LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent
Applications

Danqing Zhang' , Balaji Rama'?, Jingyi Ni!, Shiying He', Fu Zhao'
Kunyu Chen?', Arnold Chen!, Junyu Cao*?

'PathOnAl.org’, 2Rutgers University, NJ, USA 3The University of Texas at Austin, TX, USA
danqing.zhang.personal@gmail.com, balaji.rama@rutgers.edu
junyu.cao@mccombs.utexas.edu
©) https://github.com/PathOnAl/LiteWebAgent

Abstract

We introduce LiteWebAgent, an open-source
suite for VLM-based web agent applications.
LiteWebAgent addresses a critical gap in the
web agent ecosystem by providing an extensi-
ble core agent framework featuring planning,
memory, and tree search capabilities, along-
side a production-ready solution that combines
minimal serverless backend configuration and
intuitive user and browser interfaces. For the
core LiteWebAgent agent framework, we im-
plemented a simple yet effective baseline us-
ing recursive function calling, providing de-
coupled action generation and action ground-
ing. In addition, we integrate advanced re-
search components such as agent planning,
agent workflow memory, and tree search in
a modular and extensible manner. We then
integrate the LiteWebAgent agent framework
with frontend and backend systems in two de-
ployment formats: (1) a production Vercel-
based web application that provides users with
an agent-controlled remote browser, and (2)
a Chrome extension that leverages LiteWe-
bAgent’s API to control an existing Chrome
browser via CDP (Chrome DevTools Proto-
col). The core LiteWebAgent framework is
available at https://github.com/PathOnAI/
LiteWebAgent, with deployed frontend at
https://lite-web-agent.vercel.app/.

1 Introduction and Related Work

Recent advancements in large language models
(LLMs) and vision-language models (VLMs) have
revolutionized web browser automation. By late
2023, models like GPT-4V demonstrated the ability
to handle real-world tasks on complex platforms
such as Reddit and GitLab (Zheng et al.; Zhou
et al., 2023). This marked a shift from basic Ul
commands on toy web pages (Shi et al., 2017)

* Corresponding author
"PathOnAlorg is an open-source Al research community
on GitHub: https://github.com/PathOnAl

to sophisticated automation, driving research into
VLM-powered agents for browser and device con-
trol. Companies like OpenAl, Anthropic, Adept,
Google, and Apple are actively developing au-
tonomous agents, recognizing their transformative
potential.

While significant progress has been made, au-
tomation tasks can generally be categorized into
two main approaches: web agents and device con-
trol agents. The following section outlines their
differences and respective strengths.

1.1 Web Agents vs. Device Control Agents

Web agents and device control agents differ in their
automation approaches. Web agents traditionally
operate by parsing website structure - using DOM
elements, HTML content, and accessibility trees -
to enable LLM-based action generation and ground-
ing. Recent advances have enhanced web agents by
incorporating visual processing through Visual Lan-
guage Models (VLMs) and Sets of Marks (SOM),
improving both action generation accuracy and
grounding precision. Device control agents, on the
other hand, focus exclusively on visual interaction -
using VLMs to process screenshots across different
platforms (macOS, Windows, Android, iOS) and
executing actions through tools like PyAutoGUI or
bash scripting.

Web agents leverage browser automation frame-
works (e.g., Selenium, Playwright) for direct
control, while device control agents depend on
screen coordinates. This makes web agents
more efficient for tasks like URL navigation,
which can be executed in a single command (e.g.,
‘page.goto(newUrl)’). A hierarchical multi-agent
system, where device control agents delegate web-
specific tasks to web agents, offers an optimal ar-
chitecture. In this work, we focus specifically on
web agents.

449

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(System Demonstrations), pages 449-455
April 30, 2025 ©2025 Association for Computational Linguistics

https://github.com/PathOnAI/LiteWebAgent
https://github.com/PathOnAI/LiteWebAgent
https://github.com/PathOnAI/LiteWebAgent
https://lite-web-agent.vercel.app/
https://github.com/PathOnAI

1.2 Current Landscape: Web Agent Research
and Frameworks

The field of web agent research and development
encompasses five distinct categories:

Evaluation Environments: Gym-compatible plat-
forms and benchmarks for web agent include We-
bArena (Zhou et al., 2023), VisualWebArena (Koh
et al., 2024a), WorkArena (Drouin et al., 2024),
MiniWoB (Shi et al., 2017), BrowserGym, and
WebShop (Yao et al., 2022).

Dataset Development: Comprehensive datasets for
agent training and evaluation include Mind2Web
(Gou et al., 2024) and WebLINX (Lu et al., 2024).
Algorithmic Advancement: Research focusing on
enhanced agent capabilities includes (1) Search/Re-
flection/Memory augmentation: Search Agent
(Koh et al., 2024b), Agent Workflow Memory
(Wang et al., 2024), SteP (Sodhi et al., 2024); (2)
Advanced planning: LATS (Zhou et al.), Reflective
MCTS (Yu et al., 2024); (3) Training methodolo-
gies: Mind2Web (Gou et al., 2024), WebLlama (Lu
etal., 2024).

Research-Oriented Frameworks: Recent works
have introduced research-oriented frameworks
such as SeeAct (Zheng et al.), OpenWebAgent
(Iong et al., 2024), WebPilot (Zhang et al., 2024c),
and AutoWebGLM (Lai et al., 2024).
Production-Ready Frameworks: Agent-E (Abuel-
saad et al., 2024), BrowserPilot, LaVague, and Sen-
tient. However, cloud-based versions like MultiOn
Playground(Multion, 2024) and Emergence Web
Automation(Emergence, 2024) are commercial ap-
plications that are not open-sourced.

Despite significant advances in web agent re-
search & development, a critical gap exists in the
ecosystem: the absence of a production-ready so-
lution that minimal serverless back-end configura-
tion, intuitive user and browser interfaces, while
maintaining extensibility for emerging research de-
velopments such as search agents and MCTS. The
LiteWebAgent Open-Source Suite addresses this
gap, offering a comprehensive solution for VLM-
based web agent applications.

1.3 Key Contributions

Key Contributions of the LiteWebAgent Open-
Source Suite are as follows:

1. LiteWebAgent Agent Framework: An ex-
tensible web agent framework that decouples
action generation from action grounding. It
supports various types of web agents, such

as FunctionCallingAgents and PromptA-
gents. Agent planning and memory are in-
tegrated into FunctionCallingAgents to en-
hance long-horizon task planning, tackle com-
plex workflows, and provide self-correction
mechanisms for improved robustness during
execution.

2. Agent Tree Search: Extends LiteWebAgent
to incorporate tree search, enabling explo-
ration of multiple trajectories and balancing
between exploitation and exploration.

3. Synchronous and Asynchronous APIs:
Seamlessly integrates with FastAPI for asyn-
chronous calls and serverless functions, re-
quiring minimal effort to deploy on platforms
like Vercel for backend use.

4. Flexible User Interface: Provides a system
configuration panel and a comprehensive chat
interface that features voice integration and
task execution visualization.

5. Two Types of Deployed Systems:

(a) A production-ready Vercel-based web
application that provides users with an
agent-controlled remote browser.

(b) A Chrome extension that leverages
LiteWebAgent’s API to control an ex-
isting Chrome browser via the Chrome
DevTools Protocol (CDP).

2 LiteWebAgent Agent Framework

In this section, we present the design of the web
agent framework implemented in the open-source
repository LiteWebAgent (Zhang et al., 2024b).
Specifically, the framework decouples action gen-
eration from action grounding, supports multiple
versions of agent planning, and integrates agent
memory into the planning process. This design en-
ables effective management of long-horizon tasks
that require both planning and error recovery. Fig-
ure 1 illustrates an overview of the web agent’s
workflow. Moreover, we explain how the agent
framework is extended with tree search to explore
multiple trajectories and balance exploitation with
exploration.

2.1 Decouple Action Generation and Action
Grounding

We first define our problem. We consider a contex-
tual Markov decision process model represented

450

an Generation (optional)

/;.

Action Generation

Option Selection

Web Scraping

Action Grounding

\

e=o

at
Action at timestamp ¢

Accessibility Tree

Document Object Model

Example: type
‘dining table’ in the
search box

Screenshot

0, observation
at timestamp ¢

Action Execution

fola, 0)

Executable code at

p- Remote Browser
timestamp ¢

RELELLTERTEERTEERLE .,
: - : Tools \
e/
Initial plan : o X 9 igati
prompt X, E - % Navigation
bi : 2 ?
= Agent Workflow Retriever= Updated {
H = planat
= Plan Generator * timestamp ¢ «,{) A
“’l SEEEEEEEEEEEEEEEES l‘..
ap, 0
Ty T
Example: ‘dining table’ typed in the search box

:Qj: Chrome DevTools Protocol 4

[=="Chromium Example: fill (144, ‘dining tabIE’)J

Figure 1: Agent workflow

by a tuple (X,S, A, M), where X is the con-
text space, S is the state space, and A is the ac-
tion space. In our context, xg € X is the ini-
tial plan prompt, which describes the plan of the
task; s; € S is the complete state of the web envi-
ronment; a; € A is the natural language descrip-
tion of the action at timestamp ¢. The mapping
M maps a task prompt zg € X to an episodic
Markov Decision Process (MDP) model denoted
as M (x¢) = (S, A, T,o0,7) with o, € O is the
observation at time ¢; r; € R is the reward/eval-
uation at time ¢; and T'(s¢,a;) € T is the state
transition function. Examples of webpage obser-
vations include the Accessibility Tree, simplified
DOM (Document Object Model), screenshot, Sets
of Marks (SOM), and interactive elements.

At time step ¢, given the trajectory of rewards
and actions (r1,...,7r¢_1,a1,...,a;_1), our agent
generates the next action a; in natural language by
considering the initial plan prompt x(. That is, the
VLM-based policy for action generation is defined
as ay ~ (T, "1,y T4—1,01,...,a;-1) € II,
where II is the policy class. Note that we cannot
use o; directly since o; typically contains exten-
sive semantic information, making it too long and
consuming too many tokens, so we only pass the
trajectory of r; as input to the VLM-based policy
for action generation.

For the policy 7, actions are selected using
greedy decoding, where the highest-ranked action
is chosen. Consider a pretrained language model
fo(x), parameterized by 6. When we use the model
fo(x) with function calling, it can access web
browser related tools like navigation for clicking

elements, scrolling, and page navigation, as well
as functionalities for uploading files, selecting op-
tions, and web scraping. With function calling, the
policy is defined as 7 = f/°(z). Once no further
function calls are triggered, the action generation
process is considered complete, signaling that no
additional actions are required. Alternatively, we
can use few-shot prompting by providing some ex-
ample actions in the prompt for the language model
to generate the action, denoted by 7 = 5™ (z).
However, unlike function calling, we will need
to define a ‘FINISH’ token explicitly in the con-
text, indicating when the agent has completed its
reasoning and action chain. In the LiteWebAgent
framework, we set the first type of web agent as
FunctionCallingAgents and the second type as
PromptAgents.

After action generation, we use prompting for
action grounding. Specifically, we employ a tai-
lored prompting method that leverages the current
webpage observation o, as context to transform the
natural language action a; into executable actions,
as a wrapper of Playwright code. This process can
be formalized as f,®(ay, o¢). Our framework is flex-
ible, allowing different combinations of features to
serve as the environment observation o;. Examples
include the Accessibility Tree (AXTree), simplified
DOM (Document Object Model), screenshots, Sets
of Marks (SOM), and interactive elements.

This decoupled approach provides greater flexi-
bility and precision in controlling the web interac-
tion process while significantly reducing the num-
ber of prompt tokens required for action generation.
Especially by separating the two steps and adopting

451

the FunctionCallingAgents, developers can seam-
lessly integrate new tools, such as web scraping or
file read/write functions, enabling the web agent
to have a broader range of capabilities within and
beyond web browsing, and making it compatible
for extension to multi-agent settings. In contrast,
other web agent frameworks, which are primarily
designed for browser interaction, lack this level of
flexibility.

2.2 Agent Planning

In our framework, we distinguish between two con-
cepts: goal and plan. The user is required to spec-
ify a goal, but the plan can be left empty. If no
plan is provided, we generate an initial plan using
a prompting method, based on the specified goal,
represented as o = f5'*"(goal).

We employ different types of planning for Func-
tionCallingA gents agents in our framework:

Basic Function Calling Agent: This agent lever-
ages the LLM’s planning ability to generate and
execute function calls recursively, stopping when
no further function calls are triggered. This sim-
ple stopping mechanism aligns with industry best
practices, like those in Claude’s computer use de-
mos. This simple yet effective approach works
surprisingly well for most tasks.

High-Level Planning Agent: This agent replans
based on action execution trajectory. The up-
dated plan at time ¢ is generated as x; =

plan .
fo (xo,r1,...,7¢—1,01,...,a4_1), and this plan
is then used to guide the action generation process,
T(X0y Ty Ty e oy Ty ALy e v ey Qp—1)-

Context-Aware High-Level Planning Agent: In
addition to replanning based on action execution
history, this agent incorporates context-aware in-
formation, such as the current environment ob-
servation (e.g., screenshots, Accessibility Tree).
The updated plan at time ¢ is generated as x; =
fglan(xo, Oty T1y ey Tt—1,0Q1,...,a:—1), Where oy
represents the current observation. This allows for
more informed decision-making based on the cur-
rent context.

2.3 Agent memory

We incorporate Agent Workflow Memory (AWM)
(Wang et al., 2024) into both the initial plan
generation and replanning steps of the LiteWe-
bAgent backend. In the initial plan generation,
the process is defined as ¢ = fgla”(goal, AWM),
where AWM, as relevant workflows to the current
task, is used to inform the plan. During replanning,

the updated plan at time ¢ is generated as z; =
1
0 (0, S, AWM, T, T, A A1),
where the current state, as well as all previous

evaluations and actions are taken into account.

2.4 Agent Tree Search

We extend LiteWebAgent with tree search capabil-
ities, making it the first non-research framework to
integrate a VLM-based web agent with tree search.

2.4.1 Algorithm Implementations

Rather than decoding a single trajectory, we ex-
plore multiple trajectories by sampling & actions
from the policy 7(zo,r1,...,7t—1,01,..,0—1),
where k is the branching factor. Each node ¢ in the
search tree is associated with an action a} and its
evaluation r¢. Backtracking through parent nodes
reconstructs the entire trajectory.

We implement Breadth-First Search (BFS) and
Depth-First Search (DFS) as SimpleSearchAgent.
For more sophisticated exploration, Monte Carlo
Tree Search (MCTS) balances exploitation and
exploration using four steps:

1. Selection: Starting from the root, select child
nodes based on the Upper Confidence Bounds,
balancing node value and visit count.

2. Expansion: Expand a leaf node by sampling
actions from 7 and adding new child nodes.

3. Evaluation: Use a VLM-based value function
to score each trajectory with a scalar in [0, 1].

4. Backpropagation: Propagate the reward
back to update node statistics along the path
to the root.

MCTS dynamically prioritizes promising nodes,
improving decision efficiency. MCTS and variants
are implemented as separate SearchAgents.

2.4.2 Implementation Details

Replay Module We implement a robust replay
module that executes action trajectories starting
from an initial URL. Our implementation converts
actions to Playwright code using unique selec-
tors for precise element targeting. These selectors
are generated by analyzing multiple element at-
tributes - including ID, name, role, and tag name
- while avoiding framework-specific patterns and
non-deterministic IDs. For improved reliability,
our implementation incorporates the element’s posi-
tion among siblings and relevant class names when
needed to ensure uniqueness and accuracy."

452

For example, the unique selector for the Google
search button is:
[role="search”] > div:nth-of-type (1) >
div:nth-of-type(1) > div:nth-of-type(2) >
div:nth-of-type(4) > div:nth-of-type(6) >
center > input[type="submit"]

[aria-label="Google Search”]:nth-of-type (1)

This selector can be used in Playwright to locate
and interact with the element.

VLM-Based Functions We reuse VLM-based
policy and reward functions from LiteWebAgent.
A VLM-based value function evaluates trajectories
V(xo, 71,, a¢—1) through prompt-
ing.

-y Tt—1,01, -

3 Demonstration

3.1 High level overview

Figure 2 provides a high-level overview of our im-
plemented systems. The frontend includes a chat
interface for user interaction and a browser inter-
face that displays the web agent performing actions
in the browser environment. Using the configura-
tion panel in the user interface, users can set system
parameters and send instructions to the backend
via the chat interface. Our system supports three
types of browser environments: (1) initializing a
new Chromium browser, (2) controlling an existing
Chrome browser via the Chrome DevTools Proto-
col (CDP), and (3) connecting to remote browsers.

The backend handles (1) initializing and con-
necting to the browser environment, (2) setting up
the web agent, and (3) processing user instructions
through action generation and grounding steps to
produce executable Playwright wrapper code. This
code is then executed in the browser environment,
while the interface provides real-time visualization
of agent actions.

While the agent performs actions, the backend
also sends intermediate task execution results to
the frontend, which are processed and displayed as
intermediate steps on the frontend.

Sections 3.2 and 3.3 provide detailed explana-
tions of the two fully deployed systems based on
this design: a production-ready full-stack web ap-
plication and a Chrome extension for controlling
an existing Chrome browser.

3.2 LiteWebAgent Full-Stack Deployed
System

Several industry implementations allow remote
browser control via iframes embedded in the fron-

tend, enabling users to observe and interact with
web agent actions (e.g., MultiOn Playground). Our
project offers an open-source alternative, with fron-
tend and backend endpoints deployed on Vercel.

3.2.1 Backend

Initially, we used BrowserGym (Drouin et al.,
2024) with Playwright’s synchronous API for the
backend. Compatibility issues with FastAPI and
asynchronous serverless functions led us to refac-
tor the system to Playwright’s asynchronous APL.
We integrated BrowserBase for remote browser
sessions, leveraging the ‘session_id’ to reconnect
to active sessions and displaying the live browser
URL in the frontend interface. These changes al-
lowed us to deploy the backend as a serverless
function on Vercel.

3.2.2 Frontend

Our frontend allows developers to create web
agents and enables users to interact with them di-
rectly in the browser.

User Interface Users interact with the system
through a configuration panel and chat interface.
They first set a starting URL and task goal, then
sequentially send plan prompts via the chat inter-
face. As the agent performs actions, intermediate
results—including execution status, step-by-step
action generation, action grounding output, and
action execution results—are displayed in the fron-
tend (Figure 3).Additionally, the chat interface sup-
ports voice integration with TTS (Text-to-Speech)
and ASR (Automatic Speech Recognition) pow-
ered by Deepgram.

Browser Interface Our system leverages
BrowserBase for the remote browser environment.
The frontend uses the session ID to retrieve the
live browser URL and embeds it in an iframe for
seamless interaction. To enhance the browser
interface, we introduced additional demo effects:
(1) interactive elements are highlighted as a Set
of Marks to improve action grounding by VLMs
(as shown in Figure 3), and (2) before each
action, relevant elements are highlighted with
explanatory text boxes containing natural language
descriptions.

3.3 LiteWebAgent Chrome Extension

In addition to the web interface, we provide a
Chrome extension that enables users to control lo-
cal browser sessions by attaching Playwright to

453

..........................

: Frontend : Instruction : Backend
i { User Interface 1\ : 4 :
& .~ Task Execution :
.= Parameter Config§ 1 e :
Pl (2 Chatinterface Intermediate Result : Action Generation
("""’""‘“"""‘"‘"ﬁ) Action Grounding
: { Browser Interface : Browser Environment
. . 2 Remote Browser
. Showing the Browser | 1 4
E E @ Chrome DevTools Protocol
E » ' [*="1 Chromium
‘ e’} Action Execution 5 :

Figure 3: Screenshot of frontend UI

an existing browser instance. This approach al-
lows LiteWebAgent to operate within a personal-
ized browser context (e.g., sign-in status) and offers
better privacy guarantees. The backend setup mir-
rors that of Section 3.2, but uses CDP (Chrome
DevTools Protocol) instead of a remote browser
environment.

The frontend interface is similar to the web inter-
face. The extension appears in a side panel along-
side the main webpage content. The configuration
panel allows users to select models, choose ac-
tion grounding features, and apply element filters
to reduce token usage. Users can send prompts
via the chat interface to instruct the agent to per-
form actions in the CDP browser environment. The
browser interface displays agent actions alongside
the target webpage, as shown in Figure 4.

4 Conclusion and Future Work

LiteWebAgent: The Open-Source Suite for
VLM-Based Web-Agent Applications offers a
robust toolkit to address key gaps in the web agent
ecosystem. It features: (1) an extensible core

Figure 4: Screenshot of Chrome extension Ul

agent framework with simple yet effective base-
line implementations, offering a scalable founda-
tion for integrating new research such as agent
workflows, memory management, planning, and
tree search, while making it easy for developers
to add additional tools beyond web browsing; (2)
asynchronous APIs that integrate seamlessly with
FastAPI, supporting serverless deployment on plat-
forms like Vercel; (3) a flexible user interface with
configuration options, a chat interface, voice inte-
gration, and task execution visualization; and (4)
two types of browser environments correspond to
the deployed systems: interactions with existing
browsers via the Chrome DevTools Protocol (CDP)
and a production-ready, Vercel-based full-stack ap-
plication — an open-source, MultiOn-style service
using a remote browser.

In the future, our objectives include: (1) ex-
tending the demo to build the first production-
ready web agent with tree search demo with a user-
friendly interface and intuitive visualization, (2)
integrating LiteWebAgent into multi-agent frame-

454

works such as Zhang et al. (2024a) to enable multi-
agent frameworks with web browsing capabilities,
(3) adding an evaluation module including new met-
rics to more comprehensively evaluate web agent
performance.

References

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish
Jagmohan, Aditya Vempaty, and Ravi Kokku. 2024.
Agent-e: From autonomous web navigation to foun-
dational design principles in agentic systems. arXiv
preprint arXiv:2407.13032.

Alexandre Drouin, Maxime Gasse, Massimo Caccia,
Issam H. Laradji, Manuel Del Verme, Tom Marty,
David Vazquez, Nicolas Chapados, and Alexandre
Lacoste. 2024. WorkArena: How capable are web
agents at solving common knowledge work tasks?
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 11642-11662.
PMLR.

Emergence. 2024. Web automation api. https://www.
emergence.ai/web-automation-api. Accessed:
December 15, 2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2024. Navigating the digital world as humans do:
Universal visual grounding for gui agents. arXiv
preprint arXiv:2410.05243.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai,
Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong,
and Jie Tang. 2024. Openwebagent: An open toolkit
to enable web agents on large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 72-81.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. 2024a. Visualwebarena: Evaluat-
ing multimodal agents on realistic visual web tasks.
arXiv preprint arXiv:2401.13649.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Rus-
lan Salakhutdinov. 2024b. Tree search for language
model agents. arXiv preprint arXiv:2407.01476.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, et al. 2024. Au-
towebglm: Bootstrap and reinforce a large language
model-based web navigating agent. arXiv preprint
arXiv:2404.03648.

Xing Han LU, Zdenék Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930.

Multion. 2024. Multion playground.
platform.multion.ai/playground.
December 15, 2024.

https://
Accessed:

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In In-
ternational Conference on Machine Learning, pages
3135-3144. PMLR.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan
McDonald. 2024. Step: Stacked Illm policies for web
actions. In First Conference on Language Modeling.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and
Graham Neubig. 2024. Agent workflow memory.
arXiv preprint arXiv:2409.07429.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.

Advances in Neural Information Processing Systems,
35:20744-20757.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng,
Michel Galley, Jianfeng Gao, and Zhou Yu. 2024.
Improving autonomous ai agents with reflective
tree search and self-learning. arXiv preprint
arXiv:2410.02052.

Danging Zhang, Balaji Rama, Jingyi Ni, and Shiying
He. 2024a. Litemultiagent: The library for llm-based
multi-agent applications.

Danging Zhang, Balaji Rama, Jingyi Ni, and Shiying
He. 2024b. Litewebagent: The library for llm-based
web-agent applications.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2024c. Webpilot: A versatile and
autonomous multi-agent system for web task exe-

cution with strategic exploration. arXiv preprint
arXiv:2408.15978.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. Gpt-4v (ision) is a generalist web agent, if
grounded. In Forty-first International Conference on
Machine Learning.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. Language agent
tree search unifies reasoning, acting, and planning in
language models. In Forty-first International Confer-
ence on Machine Learning.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. 2023. We-
barena: A realistic web environment for building au-
tonomous agents. arXiv preprint arXiv:2307.13854.

455

https://proceedings.mlr.press/v235/drouin24a.html
https://proceedings.mlr.press/v235/drouin24a.html
https://www.emergence.ai/web-automation-api
https://www.emergence.ai/web-automation-api
https://platform.multion.ai/playground
https://platform.multion.ai/playground

