NeMo-Inspector: A Visualization Tool for LLM Generation Analysis

Daria Gitman and Igor Gitman and Evelina Bakhturina
NVIDIA Corporation,
United States
{dgitman, igitman, ebakhturina} @nvidia.com

Abstract

Adapting Large Language Models (LLMs) to
novel tasks and enhancing their overall capabil-
ities often requires large, high-quality training
datasets. Synthetic data, generated at scale,
serves a valuable alternative when real-world
data is scarce or difficult to obtain. However,
ensuring the quality of synthetic datasets is
challenging, as developers must manually in-
spect and refine numerous samples to identify
errors and areas for improvement. This pro-
cess is time-consuming and requires special-
ized tools. We introduce NeMo-Inspector, an
open-source tool designed to simplify the anal-
ysis of synthetic datasets with integrated infer-
ence capabilities. We demonstrate its effec-
tiveness through two real-world cases. Analy-
sis and cleaning of the synthetically generated
GSM-Plus dataset with NeMo-Inspector led
to a significant decrease in low-quality sam-
ples from 46.99% to 19.51%. The tool also
helped identify and correct generation errors
in OpenMath models, improving accuracy by
1.92% on the MATH dataset and by 4.17% on
the GSMS8K dataset for a Meta-Llama-3-8B
model fine-tuned on synthetic data generated
from Nemotron-4-340B.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various appli-
cations. Recently, instead of limited and difficult-
to-obtain real-world data, synthetic datasets have
become widely popular. However, the quality of
the synthetic data cannot be guaranteed. Develop-
ers spend a lot of time analyzing model predictions
and tuning the prompt to find areas for potential
improvements.

This labor-intensive process underscores the
need for a tool that can streamline dataset exami-
nation, simplify prompt adjustment, and ultimately
expedite the refinement of model behaviors. There

are several tools available that offer valuable fea-
tures for dataset analysis, but each has its own lim-
itations. KNIME (KNIME, 2006) includes fea-
tures for comprehensive data analysis, but lacks
the convenience of sample-by-sample inspection
and text formatting. Lilac (Lilac, 2023) focuses on
the analysis of LLM datasets but does not support
inference, LaTeX formatting, or multi-generation
comparisons. LLM-Attributor (Lee et al., 2024) is
a specialized tool for understanding the influence
of training data on the generated text; however,
it is not suitable for the analysis of independent
generations. Finally, LLM-Comparator (Kahng
et al., 2024) allows side-by-side comparisons of
model outputs but lacks integrated inference capa-
bilities, manual editing, and handling for homo-
geneous multi-generation scenarios, allowing not
only side-by-side but also cross-generation analysis.
Table 1 shows the comparison of NeMo-Inspector
with other tools for data analysis.

To fill this research gap, we introduce NeMo-
Inspector ! - an open-source tool released under an
Apache 2.0 License. NeMo-Inspector provides the
following features:

1. Support for Different Types of Generations.
NeMo-Inspector facilitates systematic anal-
ysis of LLM outputs by categorizing them
into homogeneous and heterogeneous gener-
ations. Homogeneous generations, which are
produced by varying random seeds within
the same model and parameter settings, can
be grouped for collective analysis. This ap-
proach enables the computation of aggregate
statistics, such as the proportion of correct
responses. In contrast, heterogeneous gener-
ations, originating from distinct models, pa-
rameter configurations, or tasks, are inherently
disparate and not directly comparable as a uni-
fied set. These outputs are examined individu-

"https://github.com/NVIDIA/NeMo-Inspector

321

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(System Demonstrations), pages 321-327
April 30, 2025 ©2025 Association for Computational Linguistics

https://github.com/NVIDIA/NeMo-Inspector

Features NeMo Lilac LLM- LLM- KNIME
Inspector Attributor =~ Comparator

Syntax formatting v Markdown only X X X

Streamlined Inference v X X X X

Multiple generations v X X Comparing only X

Custom functions v X X v v

Table 1: Comparison of the NeMo-Inspector with existing freely available tools for data analysis. “Streamlined
Inference” refers to the ability to perform inference on models without requiring scripting or model weight uploads.
“Multiple generations” refers to the prepared workflow for simultaneous analysis of both “homogeneous” and

“heterogeneous” generations.

ally or side-by-side to elucidate differences in
performance and behavior.

2. Custom functions. The NeMo-Inspector sup-
ports user-defined Python functions to enable
customized filtering, sorting, editing, and sta-
tistical analysis.

3. Manual editing. Reviewing synthetic data
typically requires examining a large number
of individual samples. Incorporating notes or
labels during this process enhances contextual
understanding and enables a more detailed
and comprehensive analysis.

4. Streamlined inference through entry points
for Different Formats. The tool enables in-
teractive inference, facilitating rapid prompt
engineering. This functionality is powered
by NeMo-Skills 2 and supports the follow-
ing formats: NeMo (Kuchaiev et al., 2019),
TensorRT-LLM 3, vLLM (Kwon et al., 2023),
and inference servers that implement the Ope-
nAl API *.

5. Flexible visualization. Poorly formatted con-
tent, particularly large text blocks, can hin-
der comprehension, especially when dealing
with specialized datasets, such as those con-
taining complex mathematical formulas, code
snippets or domain-specific data. The NeMo-
Inspector supports Markdown, LaTeX format-
ting and Python syntax highlighting.

The rest of the paper is organized as follows.
Section 2 provides an overview of the key features
of the tool. Section 3 highlights common use cases
of the NeMo-Inspector. Section 4 presents the re-
sults from practical applications of the tool. Finally,

2https ://github.com/Kipok/NeMo-Skills
Shttps://github.com/NVIDIA/TensorRT-LLM
*https://platform.openai.com/docs/overview

sections 5 and 6 discuss the overall conclusion and
tool’s limitations.

2 Tool overview

The tool includes two pages that can be used sep-
arately or together: the Inference page, which fo-
cuses on interactive prompt design, and the Analyze
page, which provides a comprehensive examina-
tion of the model’s outputs.

By integrating both inference and LLLM gener-
ation analysis within a single tool, users can ef-
ficiently test hypotheses and gain insights from
generation analysis in real time.

2.1 Inference page

The inference page offers two modes: “Prompt-
based” and “Templates-based”, allowing users to
set inference parameters and interact with the
model. The distinction between the modes lies
in the prompt structure.

In “Prompt-based” mode, the user is responsible
for writing the entire prompt, including all special
tokens, query and few shot examples. In contrast,
the “Templates-based” mode leverages predefined
templates, allowing users to select or customize a
template by adding placeholders that will later be
automatically filled in.

For example, a template for few-shot examples
can be structured as:

Problem: {question}; Solution: {solution}

Here, {question} and {solution} serve as place-
holders that will be automatically replaced with
specific problem-solution pairs.

The “Prompt-based” mode is designed for ex-
ploring a single question, while the “Templates-
based” mode allows us to experiment with different
questions while keeping the settings fixed. Users
can set up the questions manually or extract them
from the chosen JSON Lines file.

322

https://github.com/Kipok/NeMo-Skills
https://github.com/NVIDIA/TensorRT-LLM
https://platform.openai.com/docs/overview

NeMo Inspector

T T T e o

question_index

2401 On Tuesday,
2402 Peter wants ..
2403 On Tuesday, Peter wants ..
2404 On Tuesday, Peter wants ..
2405 On Tuesday, Peter exerci.
2406 Peter has a goal to work..
2407 On Tuesday, Peter wants ..
2408 On Tuesday, Peter wants ..
® 2409 A simple folding newspap..
2410 A simple folding newspap..

correct_responses

Inference Analyze

Intra-Sample Analysis

wrong_responses no_response

dataset size: 10552 .
(Comparative A

overall number of samples: 527600

0.82 0.12 0.06
0.9 0.04 0.06
0.86 0.12 0.02
0.32 0.58 0.1
0.38 0.6 0.02
0.98 0 0.02
0.24 0.68 0.08

0 0.98 0.02
0.02 0.9 0.08

0 0.94 0.06

« < 241 / 1056 > »

nalysis)

generations per sample: 50.0

random_seed_0
8]

file_name -

labels Gp

Let's use sympy to write down an equation for th

generation ¢ -
pieces of paper needed.

\

B code @ latex
markdown @ansi

[Inter-Parameter Analysis)

code @ latex

Labels [‘
markdown @@ansi

Filters

v

random_seed_1

(1
e number of Let's analyze the problem.

Since there are 40 pages, we can divide 4@ by 2 (since each

import sympy as sp

define the symbols
num_pages = 40

let's write down an equation
num_pieces_of_paper = num_pages // 2 + 1

print(num_pieces_of_paper)

side of the paper has 2 pages) to get 20.

So, we need \boxed{20} pieces of paper for a 40-page tabloid.

1

So pieces of paper are needed to make the tal

Figure 1: Comprehensive data analysis with the Analy
view through three complementary perspectives: Intra-S
Analysis.

2.2 Analyze page

The Analyze page provides features to effectively
examine LLM generations and supports any text
dataset presented in JSON Lines format.

NeMo-Inspector provides features to examine
many individual samples efficiently. Each sample
is presented in a reader-friendly format, i.e. with
Markdown and LaTeX rendering, and Python syn-
tax highlighting. Additionally, the tool enables
manual editing, labeling, and highlighting of differ-
ences within the selected samples.

The tool offers simultaneous analysis from three
perspectives (Figure 1):

* Intra-Sample Analysis. This approach in-
volves evaluating each sample independently,
focusing on its individual characteristics
rather than comparing it to other samples. For
a given model and task, this analysis enables
a detailed examination of the sample’s input,

bloid.

ze page of NeMo-Inspector. The tool offers a holistic data
ample Analysis, Comparative Analysis, and Inter-Parameter

the corresponding model output, and any as-
sociated meta-information on a case-by-case
basis.

Comparative Analysis. The tool enables side-
by-side comparisons of LLM predictions un-
der different inference configurations or mod-
els. For example, users can compare model ac-
curacies based on Chain-of-Thought (Chung
et al., 2022) prompting versus least-to-most
prompting (Zhou et al., 2023).

Inter-Parameter Analysis. This involves anal-
ysis of model predictions across multiple in-
ference runs, including aggregate statistics,
such as calculating metrics based on majority
voting or other summary measures.

Users can write Python functions to calculate
statistics, sort and filter samples across different di-
mensions of the data, enabling tailored and detailed

323

analysis.

3 Usage scenarios

Most of the following applications are based on
mathematical datasets, as these were the primary
focus of our work. However, the tool is not re-
stricted to mathematical benchmarks and can be
effectively applied to any other text datasets. The
only requirement is that the datasets be in JSON
Lines format.

3.1 Synthetic data quality check

3.1.1 Setup

In this section, we demonstrate the use of the
NeMo-Inspector tool for performing data qual-
ity checks on the synthetically generated GSM-
Plus (Li et al., 2024) dataset. GSM-Plus is an ad-
versarially modified version of the GSM8K (Cobbe
et al., 2021) dataset, which consists of human-
written grade school math word problems. The
GSM-Plus dataset was specifically designed to as-
sess the robustness of LLMs under eight different
problem perturbations.

In this example, we work with the following two
perturbations (Table 2):

* “adding operation” - modifies the seed ques-
tion by incorporating additional statements.

* “numerical substitution” - replaces numerical
values with another number that has the same
number of digits, e.g., replacing 30 with 80.

For the analysis, we use the Meta-Llama-3-70B-
Instruct (Llama-3-70B) model (Al@Meta, 2024).
We sample 50 solutions for each problem with dif-
ferent random seeds, temperature = 0.7, top_p
= 0.95, and eight few shot examples (Chung et al.,
2022) for both GSM8K and GSM-Plus datasets.
A larger number of generations enables a more
thorough analysis to understand the stability of the
model’s predictions.

3.1.2 Statistics

The tool’s Inter-Parameter Analysis enables the
aggregation of metrics across different generations
(see Figure 1). In this example, the aggregation is
applied across multiple random seeds.

The tool currently includes predefined inter-
parameter statistics, such as the ratio of correct,
incorrect, or empty responses. Additionally, users
have the ability to extend these statistics with cus-
tom metrics of their own design.

To identify potential low-quality questions in
the GSM-Plus dataset, we introduce a statistic -
“persistence” (Listing 1) - indicating the model’s
confidence in its answers.

We define “persistence” as the maximum num-
ber of generations in which the model produces
identical answers to a given question. For instance,
if the model generates the answer A; in n run,
answer Ao in n9 run, and answer A,,, in n,,, run,
the “persistence” is equal to max(ni, na, ..., Ny).

Questions that consistently yield the same incor-
rect responses may indicate potential issues with
the quality of GSM-Plus samples.

3.1.3 Sorting

Next, we utilize the aggregated statistics to identify
and analyze the most challenging questions for the
model. The data is sorted to prioritize questions
with the lowest accuracy rates and highest persis-
tence levels. Upon examining the top 10 questions,
we observe that some samples contain two ques-
tion marks, which leads to the model’s uncertainty
regarding which one to address.

3.1.4 Filtering, labeling and batch editing

We can identify all data points containing two ques-
tion marks, and then consider several options for
handling them. One approach is to apply a batch
editing and automatically remove the extra ques-
tions to fix the samples. However, this method
carries the risk that the expected answer may no
longer be correct, as it could be tied to the removed
question. Alternatively, we can label or filter out all
problems with two question marks, marking them
as “bad quality”, and save the dataset accordingly.

3.1.5 Comparison

The Comparative Analysis functionality of the tool
allows developers to compare model predictions
side by side. For example, when analyzing the “nu-
merical substitution” category, we compare LLM
predictions on the GSM-Plus dataset to those on
the corresponding unperturbed GSM8K samples.
We expect the reasoning to remain the same as this
perturbation type affects only numbers. However,
we detect samples with two identical solutions for
the perturbed question and the original, but only
one of the solutions leads to the expected answer.
This suggests that these samples have an incorrect
expected answer field (Figure 2). We can also label
or exclude such samples with the NeMo-Inspector
tool.

324

Perturbation Type Question Answer

Original Ali had $21. Leila gave him half of her $100. How much does 71
Ali have now?

Adding Operation Ali had $21. Leila gave him half of her $100. After that, Ali 76

spent $15 on a book and then his friend, John, gave him a
quarter of his $80. How much does Ali have now?

Numerical Substitution
Ali have now?

Ali had $30. Leila gave him half of her $120. How much does 90

Table 2: An example of a GSM8K question and its corresponding perturbed versions from the GSM-Plus dataset.

from collections import Counter
def persistence (datas):
counter =

Counter ([data["predicted_answer "]

for data in datas])

return counter.most_common (1)[0][1]

{"persistence": persistence}

Listing 1: An example of a custom statistic that counts the maximum number of samples with an identical answer.

3.2 Annotation of LLM generations

3.2.1 Labeling

The NeMo-Inspector supports Intra-Sample anal-
ysis, allowing for the examination of individual
generations. An example of this analysis is data
annotation.

To reveal the common problems of the model,
we can manually go through a small number of
samples and label them according to some prede-
fined taxonomy.

For example, consider a dataset of chatbot cus-
tomer service responses generated by an LLM. Re-
searchers manually label each response to highlight
instances that are too vague, fail to address the cus-
tomer’s concern, or exhibit an impolite tone. This
annotated dataset reveals some recurring issues,
and the team can adjust the model’s training data
to address these weaknesses.

3.2.2 Manual editing

To make the annotation even more substantial,
users can edit the model’s response to leave notes
useful for further analysis. For instance, they can
mark with some tokens a specific place where the
model’s response was impolite.

3.3 Prompt adjustment

3.3.1 Setup
In this section, we use the Inference page of the
tool, MATH (Hendrycks et al., 2021) dataset and

prerelease version of OpenMath-Mistral-7B-v0.1
model (Toshniwal et al., 2024). The MATH dataset

consists of 12,500 challenging competition mathe-
matics problems.

3.3.2 Interactive inference

While evaluating the performance of the
OpenMath-Mistral-7b model on the MATH dataset,
we observed instances where the model failed
to recall or apply certain common facts. This
prompted us to hypothesize that reinforcing these
facts might improve the model’s performance
on the dataset. To test this hypothesis, we
implemented the following approach:

1. We chose a single question from the dataset
where the model could not solve the question
due to the lack of knowledge, i.e.:

Let a, b, ¢ be the roots of 3z:> —3x%+
11z — 8 = 0. Find ab + ac + bc.

To solve the question, the model should know
Vieta’s formula.

2. We added information about the missing fact
to the prompt:

You’re an expert mathematician.
Help the user to solve this problem.
You can use the following facts to
solve the problem:
Vieta’s Formula for the Cubic Equa-
tion: If f (x) = asx®+asr®+arz+
ag is a quadratic equation with
roots «, B and ~y then, sum of roots
az

=a+ B+~ = —%; sum of product

as

325

generation — o Let's break it down step by step!

John huysof shoes for each of his |4 children.

So, the total number of shoes he buys isx|z|= 12 pairs.

Each pair costs so the total cost is 12 x = $600.

Thus, John paid \boxed{600} dollars.

question - o
cost each. How much did he pay?

12

expected_answer —

is_correct - o

John buysof shoes for each of his |4 children.| They

Let's break it down step by step!

John buysof shoes for each of his
So, the total number of shoes he buys 15x= 6 pairs.
Each pair costs so the total cost is 6 x = $360.

Thus, John paid \boxed{360} dollars.

John buysuf shoes for each of his |3 children.| They

cost each. How much did he pay?
360

True

Figure 2: An example of similar solutions with varying correctness illustrates the incorrect expected answer. On the
left is a question from the GSM-Plus dataset, and on the right is a question from the GSMS8K dataset.

of two roots = aff+ay+ By = 2;
product of roots = affy = — 22,

as

3. Sent the updated query to the model and
checked whether the model could solve the
problem with our help - it could successfully
apply the formula and solve the problem.

The inference page can also be used for initial
prompt adjustment. When using a new model for
synthetic data generation, it is crucial to verify the
effectiveness of the prompt and adjust it as needed
to meet the generation goals.

4 Results
4.1 GSM-Plus Cleaning

We used the tool to reduce bad quality samples in
the synthetic GSM-Plus dataset from 46.99% to
19.51% - less than 5% in each category. To assess
the quality of the initial and cleaned versions of the
GSM-Plus dataset, we manually checked ten ran-
dom samples per perturbation category where the
model generated incorrect responses. The cleaned
dataset can be found in the NeMo-Skills reposi-
tory. >

In section 3.1, we show only a few examples of
GSM-Plus dataset analysis. To get the final version
we cleaned each category deeper.

4.2 OpenMathlnstruct-1

We applied NeMo-Inspector to identify error pat-
terns in OpenMath-Mistral-7B-v0.1 models on
GSMS8K and MATH (Hendrycks et al., 2021)
datasets. The error analysis revealed some recur-
rent problems: 1) Code Execution Errors, when
the models generate code that executes with an
error message, the models cannot recover from

5https ://github.com/NVIDIA/NeMo-Skills/blob/
main/nemo_skills/dataset/gsm-plus/prepare.py

it. The tool’s statistics feature helped identify ap-
proximately 26% of such execution-related issues
across code-based solutions. 2) Calculation Errors,
when models perform correct reasoning steps but
fail in arithmetic calculation. These errors were
identified by comparing text-based solutions with
their corresponding code-based solutions, which
did not exhibit the same issue. There are in-depth
examples of these errors in (Toshniwal et al., 2024).
To address code execution errors, we relaunched
the code generation when we encountered an er-
ror. This led to a 1.92% accuracy improvement on
OpenMath models on the MATH dataset. To rec-
tify calculation issues, we updated the dataset used
for fine-tuning. We changed all expressions where
the model combines many arithmetic operations
into one at a time and changed the single combined
operation to many small ones. This boosted the ac-
curacy of the Meta-Llama-3-8B model (fine-tuned
on Nemotron-340B (Adler et al., 2024) generated
data) on the GSM8K dataset by 4.17%. Our results
underscore the importance of data exploration in
the development of language models.

5 Conclusion

This paper introduces NeMo-Inspector, an open
source tool developed to facilitate the analysis of
LLM generations and experimentation with vari-
ous inference configurations. It offers simultane-
ous analysis from different perspectives by allow-
ing to work with both homogeneous and heteroge-
neous LLM generations. NeMo-Inspector features
advanced visualization capabilities and provides
streamlined inference, as well as user-defined cus-
tom functions and statistics.

NeMo-Inspector effectively expedited the clean-
ing process of the GSM-Plus dataset, reducing
the number of low-quality samples from 46.99%
to 19.51%. Furthermore, the tool helped detect

326

https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/dataset/gsm-plus/prepare.py
https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/dataset/gsm-plus/prepare.py

generation issues in OpenMath models that led
to a 1.92% drop in accuracy for these models
on the MATH dataset and 4.17% on the GSM8K
dataset for Meta-Llama-3-8B model fine-tuned on
data generated from Nemotron-4-340b. (Ando and
Zhang, 2005)

6 Limitations
The current version has the following limitations:

* The tool is designed to facilitate the anal-
ysis of any text datasets across various do-
mains. However, its functionality is restricted
to datasets formatted in the JSON Lines
(JSONL) structure.

* The tool lacks hosting capabilities and instead
executes code written by users in custom func-
tions. This approach poses potential security
risks, particularly when the tool is made avail-
able for use by external users.

* Inference works through NeMo-Skills scripts.
Therefore, it supports only models supported
by NeMo-Skills scripts.

Acknowledgments

The authors would like to thank Elena Rastorgueva,
Grigor Nalbandyan and Ivan Moshkov for their
review and feedback.

References

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H
Anh, Pallab Bhattacharya, Annika Brundyn, Jared
Casper, Bryan Catanzaro, Sharon Clay, Jonathan Co-
hen, et al. 2024. Nemotron-4 340B Technical Report.
arXiv:2406.11704.

Al@Meta. 2024. Llama 3 Model Card.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research, 6:1817-1853.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Prob-
lems. arXiv:2110.14168.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. 2021. Measuring mathe-
matical problem solving with the math dataset.
arXiv:2103.03874.

Minsuk Kahng, Ian Tenney, Mahima Pushkarna,
Michael Xieyang Liu, James Wexler, Emily Reif,
Krystal Kallarackal, Minsuk Chang, Michael Terry,
and Lucas Dixon. 2024. Llm comparator: Visual an-
alytics for side-by-side evaluation of large language
models. In Extended Abstracts of the CHI Confer-
ence on Human Factors in Computing Systems, pages
1-7.

KNIME. 2006. KNIME. https://www.knime.com/.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
Patrice Castonguay, Mariya Popova, Jocelyn Huang,
and Jonathan M. Cohen. 2019. NeMo: a toolkit
for building AI applications using Neural Modules.
Preprint, arXiv:1909.09577.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Seongmin Lee, Zijie] Wang, Aishwarya Chakravarthy,
Alec Helbling, ShengYun Peng, Mansi Phute,
Duen Horng Chau, and Minsuk Kahng. 2024. Llm
attributor: Interactive visual attribution for llm gener-
ation. arXiv preprint arXiv:2404.01361.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. GSM-Plus: A Com-
prehensive Benchmark for Evaluating the Robust-
ness of LLMs as Mathematical Problem Solvers.
arXiv:2402.19255.

Lilac. 2023. Lilac. https://www.lilacml.com/.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. arXiv:2402.10176.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex
reasoning in large language models. Preprint,
arXiv:2205.10625.

327

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://www.knime.com/
https://arxiv.org/abs/1909.09577
https://arxiv.org/abs/1909.09577
https://www.lilacml.com/
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

