
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(System Demonstrations), pages 1–10

April 30, 2025 ©2025 Association for Computational Linguistics

Dataverse: Open-Source ETL (Extract, Transform, Load) Pipeline for
Large Language Models

Hyunbyung Park1, Sukyung Lee2, Gyoungjin Gim2

Yungi Kim3, Dahyun Kim4, Chanjun Park5†

1Moreh, 2Upstage AI, 3Liner, 4Twelve Labs, 5Korea University
hyunbyung.park@moreh.io, {sukyung, gyoungjin.gim}@upstage.ai

eddie@linercorp.com, kian.kim@twelvelabs.io
bcj1210@korea.ac.kr

Abstract

To address the challenges associated with data
processing at scale, we propose Dataverse1, a
unified open-source Extract-Transform-Load
(ETL) pipeline for large language models
(LLMs) with a user-friendly design at its core.
Easy addition of custom processors with block-
based interface in Dataverse allows users to
readily and efficiently use Dataverse to build
their own ETL pipeline. We hope that Data-
verse will serve as a vital tool for LLM devel-
opment and open source the entire library to
welcome community contribution. Addition-
ally, we provide a concise, two-minute video
demonstration of our system, illustrating its ca-
pabilities and implementation2.

1 Introduction

The success of large language models (LLMs) is
widely attributed to the scale of the data (Zhao et al.,
2023), otherwise known as the ‘scaling law’ (Ka-
plan et al., 2020) where LLM performance directly
correlates with data size. Consequently, there has
been an exponential growth in the need for mas-
sive data to further fuel LLM development. Such
increase in demand leads to more complex data pro-
cessing pipelines, as even simple operations need
to be optimized for data processing at enormous
scales. To handle such data workloads efficiently
and effectively, distributed systems and techniques
such as Spark (Zaharia et al., 2016) and Slurm (Yoo
et al., 2003) have become crucial.

Unfortunately, the existing open-source data pro-
cessing tools based on distributed systems (Mou
et al., 2023; Soldaini et al., 2024; Lee et al., 2022a;
Penedo et al., 2024) either lack easy customiza-
tion support or a wide variety of operations such

† Corresponding Author
1https://github.com/UpstageAI/

dataverse
2https://www.youtube.com/watch?v=

yYyyLuPNK5s&t=33s

as deduplication (Xia et al., 2016), decontamina-
tion (Yang et al., 2023), bias mitigation (Shrestha
et al., 2022), and toxicity reduction (Wang and
Chang, 2022). This forces researchers to undergo a
steep learning curve or cobble together tools from
various sources, hindering efficiency and user ex-
perience.

In response to these limitations, we present Data-
verse, a unified open-source ETL (Extract, Trans-
form, Load) pipeline with a user-friendly design
that enables easy customization. Inspired by the
Transformers library (Wolf et al., 2019), Dataverse
is built with a design principle of minimizing com-
plex inheritance structures. Such design choice
allows for easy addition of custom data operations.
Specifically, the ETL pipeline in Dataverse is de-
fined by block-based interface, which enables in-
tuitive customization of ETL pipelines by simply
adding, removing, or reshuffling blocks. Further,
Dataverse natively supports a wide range opera-
tions needed to cover diverse data processing use-
cases.

Moreover, the data processing workloads can be
distributed among multiple nodes with Spark by
simply setting the necessary configurations. Fur-
ther, user-friendly debugging features via Jupyter
notebooks are included for fast build-test of cus-
tom ETL pipelines. In addition, Dataverse supports
multi-source data ingestion from on-premise stor-
age, cloud platforms, and even web scraping. This
feature empowers users to easily transform raw
data from various sources. Driven by the aforemen-
tioned features, we posit that Dataverse will be a
useful tool for effortlessly building custom ETL
pipelines at scale for fast LLM development.

2 Why Dataverse?

In the era of LLMs, data scales exponentially (Ka-
plan et al., 2020), necessitating an efficient and
scalable solution (Wang et al., 2023). Not only

1

https://github.com/UpstageAI/dataverse
https://github.com/UpstageAI/dataverse
https://www.youtube.com/watch?v=yYyyLuPNK5s&t=33s
https://www.youtube.com/watch?v=yYyyLuPNK5s&t=33s

Open-Source Library Dist. System Expandable Customization Difficulty

text-dedup Spark ✗ N/A
DPS Spark ✗ N/A

deduplication-text-datasets Rust ✗ N/A
Dolma Rust ✗ N/A

Datatrove Slurm O High
Dataverse Spark O Low

Table 1: Comparison between existing open-source LLM data processing libraries and Dataverse. “Dist. System”,
“Expandable”, “Customization Difficulty” indicate the distributed system integrated into the library, whether the
library is designed to be future-proof and capable of growth, and the difficulty of the customization, respectively.
N/A means customization is not natively supported.

that, the fast pace of the LLM literature comes with
the need to support a wide range of data opera-
tions such as toxicity and bias removal (Garg et al.,
2023), personally identifiable information (PII) ob-
fuscation (Schwartz and Solove, 2011), and data
quality filterings (Shin et al., 2022; Choi and Park,
2023). Thus, on top of utilizing distributed systems,
LLM-aware data processing also requires natively
supporting a wide variety of operations and easy
addition of custom data operations.

While there are many existing data processing
libraries such as proposed (Mou et al., 2023; Sol-
daini et al., 2024; Lee et al., 2022a; Penedo et al.,
2024), none of them are not yet the whole pack-
age of being easy to customize and supporting a
wide variety data operations. To address this gap,
we introduce Dataverse with a user-friendly design
in mind, allowing users to utilize (custom) data
processing tools and distributed system via sim-
ply setting the blocks and configurations. In the
following sections, we detail the comparison be-
tween Dataverse and other existing open-source
frameworks for LLM-aware data processing.

2.1 Comparison Between Dataverse and
Other Open Source Libraries

As explained in the previous section, data process-
ing libraries for the LLMs need to support a wide
variety of data operations and distributed systems
for scalable data processing. Further, the library it-
self needs to be expandable to accommodate novel
data processing operations as they emerge. Lastly,
taking one step further from just being expand-
able, it would be ideal if such expansion to custom
data processing operations can be made effortlessly.
We compare various open source data processing
libraries and Dataverse in the aforementioned crite-
ria in Table 1.

As shown in the table, the compared open

source libraries, including text-dedup (Mou et al.,
2023), DPS3, deduplicate-text-datasets (Lee et al.,
2022a), Dolma (Soldaini et al., 2024), and Data-
trove (Penedo et al., 2024), as well as Dataverse
all support distributed system. Specifically, text-
dedup, DPS, and Dataverse use Spark (Zaharia
et al., 2016) as the distributed system of choice,
while deduplication-text-datasets utilizes parallel
processing of Rust (Matsakis and Klock II, 2014)
and Datatrove uses Slurm (Yoo et al., 2003) for
their distributed system.

The comparison becomes clearer once we look
at the “expandable” criteria. Expandable means
rather than being a static library provided as is,
rather dynamic, evolving library inherently de-
signed to grow and adapt over time. Specifically,
libraries such as text-dedup, deduplication-text-
datasets, and Dolma all lack expandability as they
are developed for one-time use, for instance, aca-
demic purposes. In contrast, Datatrove and Data-
verse both support expanding the library suitable
for future-proof LLM data handling. They feature
interfaces that facilitate ongoing modification of
the library. Also, they encourage community en-
gagement by providing guidelines and processes
for contribution ensuring the library remains adapt-
able and up-to-date.

Further, we compare how difficult it is to cus-
tomize the library for a user’s data processing work-
load. Note that for libraries that are not expandable,
comparing the customization difficulty is not appli-
cable. The customization difficulty for Datatrove is
high as a user needs to make code changes to mul-
tiple places while adhering to the complex inheri-
tance design of the Datatrove library. Conversely,
the customization difficulty for Dataverse is low
as the user simply needs to define a custom data
processing operation function and register it to the

3https://github.com/EleutherAI/dps

2

https://github.com/EleutherAI/dps

Figure 1: Overview of the Dataverse library.

Dataverse library using a decorator, as illustrated in
Section 3.3. We now explain the key features and
system architecture of Dataverse in the following
sections.

3 Dataverse

Dataverse is an open-source library for building
ETL pipeline for LLMs with user-friendly design
at its core. The overview of the Dataverse library
is shown in Figure 1.

3.1 Key Features

User-friendly design. The user-friendly design
of Dataverse is implemented in consideration to
various aspects. First, various tools necessary for
building a complete ETL pipeline are optimized
and unified such that users can use Dataverse as a
standalone solution for building their custom ETL
pipelines. As such, Dataverse natively supports
optimized functions for various steps in the data
processing workflow such as data downloading,
reformatting, processing, and storing, ridding the
need to look for other solutions even at very large
data scales. Detailed explanation on the supported
functionalities is given in Section 3.2.

Second, to support easy customization of ETL
pipelines, Dataverse incorporates a strikingly sim-
ple method of adding custom data processing func-
tions via Python decorators. Thus, users can readily
utilize custom functions beyond that of the already
large number of natively supported operations that

are registered.
Third, utilizing either the natively supported op-

eration or an custom added function to create an
ETL pipeline in Dataverse is intuitive and flexi-
ble. The reason is that ETL pipelines in Data-
verse are implemented using a block-based inter-
face such that users can define a modular block,
an atomic unit of data processing. Then, users
can change their ETL pipeline by re-organizing
the defined blocks, allowing for straightforward
development of data processing pipelines. Further,
Dataverse supports local testing functionality via
Jupyter notebooks which allows users to inspect
their ETL pipeline at various stages before scaling
out.

Scalability via Spark and AWS Integration To
scale ETL pipelines efficiently, Dataverse leverages
Apache Spark (Zaharia et al., 2016), enabling dis-
tributed processing capabilities. Furthermore, it na-
tively integrates with Amazon Web Services (AWS)
for cloud utilization, facilitating greater scalability.
Currently, Dataverse supports AWS S3 for cloud
storage and Elastic MapReduce (EMR) for data pro-
cessing. This integration ensures that users without
access to sufficient local computing resources can
effectively manage their data without encounter-
ing steep limitations. The aforementioned features
can be enabled by simply changing the configura-
tion or giving an argument when running the ETL
pipeline.

3

Figure 2: Architecture of Dataverse.

3.2 System Architecture

Figure 2 illustrates the overall system architecture
of Dataverse.

ETL pipeline. The ETL pipeline represents the
primary interface for Dataverse users. This cen-
tral core interface facilitates communication with
various modules, including configuration, registry,
application programming interface (API), and util-
ities. Its primary objective is to ensure the seam-
less creation and operation of the ETL pipeline,
effectively managing data processing tasks. Addi-
tionally, the interface offers AWS EMR integration
by simply passing the “True” value to the “emr”
option, as described in Section 3.3. This straight-
forward approach empowers users to leverage the
scalability of cloud computing without the steep
learning curve typically associated with distributed
systems management.

Configuration. The user prepares a configura-
tion object that encapsulates all the essential details
required to execute the ETL Pipeline. The configu-
ration facilitates the setup of Apache Spark specifi-
cations and the selection of the data processors to
be employed.

Configuration manager. The configuration man-
ager manages various configurations from specified
paths (local, AWS S3) or handles multiple types
(Python Dict, YAML, OmegaConf) of configura-
tion data. It converts these configurations into a
unified format compatible with Dataverse, ensuring
they are ready for use in the system.

Registry. The registry serves as a repository
where all data processor functions are stored. The
data processors to be utilized are specified within
the configuration which are then retrieved from the
registry to assemble the desired ETL pipeline. Note
that custom data processors can be added by simply
using the @register_etl decorator. The list of
natively supported data processors is as follows:

• Data Ingestion: Facilitating the loading of
data from various sources (e.g., data in Hug-
gingface Hub, and parquet/csv/arrow format
data in local storage) into a preferred format.

• Data Saving: Persisting the processed data
into a preferred destination, such as a data
lake or database.

• Deduplication: Eliminating duplicated data
on dataset by dataset basis or globally across
multiple datasets.

• Data Cleaning: Removing irrelevant, redun-
dant, or noisy information from the data, such
as stop words or special characters.

• Data Decontamination: Identifying and re-
moving contaminated data such as benchmark
datasets.

• Personally Identifiable Information (PII)
Removal: Ensuring the removal of sensitive
information, such as personally identifiable
data, from the dataset.

4

• Data Quality Enhancement: Improving the
quality of data from the perspectives of accu-
racy, consistency, and reliability for LLMs.

• Bias Mitigation: Reducing skewed or preju-
diced data, with a particular emphasis on data
that reinforces stereotypes of LLMs.

• Toxicity Removal: Identifying and eliminat-
ing harmful, offensive, or inappropriate con-
tent within the data.

• Utilities: Providing essential functionalities
for data processing, including sampling, log-
ging, and statistical analysis.

Utilities. The Utilities module serves as an in-
ternal helper toolset. One of its core features is
the API utilities, which streamline the use of vari-
ous external APIs such as AWS EMR. It simplifies
the deployment and management of AWS EMR,
reducing the complexity for researchers unfamil-
iar with cloud infrastructure. By simply setting
their own AWS Credentials, Dataverse automati-
cally handles the intricate details of provisioning
EMR clusters and orchestrating the data processing
pipelines across the cluster nodes.

Dataverse API. The Dataverse API serves as a
gateway for users. Currently, Dataverse supports
the Python CLI (Command Line Interface). Addi-
tionally, the development of a Bash CLI is under-
way.

3.3 Library Tour
The Dataverse interface is designed to be intu-
itive and user-friendly, substantially simplifying
the data processing workflow. Careful considera-
tion has been given to user experience, minimizing
the learning curve for new users and enabling them
to rapidly understand and effectively utilize Data-
verse with minimal effort.

Executing ETL pipeline with configuration.
Using Dataverse is straightforward, primarily re-
quiring a properly designed configuration for the
execution of the ETL pipeline. The essential con-
figuration elements include specifying the Apache
Spark specifications for execution and ordering the
data processors to be applied. The initial data pro-
cessor must be configured for data ingestion to
facilitate data loading, followed by any additional
data processors the user wishes to employ. We
give an example of using Dataverse below, with the
configuration simplified for brevity.

import necessary libraries
import OmegaConf
from dataverse.etl import ETLPipeline

set up configuration
config = OmegaConf.create({

’spark’: {Spark spec},
’etl’: [

{data ingestion}
{cleaning}
{deduplication}
{data saving}

]
})

run on ETL pipeline
etl = ETLPipeline()
spark, dataset = etl.run(config)

Incorporating custom data processors. Inte-
grating a custom data processor into Dataverse re-
quires defining a custom function and decorating
it using @register_etl . The custom function re-
quires only two mandatory inputs, a Spark instance
and the input data. Thus, creating custom opera-
tions in Dataverse is a natural extension for those
with proficiency in Spark. An example of adding
custom processors is given below.

add your custom process
@register_etl
def add___one___func(spark, x):

x = x.map(lambda x: x + 1)

return x

add to configuration
config = OmegaConf.create({

’spark’: {Spark spec},
’etl’: [

{data ingestion}
{add___one___func}
{cleaning}
{deduplication}
{data saving}

]
})

run on ETL pipeline
etl = ETLPipeline()
spark, dataset = etl.run(config)

Scaling with AWS EMR. As explained in the
previous section, Dataverse natively supports AWS
integration to provide a solution for users facing
local resource limitations. To leverage the power of
AWS EMR, users can simply add a single argument
when running their own ETL pipeline. An example
usage is given below.

run on AWS EMR
etl = ETLPipeline()
etl.run(config, emr=True)

5

Debugging with helper functions. To facilitate
debugging, Dataverse provides helper functions
such as generating fake data. Further, users can
start debugging at any point within the pipeline by
retaining only the steps up to the point they wish
to debug in their own ETL pipeline.
config = OmegaConf.create({

’spark’: {Spark spec},
’etl’: [

{generate_fake_data}
]

})
etl = ETLPipeline()
spark, x = etl.run(config, emr=True)

start debugging with your output from
this line

print(x.show())

4 Related Work and Background

4.1 Distributed Processing for Massive
Datasets

The processing of big data has presented significant
challenges since the advent of the internet era. In
the early stages of deep learning, models were de-
veloped for specific purposes using relatively small
datasets. However, the emergence of large lan-
guage models (LLMs) has necessitated the use of
massive datasets, rendering distributed processing
an indispensable requirement. Rather than relying
on single nodes, multi-node and multi-processing
environments enabled by open-source tools such
as Slurm (Yoo et al., 2003) and Spark (Zaharia
et al., 2016) have become essential. LLM-aware
data processing tools have been designed with dis-
tributed processing architectures in mind to address
the immense computational demands.

4.2 Data Quality Control for Large Language
Models

Ensuring data quality at a massive scale presents
formidable challenges. Manual inspection of the
data is impractical due to its sheer volume. The
emphasis on data quality control has become cru-
cial (Penedo et al., 2023; Choi and Park, 2023),
primarily because the pursuit of larger datasets of-
ten involves incorporating low-quality data that
has not undergone meticulous human curation (Li
et al., 2024b; Chung et al., 2022). One of the most
notable examples of such massive datasets is Com-
mon Crawl (Dodge et al., 2021), often regarded
as the holy grail of web data. However, this in-
discriminately crawled data from the internet fre-
quently suffers from a myriad of issues, including

duplicated content, excessive brevity or verbosity,
hidden biases, and the inclusion of junk data. To
address these challenges, implementing a range of
strategies for data quality enhancement is essential,
among which deduplication is particularly criti-
cal (Lee et al., 2022b). Even when utilizing high-
quality datasets, the possibility of encountering
duplicated data remains, as multiple sources may
be incorporated. Another key strategy could be
the elimination of benchmarks or other unintended
data inadvertently included in the dataset, which is
known as decontamination. Additionally, removing
overly short or excessively long sentences could
be essential for maintaining data integrity (Moon
et al., 2023; Li et al., 2024a).

4.3 ETL (Extract, Transform, Load)

ETL, stands for Extract, Transform, Load, is a fun-
damental process that involves gathering data from
various sources and consolidating it. In the step
of “Extract”, Dataverse retrieves raw data and pre-
pares it for processing. During “Transform”, the
data undergoes various processes such as dedupli-
cation and cleaning. Finally, Dataverse performs
“Load” step which transfers the processed data into
a storage destination of choice. Incorporating all
these ETL steps enables end-to-end data handling
from multi-sources.

5 Conclusion

To address the surging needs of data processing
at massive scales, owing to the rise in popularity
of LLMs, we propose Dataverse, an open-source
library for ETL pipelines designed with scalabil-
ity and future growth in mind. Dataverse is user-
friendly designed with a block-based interface, al-
lowing users to easily add custom functions for data
processing while also natively supporting a wide
array of commonly used data operations. Further-
more, Dataverse offers scalable solutions through
its seamless integration with Spark and AWS EMR,
allowing users to use Dataverse to handle data
workloads of varying sizes. We envision Data-
verse becoming a central hub for LLM data pro-
cessing, facilitating collaboration, knowledge ex-
change, and ultimately accelerating advancements
in the field.

Limitations

Although the architecture of Dataverse can support
multi-modal data such as image or video as well

6

text data, the current implementation of Dataverse
has yet to bring such features. However, we plan
to incorporate image and video support in future
releases to maintain alignment with emerging re-
search trends and evolving demands.

The Spark-based architecture of Dataverse ne-
cessitates tuning and optimization by experienced
data engineers to achieve peak performance and
scalability. While we have implemented reason-
able defaults, we acknowledge that the current ver-
sion may not fully unlock the potential inherent in
Spark. For further optimization, we plan to add
an automatic configuration feature that reasonably
maximizes the Spark performance.

Ethics Statement

We recognize that LLMs can reflect biases present
in their training data, potentially generating skewed
results across dimensions like race, gender, and
age. While Dataverse incorporates bias mitigation
techniques, ongoing monitoring and improvement
are necessary.

The collection of massive datasets also raises
privacy and copyright concerns. Dataverse aims to
minimize these risks through anonymization and
filtering, but vigilance is still required throughout
the data acquisition and processing pipelines.

We are keenly aware of these ethical challenges
in developing Dataverse. We are committed to
continually enhancing Dataverse’s capabilities to
address bias, privacy, and potential misuse con-
cerns. Our goal is to provide a powerful tool for
advancing language AI while upholding robust eth-
ical principles and mitigating societal risks to the
greatest extent possible.

References
Eujeong Choi and Chanjun Park. 2023. Dmops: Data

management operation and recipes. arXiv preprint
arXiv:2301.01228.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Jesse Dodge, Maarten Sap, Ana MarasoviÄĞ, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colossal
clean crawled corpus. Preprint, arXiv:2104.08758.

Tanmay Garg, Sarah Masud, Tharun Suresh, and Tan-
moy Chakraborty. 2023. Handling bias in toxic
speech detection: A survey. ACM Computing Sur-
veys, 55(13s):1–32.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022a. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022b. Deduplicating train-
ing data makes language models better. Preprint,
arXiv:2107.06499.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. 2024a. Superfiltering: Weak-to-strong
data filtering for fast instruction-tuning. Preprint,
arXiv:2402.00530.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024b. From quantity to quality: Boosting
llm performance with self-guided data selection for
instruction tuning. Preprint, arXiv:2308.12032.

Nicholas D Matsakis and Felix S Klock II. 2014. The
rust language. In ACM SIGAda Ada Letters, vol-
ume 34, pages 103–104. ACM.

Hyeonseok Moon, Chanjun Park, Seonmin Koo,
Jungseob Lee, Seungjun Lee, Jaehyung Seo, Sug-
yeong Eo, Yoonna Jang, Hyunjoong Kim, Hyoung
gyu Lee, and Heuiseok Lim. 2023. Doubts on the
reliability of parallel corpus filtering. Expert Systems
with Applications, 233:120962.

Chenghao Mou, Chris Ha, Kenneth Enevoldsen, and
Peiyuan Liu. 2023. Chenghaomou/text-dedup: Ref-
erence snapshot.

Guilherme Penedo, Alessandro Cappelli, Thomas Wolf,
and Mario Sasko. 2024. Datatrove: large scale data
processing.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset for

7

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2402.00530
https://arxiv.org/abs/2402.00530
https://arxiv.org/abs/2308.12032
https://arxiv.org/abs/2308.12032
https://arxiv.org/abs/2308.12032
https://doi.org/10.1016/j.eswa.2023.120962
https://doi.org/10.1016/j.eswa.2023.120962
https://doi.org/10.5281/zenodo.8364980
https://doi.org/10.5281/zenodo.8364980
https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove
https://arxiv.org/abs/2306.01116

falcon llm: Outperforming curated corpora with web
data, and web data only. Preprint, arXiv:2306.01116.

Paul M Schwartz and Daniel J Solove. 2011. The pii
problem: Privacy and a new concept of personally
identifiable information. NYUL rev., 86:1814.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong
Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun
Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha,
et al. 2022. On the effect of pretraining corpora on
in-context learning by a large-scale language model.
arXiv preprint arXiv:2204.13509.

Robik Shrestha, Kushal Kafle, and Christopher Kanan.
2022. An investigation of critical issues in bias miti-
gation techniques. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 1943–1954.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: An Open Corpus of
Three Trillion Tokens for Language Model Pretrain-
ing Research. arXiv preprint.

Yau-Shian Wang and Yingshan Chang. 2022. Toxicity
detection with generative prompt-based inference.
arXiv preprint arXiv:2205.12390.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi,
Baojun Wang, Lifeng Shang, Xin Jiang, and Qun Liu.
2023. Data management for large language models:
A survey. arXiv preprint arXiv:2312.01700.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. 2016. A comprehensive study of the past,
present, and future of data deduplication. Proceed-
ings of the IEEE, 104(9):1681–1710.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E
Gonzalez, and Ion Stoica. 2023. Rethinking
benchmark and contamination for language mod-
els with rephrased samples. arXiv preprint
arXiv:2311.04850.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003.
Slurm: Simple linux utility for resource management.
In Workshop on job scheduling strategies for parallel
processing, pages 44–60. Springer.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xian-
grui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. 2016. Apache spark: a
unified engine for big data processing. Communica-
tions of the ACM, 59(11):56–65.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

8

https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159

A Discussion

Slow Progress in Open-Source Development for LLM Data Processing Notwithstanding the emer-
gence of LLMs in the recent past, a paucity of widely adopted open-source solutions persists within
the domain of data processing for these models. The substantial computational costs and significant
computing power requirements have predominantly confined advancements to well-funded or large-scale
organizations. Consequently, this has rendered LLM research inaccessible for individuals and smaller
entities. Initially, the demand for open-source solutions in LLM research was not substantial. However,
as smaller LLMs began to emerge, empowering individuals and smaller entities to participate in LLM
research, the necessity for open-source solutions became increasingly evident. It is becoming progressively
clear that to foster wider accessibility to LLM research and to facilitate greater participation in the field,
there is an urgent need to accelerate the development of open-source solutions, with a particular emphasis
on data processing.

Quintessential Elements for Developing Open-Source LLM Data Processing Solutions The
quintessential elements for successfully developing open-source LLM data processing solutions can
be distilled down to three key aspects: a user-friendly interface, cost-efficiency in data processing, and an
automatic resource assessment tool.

Firstly, and most crucially, a user-friendly interface is imperative to ensure widespread community
adoption. The objective should be to create an interface that is as intuitive as a computer’s power button,
thereby encouraging heightened user interaction and utilization.

However, a focus on user experience becomes effective only when underpinned by reliable, highly
optimized, and cost-effective data processing capabilities. The utilization of data processing tools in the
LLM era can be financially onerous. Consequently, these tools necessitate judicious calibration to ensure
cost-effectiveness. Users must not encounter repeated attempts due to errors, as this not only adversely
impacts the user experience but also exacerbates the associated costs.

Finally, the establishment of a system that automatically assesses the available computing power and
evaluates its suitability for the given data is paramount. By doing so, it aims to preclude users from
experiencing wasted time and frustration due to insufficient processing capabilities.

Registry-based System for Efficient Data Processor Management One might question the rationale
for employing a registry, given that it can introduce complexity, particularly in multi-user systems due
to synchronization issues. However, Dataverse operates as a single-user system, thereby eliminating the
need for synchronizing the registry among users. This approach resolves the synchronization challenge
and confers two key advantages. Firstly, it eliminates the necessity for importing data processor functions
using relative paths, thereby simplifying the development process. Secondly, it enables an auto-registration
system, alleviating the burden on users of having to manually save the data processing functions within
the package. Instead, users are afforded the flexibility to implement their data processing functions in their
preferred locations, without being constrained to a specific directory. Consequently, custom functions can
be located in various environments, including Jupyter Notebooks, and can be seamlessly integrated into
the ETL pipeline.

Block-Based Coding for Enhancing Experimentation The block-based coding approach essentially
presents a data processor as a singular block, and an ETL Pipeline as a composite structure of multiple
blocks. This design paradigm affords users the flexibility to add, remove, or reshuffle blocks with ease,
achievable merely through configuration settings. Consequently, it enables users to effortlessly experiment
with limitless combinations without the need to modify the codebase.

Batch Processing: An Enduring Approach in the Context of Large-Scale Data In the context of
large-scale data, accuracy takes precedence over speed. The objective is not merely to thoughtlessly
utilize the influx of data but rather to focus on producing high-quality and reliable data. To attain this,
global assessment must encompass deduplication and ensuring a balanced perspective to avoid bias.
This becomes substantially challenging in real-time data processing. As a result, Dataverse still heavily

9

relies on batch processing, as it is designed for LLM data preparation, where accuracy and quality are
paramount.

Naming Convention: Rationale Behind the Unconventional ___ Selection Naming large quantities
of data processors, as is the case in Dataverse, presents two primary challenges: maintaining uniqueness
and ensuring usability. With the potential for adding up to 10,000 data processors, guaranteeing unique
identification can be daunting. Hence, the idea of categorization on two levels emerged, which not only
ensures uniqueness but also makes the data processors easily identifiable and comprehensible.

However, a discussion emerged regarding whether or not to integrate these categories into the data
processor’s name. The confusion arises when functions like remove appear in multiple categories
such as deduplication and cleaning. How do we clearly identify the difference? This problem was
mitigated by asking users to provide the category and name as separate arguments within configurations.
However, this proved to be cumbersome, and hence these elements were combined into a single character
string. The separator underscores (___) were then introduced to distinctively separate the ETL Category,
ETL Sub-Category, and ETL Name. Consequently, the unconventional naming convention of [ETL
Category]___[ETL Sub-Category]___[ETL Name] was employed.

10

