOBA 28/50 88 (66.2%) 3.44 (97.5%)

Table 2: Overall Performance on MOBBENCH. M:
Memory Module. P: Planning Module.

Table 2 shows the performance of four baselines.
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Due to the complexity of mobile interfaces and the
technical limitations encountered during task exe-
cution, the overall task completion rates (Complete
Rate, CR) are relatively low for all agents. Con-
sequently, the Milestone Score (MS) serves as a
finer metric to more accurately reflect the perfor-
mance of each agent by considering partial task
completion. While there are notable differences in
Milestone Scores among the baseline models, the
gap in Execution Efficiency (EE) is less significant.
This is because most agents can smoothly complete
simpler sub-goals, whereas, for more complex sub-
goals, the agents either complete them or fail en-
tirely, resulting in closer performance regarding
execution efficiency.

3.4.1 Performance Comparison
The performance of MobileAgent is notably higher
than that of AppAgent. This improvement is mainly
due to the inclusion of both Memory and Reflection
modules in MobileAgent, which enhance reasoning
capacity and utilize more computational resources,
such as tokens. Additionally, MobileAgent keeps a
record of all historical actions, allowing it to learn
from the entire sequence of operations, whereas Ap-
pAgent can only track the most recent action. Fur-
thermore, MobileAgent relies on OCR and CLIP
modules for target localization, offering greater
flexibility and avoiding the technical limitations
that AppAgent faces when dependent on XML files.
By adopting a twice-reflection strategy, the ineffec-
tive execution steps are slightly reduced, where the
sub-tasks that are not able to be completed with a
single action are decomposed finer before executed.
This gives clearer guidance for the Local Agent to
decide the target actions.

3.4.2 Ablation Study
The lower part of Table 2 presents the results of the
ablation study, where we experimented with four
different configurations by selectively enabling or
disabling the Memory and Plan modules. The re-
sults indicate that incorporating both Memory and
Plan modules significantly enhances the agent’s
overall performance.

The Plan module alone shows a much stronger
effect than the Memory module alone, validating
one of the core contributions of this paper—the ef-
fectiveness of task decomposition planning. By
decomposing tasks into manageable sub-tasks,
MOBA can perform global planning, avoid redun-
dant actions, and minimize overlooked details, ef-

fectively managing its historical actions (since in
a tree-structured task, previously completed sub-
tasks are inherently tracked). Unlike MobileAgent,
which focuses solely on the next specific action,
MOBA first determines the next abstract task and
then plans the specific execution steps, closely mir-
roring human reasoning patterns and providing a
more structured approach.

When the Memory module is introduced,
MOBA’s performance further improves, particu-
larly in cross-application tasks (see Figure 5 (b)).
This enhancement is due to the Memory module’s
ability to retain crucial information over longer
periods, such as "the day I am traveling
to Shenzhen", allowing it to reference previous
screens’ key content. In contrast, without the Mem-
ory module, the agent is limited to short-term mem-
ory of only the current and the immediately preced-
ing steps, resulting in less effective task execution.

3.5 Results on Android Arena

Model SR(single-app) SR(cross-app)

GPT-3.5 0.449 0.048
GPT-4 0.759 0.571

MOBA(ours) 0.783 0.714

Table 3: The performance of LLMs and MOBA on the
Android Arena dataset.

We also performed evaluations on Android
Arena (Xing et al., 2024), comprising 157 single-
app tasks and 21 cross-app tasks. As shown in
Table 3, MOBA achieves success rates (SR) of
0.783 on single-app tasks and 0.714 on cross-app
tasks, outperforming GPT-4 by 2.4% and 14.3%, re-
spectively. The notable improvement in cross-app
tasks is attributed to MOBA’s subtask decomposi-
tion capability, which enables better app-switching
decisions during tasks requiring more steps. Ad-
ditionally, MOBA’s reflection module encourages
exploration, reducing repetitive actions and improv-
ing task success rates.

The Android Arena evaluation also highlights
limitations in task completion judgment with GPT-
4, with 11.8% of tasks being misclassified, com-
pared to the results checked by humans. This
is partly due to MOBA’s tendency to execute re-
dundant actions after completing tasks, compli-
cating GPT-4’s evaluation process. Despite this,
MOBA’s performance gains emphasize its strength
in handling complex multi-step tasks, especially
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in scenarios requiring extensive exploration and
app-switching, as evidenced by the significant im-
provements in cross-app success rates.

4 Case Study

Figure 3 demonstrates how the adaptive planning
and multifaceted memory support task completion
in MOBA. MOBA can accurately interpret user in-
tent from command “Help me check when will I
reach the travel destination tomorrow." and give
decomposed sub-tasks based on historical com-
mands. For sub-task 1, MOBA retrieves relevant
details from App and User Memory, extracts key
information (train schedule and destination), and
stores it in Action Memory. When encountering
failures, MOBA uses historical experiences to re-
flect and adapt. During sub-task 3, when MOBA
initially failed to input the train number using the
Box_Input function, it reflects on its previous oper-
ations and employs a character-by-character input
method, completing the task. The key feature of
this page will be saved into Page Memory, thus
MOBA is unlikely to encounter the same failure.
Additionally, memory retrieval is crucial for han-
dling contextual tasks. In sub-tasks 9 and 13, al-

though the user doesn’t explicitly specify the travel
date or destination in the task request. MOBA can
rely on previously stored Action Memory data to
provide an accurate response.

5 Related Work

5.1 LLM Agents

The advancements in M/LLMs have significantly
influenced the development of agents. LLM-based
agents leverage the autonomy, reactivity, proactive-
ness, and social ability of these models to perceive
external environments and make decisions (Xi
et al., 2023). Emerging abilities, such as CoT rea-
soning (Wei et al., 2022; Wang et al., 2023b; Zhang
et al., 2023c) and in-context learning (Brown et al.,
2020; Min et al., 2022). Recent studies have ex-
plored LLM-based approaches for reflection (Yao
et al., 2023; Madaan et al., 2023; Shinn et al., 2023;
Xu et al.), planning (Sun et al., 2024b; Qian et al.,
2024c; Huang et al., 2024), and memory mecha-
nisms (Zhang et al., 2024d,c; Li et al., 2023; Maha-
rana et al., 2024; Lan et al., 2024).

At the same time, the agents that utilize M/LLMs
to interact with the environments are quickly de-
veloped. These agents possess significantly en-
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hanced capabilities for environment observation,
task decomposition, and action decision-making,
which enable M/LLMs to solve complex tasks
across social simulations (Park et al., 2023; Aher
et al., 2023; Jo et al., 2023; Lan et al., 2024), em-
bodied robots (Wu et al., 2023), software devel-
opment (Qian et al., 2024b,a) and virtual assis-
tants (Wang et al., 2023a).

5.2 GUI Agents

5.2.1 Traditional GUI Agents
Controlling GUI screens based on user commands
is a complex task that involves both GUI under-
standing and command interpretation. Early ap-
proaches to GUI agents focused on embedding and
modular systems. For example, several agents (Li
et al., 2017, 2019) combined natural language and
programming demonstrations, allowing users to
define tasks via descriptions and demonstrations.
This method relied on text and image matching for
script-based control of the interface. Traditional
GUI agents were largely limited by their reliance
on pre-defined rules and manual programming.
These agents were effective within controlled envi-
ronments but struggled with dynamic, real-world
GUI contexts due to their lack of flexibility and
adaptability. They required specific scripts or rules
for each task, making them less robust when han-
dling the diverse and evolving nature of real-world
applications.

5.2.2 Advancements with Multimodal
Pretrain Models

The advent of multimodal pretraining models (Bai
et al., 2021; Li et al., 2021b; Li and Li, 2023; He
et al., 2021; Li et al., 2021a; Wang et al., 2021;
Fu et al., 2024) for GUI understanding marked a
significant shift in the development of GUI agents.
Pretrained agents (Sun et al., 2022; Zhu et al., 2023;
Zhang and Zhang, 2024; Xu et al., 2024) integrated
multimodal information, such as dialogue history,
screenshots, and action history, through pretrain-
ing. Unlike earlier methods that relied on rigid
scripts, these end-to-end models adopted a more
human-like approach to interacting with interfaces,
enhancing their efficiency in information retrieval
and task execution by mapping visual observations
and text commands directly into actions.

5.2.3 MLLM-Empowered GUI Agents
The integration of MLLMs in GUI agents has in-
troduced new opportunities to further enhance their

capabilities. With the rise of larger scale models,
GUI agents (Zhang et al., 2023a, 2024a; Lee et al.,
2024a) began to leverage advanced reasoning and
decision-making processes. These models utilized
structural information provided in the view hierar-
chy (VH) to annotate and locate UI elements, guid-
ing a sequence of atomic actions to achieve specific
goals. VH-only agents (Wen et al., 2024) depend
on the structural information to reason and make de-
cisions, which greatly lowers the cost of inference
making it suitable for deployment on the device.
Image-only agents (Wang et al., 2024a, 2025; Gao
et al., 2024; Yan et al., 2023), which employs OCR,
CLIP (Radford et al., 2021) module, and object de-
tection methods to identify operation targets. This
image-only approach is particularly effective when
the view hierarchy is inaccessible or noisy, but it
may also encounter challenges, e.g. opening a tar-
get application by clicking when names are hidden,
or logos vary across screens.

6 Conclusion and Future Works

This paper presented MOBA, an innovative Mobile
phone Assistant system empowered by MLLMs.
Utilizing a two-level agent structure, comprising
a Global Agent and a Local Agent, MOBA effec-
tively understands user commands, plans tasks, and
executes actions. The combination of Memory and
Plan Modules enhances its ability to learn from pre-
vious interactions, improving efficiency and accu-
racy. Our evaluations demonstrated that MOBA sur-
passes existing mobile assistants in handling com-
plex tasks, leveraging multi-level memory, task
decomposition, and action-validation mechanisms.
These features enable precise task execution even
with intricate or indirect commands. Future work
will focus on improving the performance on image-
only scenarios where the view hierarchy is unattain-
able, deploying an end-side model on mobile
phones for faster response and secured privacy. We
will continue to expand MOBBENCH by adding
more popular applications from different regions
and languages. We hope MOBA illustrates the po-
tential of MLLMs-empowered mobile assistants
and provides valuable insights for future works.
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Input: xml file of the current screen
Output: the annotated screen
// First pass: Filter the small elements and all useless attributes
elements← (sort(filter(elements), key=area)
selected_elements← ∅
// Second pass: select elements whose overlapping area with former ones is small
foreach element in elements do

if element is interactive then
is_valid← True foreach selected_element in selected_elements do

if overlapping_area is large then
is_valid← False

end
end
if is_valid is True then

selected_elements← selected_elements + element
end

end
end
// Third pass: Add the texts and merge the information of text into interactive elements
foreach element in elements do

foreach selected_element in selected_elements do
if element is contained in selected_element then

merge(element, selected_element)
end

end
end
// Final pass: Sort the elements from left to right, top to bottom
Sort(elements, key=(y,x))
Plot all the interactive elements with their index

Algorithm 2: The Logic of View-Hierarchy Process Algorithm

A Several Useful Links

Code of MOBA:
https://github.com/OpenDFM/MobA

Prompts used in MOBA:
https://github.com/OpenDFM/MobA/blob/

main/moba/prompts/prompts.py
Complete MOBBENCH:
https://huggingface.co/datasets/

OpenDFM/MobA-MobBench

B View hierarchy processing

Given that (1) large models still exhibit limitations
in processing visual information and (2) certain
elements of the mobile phone interface cannot be
obtained through visual means alone, the view hier-
archy (VH) plays a crucial role in enabling agents
to effectively interpret the mobile interface. How-
ever, the XML files representing mobile interfaces
contain a substantial amount of redundant informa-
tion. This redundancy increases token counts and
complicates the agent’s task of identifying key UI
elements.

To address this issue, we developed an algorithm
designed to filter UI elements. The algorithm con-
sists of four steps: (1) parsing UI elements from

the XML file, (2) filtering user-interactable UI el-
ements based on their attributes, and adding them
in ascending order of size, unless they exhibit sig-
nificant overlap with previously added elements,
(3) for UI elements containing text, merging the
text content with interactive elements if the text
is largely contained within those elements, thus
enriching the interactive element with explanatory
information, and (4) assigning an index to each UI
element according to its central coordinates, from
left to right and top to bottom, while plain text el-
ements are assigned an index of -1. This ensures
that the index ordering aligns more closely with the
user’s natural visual scanning behavior.

In summary, the core of our algorithm is the
preservation of key interactive elements and their
associated textual information, while minimizing
occlusion in the image. For example, in the case of
the "plane ticket" element demonstrated in Figure 4,
the UI element itself does not contain text, and the
text information associated with the plane ticket is
non-clickable. By merging the two, the agent can
infer that clicking the UI element corresponds to
selecting the plane ticket.

However, limitations remain in this approach.
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Useful: <element index=6 text="飞机票" 
resource-id="" class="android.view.ViewGroup" 

bounds="[492,605][947,770]" 
true_attributes="clickable" />

Useless: <node index="0" text="" 
resource-id="" 
class="android.widget.FrameLayou
t" package="com.MobileTicket" 
checkable="false" checked="false" 
clickable="false" enabled="true" 
focusable="false" focused="false" 
scrollable="false" long-
clickable="false" password="false" 
selected="false" 
bounds="[0,0][1440,3120]">

Merge &        
   Clean

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<hierarchy rotation="0">

<node index="0" text="" resource-id="" class="android.widget.FrameLayout" …>
<node index="0" text="" resource-id="com.MobileTicket:id/ticket_home_content_container" ...>

<node index="0" text="" resource-id="" class="android.widget.FrameLayout" ...>
<node index="0" text="" resource-id="com.MobileTicket:id/middle_content" ...>

<node index="0" text="火车票" resource-id="com.MobileTicket:id/tv_train" .../>
<node index="1" text="" resource-id="" class="android.view.ViewGroup" ...>

<node index="0" text="飞机票" resource-id="com.MobileTicket:id/tv_tab" .../>
</node>

                  …

Recognize & 
Extract

Text: <node index="0" 
text="飞机票" Resource-
id="com.MobileTicket:id/tv_tab" 
class="android.widget.TextView" 
package="com.MobileTicket" 
checkable="false" checked="false" 
clickable="false" enabled="true" 
focusable="false" focused="false" 
scrollable="false" long-
clickable="false" password="false" 
selected="false" 
bounds="[655,703][784,756]" />

Clickable: <node index="1" text="" 
resource-id="" 
class="android.view.ViewGroup" 
package="com.MobileTicket" 
checkable="false" checked="false" 
clickable="true" enabled="true" 
focusable="true" focused="false" 
scrollable="false" long-
clickable="false" password="false" 
selected="false" 
bounds="[492,605][947,770]"> 

102 elements → 41 elements

Figure 4: An Example Diagram of View-Hierarchy Processing. From left to right are the original image,
unprocessed image and processed image. The underlined parts are the properties that are retained after the merge.

There are cases where all elements in the XML
file are marked as "clickable=false", despite the
presence of interactive elements in practice. Ad-
ditionally, technical limitations sometimes prevent
the XML file from accurately reflecting the current
state of the interface.

C Action Space

We provide all actions supported in MOBA in Ta-
ble 4.

D MOBBENCH

We provide five examples of the tasks included in
MOBBENCH as shown in Table 5. You can get the
complete collection of 50 tasks in both Chinese and
English on Huggingface.

E Detailed Results Comparison

While the performance of all models is relatively
similar on simpler tasks, MOBA demonstrates supe-
rior results in more challenging tasks, outperform-
ing other models except for Human and GPT-4o +
Human. This suggests that MOBA is more efficient
in handling complex cases. Additionally, the in-
corporation of both the Memory Module and Plan
Module enhances performance, highlighting their
respective contributions to the system’s overall ca-
pability.

E.1 Human is more adaptive and robust to
screen interactions

While the human baseline is considered the opti-
mal solution for each task, the GPT-4o + Human
method achieves performance very close to that
of human operators on all metrics. In the evalua-
tion of GPT-4o + Human, the agent only provides
textual task descriptions and an initial screenshot,
and the GPT-4o generates detailed step-by-step in-
structions, which are then executed manually by a
human operator.

The eye-catching performance of GPT-4o + Hu-
man can be attributed to several factors: (1) a rela-
tively lenient standard in task execution, allowing
human operators to interpret GPT-4o’s general in-
structions flexibly; (2) human operators automati-
cally completing tasks such as OCR, target detec-
tion, and localization, ensuring more precise ac-
tions; (3) GPT-4o provides a global plan, avoiding
redundant or missed steps; (4) technical issues (e.g.,
inability to retrieve XML files or missing informa-
tion in the files) do not affect task completion.
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Action Type Usage Description

Click single Click(element_index: int)
This function clicks the center of the UI
element with the specified element
index.

Click by
Coordinate single Click_by_Coordinate(x: double, y:

double)

This function simulates a click at the
specified x and y coordinates on the
screen.

Double Click single Double_Click(element_index: int)
This function double clicks the center
of the UI element with the specified
element index.

Long Press single Long_Press(element_index: int)
This function long-presses the center of
the UI element with the specified
element index.

Scroll single Scroll(element_index: int, direction: str,
distance: str or int)

This function swipes from the center of
the UI element with the specified
element index.

Swipe single Swipe(direction: str, distance: str) This function swipes from the center of
the screen.

Type single Type(text: str) This function inputs text on the current
input box.

Back single Back() This function presses the back key to
return to the previous screen or status.

Box Input combination Box_Input(element_index: int, text: str) This function clicks the input box,
inputs given text, and confirms it.

Open App system Open_App(description: Optional[str]) This function locates and opens an app
with a short description.

Close App system Close_App(package_name:
Optional[str])

This function closes the specified app
by its package name.

Error system Failed() This function indicates that the task
cannot be completed.

Finish system Finish() This function indicates that the task is
completed.

Table 4: Available Actions and Descriptions
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Figure 5: Performance on MOBBENCH Categorized by Task Type.
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Type Application Task Preparation Scoring Milestones Steps

Easy McDonald’s Switch the language of the
McDonald’s app to English. Switch to Chinese. 1. Task completion. 6.7

Medium
12306
(China

Railway)

Check the schedule for train G104
from Shanghai to Beijing tomorrow,
and find out what time it is expected
to arrive in Nanjing.

-

1. Enter the timetable
screen,
2. Correct train number,
3. Task completion.

11.7

Hard Douban

Search for the movie "The
Shawshank Redemption" on
Douban, mark it as "watched", rate
it five stars, and leave a positive
review.

Remove the
previous mark,
rating, and review
of this movie.

1. Correct movie,
2. Correct mark,
3. Correct rating,
4. Positive review.

9.7

Indirect BiliBili
If I’m out of mobile data, what
videos can I still watch on the
phone?

Download several
videos in advance.

1. Open BiliBili,
2. Check downloads. 3.3

Cross-
APP

JD.com,
WeChat

Share the product link of the most
recent JD.com order with a WeChat
friend, and write a recommendation
message.

There is an existing
order.

1. Enter the order list,
2. Correct order,
3. Suitable message,
4. Task completion.

10.3

Table 5: Several example tasks in MOBBENCH. The content is translated from Chinese.
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