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Abstract
Autonomous LLM-based agents have emerged
as a powerful paradigm for complex task ex-
ecution, yet the field lacks standardized tools
for development, deployment, and distribution.
We present Cerebrum, an open-source platform
that addresses this gap through three key com-
ponents: (1) a comprehensive SDK featuring a
modular four-layer architecture for agent devel-
opment, encompassing LLM, memory, storage,
and tool management; (2) a community-driven
Agent Hub for sharing and discovering agents,
complete with version control and dependency
management; (3) an interactive web interface
for testing and evaluating agents. The plat-
form’s effectiveness is demonstrated through
implementations of various agent architectures,
including Chain of Thought (CoT), ReAct, and
tool-use agents. Cerebrum advances the field
by providing a unified framework that standard-
izes agent development while maintaining flexi-
bility for researchers and developers to innovate
and distribute their agents. The live website
is at https://app.aios.foundation, the code is at
https://github.com/agiresearch/Cerebrum, and
video https://app.aios.foundation/video-demo.

1 Introduction

Autonomous LLM-based agents (agents for short)
have emerged as a transformative paradigm in ap-
plying and advancing the capabilities of Large Lan-
guage Models (LLMs) beyond text prediction to
executing complex tasks through planning, reason-
ing, tool using, and goal-directed actions (Ge et al.,
2023a; Shinn et al., 2024; Li et al., 2023; Deng
et al., 2024; Mei et al., 2024). The paradigm scales
to real-world issues such as web browsing (Iong
et al., 2024; Deng et al., 2024), social simulation
(Park et al., 2023; Pang et al., 2024), and decision-
making (Hua et al., 2024; Mao et al., 2023).

Although with the fast advancement of LLM-
based agent research in the recent year, there still
lacks a unified platform for researchers and devel-
opers to develop, deploy, and distribute their agents,

and for users to discover and use the agents. This
demonstration paper introduces Cerebrum Agen-
tHub, which not only provides an SDK for agent
development and deployment, but also provides a
web-based platform for agent developers to share
their agents, and for agent users to easily use the
agents both through interactive web-based UI inter-
face and through code-based calling of pre-loaded
agents through one line of code.

More specifically, Cerebrum is a library accom-
panied with a live demo dedicated to supporting
a standardized way to build, run, deploy, and dis-
tribute agents and agent components. At the core of
the library is a unified framework for constructing
diverse agents, containing optimized implementa-
tions of popular agent methodologies such as Chain
of Thought (CoT) (Wei et al., 2022) and ReAct
(Yao et al., 2022), with the goal of supporting im-
plementations of agent variants that are easy to
read, extend, and deploy. Furthermore, the library
supports the distribution and usage of user-created
agents in a centralized agent hub.

2 Related Work

AI Agents have long been considered an important
step towards generalist intelligence (Wooldridge
and Jennings, 1995; Jennings et al., 1998; Bres-
ciani et al., 2004). Acting as core coordinators,
agents are envisioned as intelligent entities that can
perceive their surroundings, build memories (Xu
et al., 2025a; Wang et al., 2024b), devise plans,
and autonomously carry out actions to fulfill tasks
(Wang et al., 2024a; Deng et al., 2024; Shi et al.,
2025; Xu et al., 2025b; Zhang et al., 2024a).

The emergence of LLMs has drastically ex-
panded the potential for advancing agent technol-
ogy, as demonstrated by recent breakthroughs (Liu
et al., 2024; Zhang et al., 2024b). Traditional
prompt-based interactions are typically static, func-
tioning as direct input-output exchanges with lim-
ited adaptability. In contrast, LLM-driven agents
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are designed to enable dynamic decision-making
processes, granting them the ability to interpret con-
text, generate flexible responses, and act indepen-
dently (Shinn et al., 2024). This evolution allows
agents to transition from handling simple, single-
step tasks to becoming versatile, general-purpose
problem solvers (Ge et al., 2023a).

3 Cerebrum Library Design

Cerebrum is designed to provide a standardized
framework for developing LLM-based agents, ad-
dressing the growing need for systematic agent
architectures in the artificial intelligence commu-
nity. The library implements a modular approach
that facilitates both research and production de-
ployments while maintaining flexibility for various
use cases. The library’s architecture consists of
two primary components: (1) a layered system for
agent composition and (2) a client interface for ker-
nel communication. This dual architecture enables
both fine-grained control over agent behavior and
rapid development through high-level abstractions.

3.1 Layer Architecture

Every agent in the library is fully defined by four
foundational building blocks shown in the diagram
in Figure 1: (a) an LLM Layer, which manages
model interactions and resource allocation, (b) a
Memory Layer, which handles context manage-
ment and state persistence, (c) a Storage Layer,
which provides durable storage capabilities, and (d)
a Tool Layer, which enables structured interaction
with external systems. Most agent development
requirements can be addressed through the com-
position of these four components. These layers
represent connections with the corresponding parts
of the AIOS kernel (Mei et al., 2024, 2025; Ge
et al., 2023b), allowing agents to run on the kernel.

3.1.1 Large Language Model Layer

The Large Language Model (LLM) layer allows
agents to utilize LLM cores as their backbones.
While each supported model may have unique char-
acteristics, the LLM Layer provides a standardized
interface that enables seamless switching between
different providers and architectures. Cerebrum,
for the most part, is able to determine smart de-
faults for LLM parameters such as temperature,
resource constraints, etc, but also provides addi-
tional fine-grained control over these parameters.

3.1.2 Memory Layer
The Memory Layer implements sophisticated
working memory management for agents, crucial
for maintaining context and enabling informed
decision-making. The layer provides configurable
memory limits, eviction strategies, and custom pol-
icy support. Memory limits are specified in bytes,
with default configurations suitable for most ap-
plications. It implements an LRU-k eviction ap-
proach, where k determines the number of items
considered for removal when memory limits are
reached. This enables agents to maintain relevant
context while efficiently managing computational
resources through configurable eviction policies.

3.1.3 Storage Layer
The Storage Layer provides persistent storage capa-
bilities essential for long-term knowledge retention
and cross-session continuity. The system supports
both traditional hierarchical storage through a root
directory structure and modern vector databases for
efficient similarity-based retrieval. When vector
databases are enabled, the system can be config-
ured with specific embedding models, dimension
parameters, and indexing strategies. This flexibil-
ity allows for optimization based on specific de-
ployment requirements and enables sophisticated
knowledge management capabilities.

3.1.4 Tool Layer
The tool layer implements a comprehensive inter-
face that handles the complexities of tool discovery,
loading, and integration with large language mod-
els. Through a standardized protocol, it manages
tool initialization, parameter validation, and execu-
tion flow while maintaining proper error handling.

3.1.5 Overrides Layer
Cerebrum features an optional Overrides Layer that
provides fine-grained control over AIOS Kernel
parameters. While most standard deployments op-
erate effectively with default configurations, this
layer enables advanced customization (e.g., sched-
uler) for specialized use cases. Modifications can
only be performed through carefully designed in-
terfaces. In this way, the modifications made by the
developers will not influence the system stability.

3.2 Manager Module

A key component of the library is the manager ab-
straction, which orchestrates agent and tool lifecy-
cle operations. The manager system consists of two
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Figure 1: The architecture of Cerebrum on the basis of AIOS.

specialized components: the agent manager and the
tool manager. These managers share largely iden-
tical functionality, with minor differences in their
handling of their respective artifacts. Their primary
responsibilities encompass distribution, versioning,
caching, packaging, downloading and uploading.

3.2.1 Distribution, Version Control,
Dependency Resolution

The framework maintains a centralized repository
for agents, supporting versioning and dependency
management. Each agent is uniquely identified by
a triple of author, name, version, enabling precise
version control and reproducibility of agents.

3.2.2 Caching, Packaging
To optimize system performance and minimize net-
work overhead, the Cerebrum manager designs and
implements the caching mechanism for both tools
and agents. The packaging provides bundling of
agents and their dependencies, allowing for repro-
ducible deployments across different environments.
And the cerebrum employs version-aware storage
and retrieval strategies, enabling efficient manage-
ment of different component versions while ensur-
ing consistency across deployments.

3.2.3 Upload, Load, Download
Cerebrum supports direct uploading of packaged
.agent and .tool files to their respective hubs
through a streamlined interface. The download

functionality is provided with built-in verification
and integrity checks. The loading of agents is dy-
namic This loading is dynamic, allowing agents to
be instantiated and used at run-time while main-
taining proper isolation, which ensures operational
stability and prevents unintended interactions be-
tween different agents and tools.

3.3 Client Interface and Auto-configuration
The library also features a client interface to both
allow users and agents themselves to interact with
the AIOS kernel, as well as the AIOS kernel to
interact with agents. Users can use the client to run
agents on the AIOS kernel, while AIOS uses the
kernel to download, load, and run agents and tools.
Additionally, we feature Auto- classes that abstract
around multiple components of the Cerebrum li-
brary to allow for 1-2 line loading and deployment.

The client interface serves as the bridge between
the application logic (layers + manager) and the
AIOS kernel. The interface adopts a declarative
configuration approach, where The client system
implements a builder pattern that maintains strict
initialization order dependencies while providing a
fluent interface for component composition.

The client interface is augmented by a set of
Auto classes that provide factory methods for
reusable agent components. Similar to the Auto
classes in the Transformers library, these compo-
nents handle the complexities of initialization with
sensible defaults and full configurability.
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Figure 2: Cerebrum AgentHub Demo: https://app.aios.foundation/agenthub

# Load the agent
agent = AutoAgent.from_preloaded("

example/academic_agent")

# Use the agent
response = agent.run({

’task’: "Your input here"
})

4 Agent Standard

The library provides a comprehensive agent build-
ing framework that emphasizes composition over
inheritance. Unlike traditional agent frameworks
that often require deep understanding of implemen-
tation details and rigid structual foundations, Cere-
brum’s building system enables rapid development
through high-level abstractions while maintaining
access to low-level controls when needed.

The framework introduces the concept of agent
specifications - declarative definitions that describe
an agent’s capabilities, resource requirements, and
behavioral patterns. These specifications can be
composed, extended, and modified dynamically,
enabling flexible agent architectures that can adapt
to different deployment scenarios. Its implemented
resource management strategies include: ① Au-
tomatic tool resolution and dependency manage-
ment. ② Dynamic resource allocation based on
agent specifications.

A key innovation in the building framework is its
handler system, which provides extension points
for customizing agent behavior without modifying
core components. These handlers can intercept and
modify agent operations at various stages, enabling
behavior patterns while maintaining the benefits of
the standard agent lifecycle.

5 Community Agent Hub

Cerebrum implements an open-source distribution
platform for AI agents, following a model similar
to Hugging Face’s hub architecture. The Com-
munity Agent Hub serves as a central repository
where researchers can freely share, discover, and
utilize agents that conform to the Cerebrum agent
specification. The hub itself is a hosted, publicly
accessible server featuring both an overall listing
of all agents and agent-specific pages.

Agents and tools are stored in an encrypted,
hashed, and compressed format, containing ref-
erences to their individual component files. Indi-
vidual agent landing pages provide comprehensive
information including: ① Version control and re-
lease history. ② Direct access to the agent’s in-
ference API endpoints via Agent Chat. ③ Licens-
ing information and README documentation. ④

Source code accessibility for transparency and re-
producibility. ⑤ Usage instructions.

A current limitation of the hub is the absence
of a formal vetting process for uploaded agents.
Future work may explore implementing security
scanning, performance validation, and compliance
checking mechanisms.

6 Community Agent Chat

To facilitate direct interaction with and evaluation
of agents, we provide a public chat interface that en-
ables real-time communication with agents hosted
in the Community Hub. This interface serves as
both a research tool for analyzing agent behavior
and a demonstration platform for agent capabilities.

The chat system implements a mention-based in-
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Figure 3: AgentChat Page: https://app.aios.foundation/chat

teraction model using the @ syntax (e.g. name
query), where users can invoke specific agents.
While the current implementation supports single
agent interactions, multiple agents can be inter-
acted with in a single conversation. Rate-limiting
mechanisms are in place to ensure system stability
and fair resource allocation.

Users can interact with any agents stored in the
agent hub, which are served on a remote AIOS
instance. The agent chat functions as a wrapper
around a Cerebrum client that communicates with
this remote instance. The system supports persis-
tent, on-device chat and conversation memories,
allowing users to maintain multiple different chats,
which can also be deleted as needed.

7 Applications

To demonstrate the real-world applications of Cere-
brum, we implemented four distinct agents that
showcase different prompting techniques and capa-
bilities: Chain of Thought (CoT), ReAct, a baseline
chatbot, and a tool-augmented agent. These imple-
mentations serve to validate the flexibility and ex-
pressiveness of our agent specification framework.

7.1 Baseline Chatbot

To establish a performance baseline, we imple-
mented a standard chatbot agent that maps input
directly to output without intermediate reasoning.

P (y|x) = LLM(prompt(x)) (1)

This serves as a control for evaluating the bene-

fits of more sophisticated prompting techniques.

7.2 Chain of Thought Agent
Chain of Thought prompting (Wei et al., 2022;
Wang et al., 2022; Jin et al., 2024) enables step-
by-step reasoning in language models. The process
can be formalized as follows:

Given input query x, the agent generates interme-
diate reasoning steps s1, . . . , sn before producing
final output y:

P (y|x) =
∑

s1,...,sn

P (y|sn)P (sn|sn−1) . . . P (s1|x) (2)

The prompt template is implemented as:

prompt(x) = “Let’s approach this step by step:” + x (3)

Each reasoning step si is explicitly generated
and tracked, allowing for: ① Verification of logical
consistency. ② Identification of failure points. ③

Analysis of reasoning patterns.

7.3 ReAct Agent
ReAct (Yao et al., 2022) combines reasoning and
action in an interleaved manner. We implement this
as a Markov Decision Process where:

• State space S: Current context + reasoning
history

• Action space A: {Thought, Action, Observa-
tion}

• Transition function T (s′|s, a): Updates state
based on chosen action
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Figure 4: Agent Details: https://app.aios.foundation/agents/example/academic_agent

• Policy π(a|s): Determines next action given
current state

The agent follows the cycle:

Thought leads to−−−−−→ Action
generates−−−−−−→ Observation informs−−−−−→ Thought (4)

Formally, at each step t:

at ∼ π(·|st) (5)

st+1 = T (st, at) (6)

7.4 Tool-Augmented Agent
The tool-augmented agent demonstrates Cere-
brum’s external tool integration capabilities. The
agent employs a hierarchical decision process:

1. Tool Selection:

P (tool|x) = softmax(fselect(x))

2. Tool Parameter Generation:

params = fparams(x, tool)

3. Tool Execution:

result = execute(tool, params)

4. Response Generation:

y = frespond(x, result)

Where fselect, fparams, and frespond are learned
functions implemented via prompt engineering.

8 Conclusion
We presented Cerebrum, a platform for develop-
ing, deploying, and distributing LLM-based agents.
The platform addresses fundamental challenges in
the agent development ecosystem through three key
innovations: (1) a modular four-layer architecture
that standardizes agent development while main-
taining flexibility, (2) a community-driven Agent
Hub that facilitates agent sharing and discovery,
and (3) an interactive chat interface for direct agent
evaluation and testing. Our implementations of var-
ious agent architectures, including CoT, ReAct, and
tool-augmented agents, demonstrate the platform’s
versatility and effectiveness.

Looking forward, we envision several directions
for future work. First, enhancing the Agent Hub
with formal security and performance validation
mechanisms would increase trust and reliability in
shared agents. Second, expanding the tool layer to
support more complex multi-agent interactions and
collaborative scenarios could enable more sophis-
ticated agent behaviors. Finally, developing stan-
dardized benchmarks and evaluation frameworks
specifically for testing agents built with Cerebrum
would help quantify and improve agent perfor-
mance across different architectures and use cases.

Through its open-source nature and emphasis
on standardization, Cerebrum aims to accelerate
research and development in the rapidly evolving
field of LLM-based agents, while fostering a col-
laborative ecosystem for sharing and building upon
existing agent implementations.
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