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Abstract

We introduce a new dataset for machine transla-
tion of Guinea-Bissau Creole (Kiriol), compris-
ing around 40 thousand parallel sentences to
English and Portuguese. This dataset is made
up of predominantly religious data (from the
Bible and texts from the Jehovah’s Witnesses),
but also a small amount of general domain data
(from a dictionary). This mirrors the typical
resource availability of many low resource lan-
guages. We train a number of transformer-
based models to investigate how to improve
domain transfer from religious data to a more
general domain. We find that adding even 300
sentences from the target domain when training
substantially improves the translation perfor-
mance, highlighting the importance and need
for data collection for low-resource languages,
even on a small-scale. We additionally find
that Portuguese-to-Kiriol translation models
perform better on average than other source
and target language pairs, and investigate how
this relates to the morphological complexity of
the languages involved and the degree of lexical
overlap between creoles and lexifiers. Overall,
we hope our work will stimulate research into
Kiriol and into how machine translation might
better support creole languages in general.

1 Introduction

The proliferation of datasets and models for a wide
range of the world’s languages has significantly ex-
panded the coverage of machine translation (MT)
technologies in recent years. Nevertheless, despite
their often significant numbers of speakers, cre-
ole languages are digitally underrepresented and
have minimal representation in MT technologies
(Robinson et al., 2024; Lent et al., 2024). This
is, at least in part, because creoles have histori-
cally been subject to stigmatisation, particularly
in administrative and educational settings (Siegel,
1999; Wigglesworth et al., 2013). For many creoles,
like other low-resource languages, translations of

religious texts form the largest parallel digital re-
sources available (Siddhant et al., 2022; Lent et al.,
2021), but language technologies trained on reli-
gious data alone have been shown to have limited
applicability in non-religious contexts (Haddow
et al., 2022). Religious texts not only focus on
theological concepts but are also rooted in specific
socio-cultural contexts which may not align with
those of the region where an MT model would be
used (Kho et al., 2024). Using religious texts for
NLP applications and models may also pose partic-
ular harms when implemented in practice (Hutchin-
son, 2024), making it especially important to eval-
uate models trained on religious data with a view
to the downstream domain.

In this work, we look at Guinea-Bissau Creole
(also known as Kiriol!), a Portuguese creole spoken
primarily in Guinea-Bissau. With approximately
350,000 native speakers and 1.5 million L2 speak-
ers, it is used by over 90% of the population of
Guinea-Bissau and is the de facto language of na-
tional identity (Kohl, 2016, p.192). Despite this,
digital support for Kiriol is low, with religious texts
and dictionary resources being virtually the only
public digital material in Kiriol currently available
to our knowledge. Thus, our aims are twofold: to
introduce a dataset for Kiriol which provides re-
sources for building MT models, and to investigate
how this data can be best utilised to train translation
models for general (non-religious) domains.

Our contributions are as follows:

* A new dataset of nearly 40,000 parallel sen-

tences in Kiriol, English and Portuguese;>

* A series of from-scratch models trained

for Kiriol-English, English-Kiriol, Kiriol-

1ht'cps: //www.ethnologue.com/language/pov/

*To prevent irresponsible use of this low-resource data for
inclusion in large multilingual models without consent, and
also to adhere to the copyright terms of the publishers of the
dataset sources, we make our dataset available to academic
researchers only upon request. Please contact the lead author
for license agreement and access.
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Portuguese and Portuguese-Kiriol translation,
serving as baselines for future work;

* Demonstration of how to improve cross-
domain performance by adding small amounts
of cross-domain data to religious training sets;

* Insights into how the morphological simplic-
ity of creole languages may disadvantage their
representations when sharing tokenisers with
more morphologically complex languages;

* Evidence that lexical overlap between creoles
and lexifier languages improves MT perfor-
mance where combined tokenisers and shared
embedding layers are properly utilised.

2 Related Work
2.1 Creole MT

The growing body of research on creole MT in-
cludes languages such as Haitian and Jamaican
Kreyol (Robinson et al., 2022), Mauritian Creole
(Dabre et al., 2014), Nigeran Pidgin (Ahia and
Ogueji, 2020), Singlish (Lent et al., 2021) and
Sranan Tongo (Zwennicker and Stap, 2022). While
a wider range of creoles are receiving more visibil-
ity and attention within NLP more generally, to our
knowledge the only existing efforts towards MT for
Guinea-Bissau creole specifically are that of Robin-
son et al. (2024), who include limited Kiriol data
in their multilingual creole corpus and set of from-
scratch and finetuned multilingual creole models.
Their dataset of 480 parallel English-Kiriol sen-
tences is taken from an unnamed educational re-
source; this provides a good foundation, but is lim-
ited in size and concentrated on a single domain,
and the dataset’s non-standard Kiriol orthography
means that evaluation on this set may not be indica-
tive of translation performance on standard Kiriol.
In this work, we focus on MT between Kiriol and
both Portuguese and English; English because of
its global coverage, and Portuguese because it is
the official language of Guinea-Bissau, despite the
fact that many Bissau-Guineans do not speak it
fluently (Kohl, 2018, p.167).

2.2 Leveraging Bible data for MT

Given that parallel texts for many languages are
limited to narrow-domain religious texts (Siddhant
et al., 2022), others have investigated how best to
leverage or augment such data for low-resource
MT. For example, Liu et al. (2021) investigate how
dictionary data could be used to improve mod-
els trained with Bible data for Basque-English

and Navajo-English, finding that adding domain-
general data to the Bible did not improve perfor-
mance on their Bible test set. Their use of the
Bible (rather than a domain-general set) for eval-
uation limits the applicability of their findings to
other translation domains. The same is true for
Mueller et al. (2020), who train multilingual trans-
lation models covering over 1,000 languages on
Bible data and test them on held out Bible data.
Marashian et al. (2025) explore how adding dictio-
nary data to the Bible can assist domain adaptation
of MT models from religious to non-religious do-
mains, working with English and five simulated
low-resource languages. Yet, they also include
up to 200k monolingual source-side sentences in
the target domains, making this a much higher-
resource context than our work.

3 Dataset

Here we introduce our dataset, taken from three on-
line resources: Bible.com,’ monthly publications
from the Jehovah’s Witnesses (JW) website,*, and
a Portuguese-Kiriol bilingual dictionary.> We ex-
tract parallel aligned Bible verses from the Almeida
Revista e Corrigida (Portuguese),® the New In-
ternational Version (English) 7 and the Traduson
Antigu (Kiriol).® We extract English, Portuguese
and Kiriol paragraphs from online editions of JW’s
Watchtower magazine (WT), a monthly Bible study
resource, and a small number of paragraphs from
the JW monthly article series “How Your Do-
nations Are Used™. Both of the JW resources
are available in a wide range of low-resource lan-
guages, and while they are religious-themed, they
use more informal language than the biblical texts
and include discussion of more general topics such
as finance, communication, transport, relationships,
and technology. As such, we describe these as semi-
religious data. For both JW resources, we align the

3Available at https://www.bible.com, accessed 13
February 2025.

‘Available at  https://www.jw.org/en/library/
magazines/ accessed 13 February 2025. Copyright © 2025
Watch Tower Bible and Tract Society of Pennsylvania.

5 Available at https://www.editora.ufpb.br/
sistema/press5/index.php/UFPB/catalog/download/
705/941/8096-1?inline=1, accessed 13 February 2025.
Copyright © 2021 — UFPB Publishing.

Copyright © 2001 Sociedade Biblica de Portugal

"Copyright © 1973, 1978, 1984, 2011 by Biblica, Inc.

8Copyright © 1993-2020, Instituto de Traducio e Alfabeti-
Zagao.

%Available  at
series/how-your-donations-are-used/,
February 2025.

https://www. jw.org/en/library/
accessed 13
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extracted paragraphs using HTML tags, meaning
these entries can consist of multiple sentences.

Finally, we extract 6,902 vocabulary items in
Kiriol and Portuguese from the bilingual dictio-
nary. We use NLLB (NLLB, 2024) to automati-
cally translate the Portuguese vocabulary items to
English, removing any translations that are more
than two words long to remove likely errors. This
creates a three-way parallel lexicon of 1,983 lex-
ical items. We also extract 1,603 Kiriol and Por-
tuguese glosses from the dictionary, using NLLB
to translate the Portuguese sentences into English,
then manually checking and correcting the English
translations with reference to the original Kiriol
glosses. The dictionary sentences are not from the
religious domain, but cover a wide range of day-to-
day topics such as food, family, work and lifestyle.
We describe this as ‘general domain’ data.

In total, we have 38,578 parallel sentences (see
Table 1) and 1,983 vocabulary items in all three
languages. There is a small overlap between the
dictionary sentences and dictionary items, with 403
of the vocabulary items appearing in the set of
1,603 gloss sentences. While the vocabularies and
topics differ between religious and general domain
sources, the orthography and punctuation style is
consistent across datasets. The dictionary gloss
sentences are designed to be simple to aid language
learning, and as such they are much shorter on
average than the sentences taken from the other
resources. Sample sentences are shown in Table 2.

Source Domain # Sentences
Bible Religious 29,876

(0Old Testament) (22,220)

(New Testament) (7,656)
JW WT series Semi-Religious 6,880
JW Donations series ~ Semi-Religious 219
Bilingual dictionary ~ General 1,603
All 38,578

Table 1: Number of sentences collected from each data
source. This does not include the 1,983 lexical items
also collected from the dictionary.

We construct our training and test datasets to best
reflect real-world translation scenarios. The bilin-
gual dictionary sentences cover a broader range of
topics in the general domain. We therefore take
1,000 of these sentences to comprise our out-of-
domain test set. We construct a validation set of
500 JW WT sentences and 500 Bible sentences
(1,000 total). This leaves us with 36,578 training

sentences from the Bible, JW WT, JW Donations
and bilingual dictionary, covering a range of do-
mains but with mostly religious data.

4 Models

We describe here the training procedure for all our
translation models, which are trained from-scratch
using an encoder-decoder transformer architecture
(Vaswani et al., 2017). This is implemented using
the Eole toolkit,'” an updated version of the Open-
NMT toolkit (Klein et al., 2018). For each model,
we train a byte-pair encoding tokeniser (Sennrich
et al., 2016) with a vocabulary size of 10k (un-
less otherwise specified), implemented in Sentence
Piece (Kudo, 2018). In each experiment, the to-
keniser is trained on the same data as used for the
model training. We then train models for up to 20k
steps using the Adam optimiser (Kingma and Ba,
2015), validating with BLEU (Papineni et al., 2002)
every 1,000 steps with an early stopping of 5 vali-
dations: the best model is then evaluated on the test
set.!! For each experiment, we run five seeds on all
four language directions (Kiriol-Portuguese, Kiriol-
English, Portuguese-Kiriol, English-Kiriol). This
setup improves the robustness of the results, even
where BLEU scores are low. For each experiment,
we report the average test and validation BLEU
scores over the five seeds in Appendix B. A full list
of model parameters is found in Appendix A.

5 Experiments

We run a series of experiments to explore the utility
of the different datasets for training models from
scratch to generalise across domains, and to inves-
tigate differences in performance between transla-
tion directions and language pairs.

5.1 Training with only Religious Data

We first explore the utility of the Bible and WT
data (the largest two resources) for training transla-
tion models that can generalise to unseen domains,
which previous work has questioned (Gow-Smith
and Sanchez Villegas, 2023; Vazquez et al., 2021).
We train from-scratch translation models on differ-
ent combinations of Bible and WT data, exploring
whether different sampling methods improve the
performance of the models on the domain-general

Yhttps://github.com/eole-nlp/eole

""We evaluate our models using the SacreBLEU (Post,
2018) signature: nrefs:1|case:mixed|eff:no|tok:13a
| smooth:exp|version:2.4.3".
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Source

Kiriol

Portuguese

English

Bible

JW WT series

JW Donations
series

Bilingual
dictionary

Bilingual
lexicon

Bo jubi pa kacus di seu; e ka
ta sumia, e ka ta kebra, e ka ta
junta na bemba, ma bo Pape ku
sta na seu i ta alimenta elis. Nta
abos bo ka mas bali di ki kacus?

Bardadi di Biblia i suma un
speliu. Ora ku no lei i studa Bib-
lia, no pudi oja kal tipu di algin
ku no sedu pa dentru, i na kal
aria ku no pirsisa di minjoria.

ma gosi, manga di no irmons
ku irmas pudi baSa publika-
son diZital mesmu sin internet!
kuma kes i pusivel?

Na dona sufri ataki di korson.

armasen

Considerai os corvos, que nem
semeiam, nem segam, nem tém
despensa nem celeiro, e Deus os
alimenta; quanto mais valeis vos
do que as aves?

A verdade da Biblia é como um
espelho. Quando lemos e es-
tudamos a Biblia, conseguimos
ver o tipo de pessoa que real-
mente SOmos € em que dreas pre-
cisamos de melhorar.

no entanto, agora, muitos ir-
maos conseguem descarregar
publicacdes digitais mesmo sem
ligagdo a internet! como é que
isso € possivel?

Meu avo sofreu um ataque do
coragao.

armazém

Look at the birds of the air; they
do not sow or reap or store away
in barns, and yet your heavenly
Father feeds them. Are you not
much more valuable than they?

Bible truth is like a mirror.
When we look into it, we can
see what we really are on the in-
side and where we need to make
improvements.

nevertheless, many of our broth-
ers and sisters can now down-
load digital publications even
without an internet connection!
how is this possible?

My grandfather suffered a heart
attack.

warehouse

Table 2: Sample entries from each dataset

dictionary test set. Average BLEU scores and stan-
dard errors on the test set are shown in Figure 1;
the standard errors are large in most cases due to
the small size and limited domain of these training
datasets. Table 9 in Appendix B shows scores and
standard errors on all evaluation sets, along with
the training dataset sizes in each condition.

Our first experiments train models just with the
Bible, just with WT, and then with both; we find
that the combination models show modest improve-
ments on the Bible-only models, while the models
trained with WT only perform extremely poorly
on all evaluation sets, likely because of the small
size of the dataset overall. Next, as different chap-
ters of the Bible come from a variety of authors,
eras, styles and contexts, we explore whether selec-
tive sampling of Bible texts might improve perfor-
mance. Specifically, we combine first the Old Tes-
tament (OT) and then the New Testament (NT), 2
with the WT data, and train new models on these
mixtures. On average, the OT & WT models per-
form better on the test set, likely because the OT
is much larger than the NT. We next sample the
shortest and longest 50% of sentences across both
the Bible and WT datasets, to explore whether sen-

"2The OT contains more poetry, genealogies and legal lan-
guage, covering key moments of Jewish history and philos-
ophy, while the NT consists of parables, letters and gospel
accounts of the life of Jesus and his disciples and the concerns
of the early Christian church.

tence length impacts model performance on the
test set, which consists of mostly short sentences.
The models trained on the shorter sentences per-
form better on the test set compared to the models
trained on the longer sentences, although we note
that the latter perform better on the validation sets
(see Table 9).

Finally, we explore the impact of balancing the
training dataset across both Bible and WT sources,
first by randomly sampling the same number of
sentences from the Bible as are in the WT dataset,
and secondly by oversampling sentences from the
WT dataset until its size matches that of the whole
Bible. The undersampled models perform quite
poorly, while the oversampled models perform well
but are still outperformed by some of the other
training data setups, despite the fact that they are
trained on the largest dataset in the group.

Out of all training setups, the simple combina-
tion of Bible and WT data results in models with
the highest average performance on the test set, but
the high variability in results makes it challeng-
ing to draw definitive conclusions. Furthermore,
despite a modest amount of data (36k sentences),
the results are still poor (average of 4.23 BLEU
across all language directions), demonstrating the
limitations of models trained solely on religious
data when applied to a domain-general test set.
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Figure 1: Average performance of Portuguese-Kiriol, Kiriol-Portuguese, Kiriol-English and English-Kiriol models
trained on different portions of Bible and WT data when used to translate test set of 1,000 domain-general dictionary
sentences. Standard errors across model sets are shown with error bars.

5.2 Training With Additional
General-Domain Data

Given these results, we explore whether adding
a small amount of general-domain data to the re-
ligious training data can improve model perfor-
mance. We take the best-performing setup from the
previous step (Bible and WT) as a baseline, but add
different samples of additional, non-religious data
from the Donations series and the bilingual lexicon,
resources which are likely available in many other
low-resource languages. We present the average
performance of each model set on the test set in
Figure 2, with dataset sizes and average scores on
all evaluation sets in Table 10 in Appendix B.
First, we add the 1,983 lexical items from the
dictionary (284 of which also appear in the 1,000
dictionary sentences split out for the test set) and
then the 219 sentences from the JW Donations
series. These models do not show considerable im-
provements over the baseline average model perfor-
mance scores, and adding the Donations sentences
actually results in small decreases in average per-
formance for models translating between English
and Kiriol, although this may be random variation.
Next, we add small amounts of parallel data from
the target domain (the dictionary), based on the
fact that it is often possible, in a real-world low-
resource translation scenario, to collect a few hun-
dred manually-translated sentences in the domain
of interest. Given that we have 603 dictionary gloss
sentences which are not included in the test set, we
train models by adding 300 dictionary sentences,
600 dictionary sentences, and 600 dictionary sen-
tences sampled five times and ten times. The re-
sults show, firstly, that adding these very small

amounts of target domain data drastically improves
the BLEU scores on the test set, by between 4.0
and 6.7 BLEU. Adding 600 sentences oversampled
5 times produces best results on the test set, indi-
cating that very small amounts of target domain
data can be of high utility to model training and
subsequent performance on the target domain, even
when sampled multiple times. These improvements
begin to decline again for most language directions
when we oversample 10 times, however, suggesting
a trade-off between the proportion of the training
dataset that is similar to the target domain, and the
degree of repetition in the training data.

Finally, we combine all of these additional
sources and again oversample the 600 dictionary
sentences 5 times, resulting in an overall dataset of
40,958 training examples. This dataset produces
the best performing models overall, with an average
BLEU of 11.9 on the test set across all language
directions; but as before, there is still considerable
variation in the results.

To explore the robustness of the improvements
in translation performance on the test set, we con-
ducted a small-scale human validation experiment
with a native speaker (NS) of Kiriol who is also
fluent in English and Portuguese. The NS was
asked to rate sentences translated in all language
directions for fluency and accuracy on a scale of 1
to 5, following Koehn and Monz (2006). In each
language direction, the NS rated 10 sentences from
the reference sets (to serve as a control), and 25
sentences translated by both the models trained
on Bible and WT data and the models trained on
Bible, WT and 600 dictionary sentences. The aver-
age results across all language directions are shown
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Figure 2: Average performance of Portuguese-Kiriol, Kiriol-Portuguese, Kiriol-English and English-Kiriol models
trained on Bible, WT and different combinations of domain-general data when used to translate test set of 1,000
domain-general dictionary sentences. Standard errors across model sets are shown with error bars, and the baseline
average performance of models trained only on Bible and WT data is shown with dotted lines.

in Figure 3; while there is a very slight increase
in average scores for accuracy and fluency for the
models trained on data including the 600 dictionary
sentences, this is not consistent across all language
translation directions and overall the scores across
the two conditions are very similar. We suspect
this is because the quality of translations produced
by models both with and without small amounts of
target-domain data is still too low to show meaning-
ful improvements in a human judgement task, even
though there are notable differences in BLEU score.
A breakdown of the human validation scores by lan-
guage can be found in Figure 8 in Appendix B, as
well as a summary of the costs and instructions
given for the validation task in Appendix C.

wv

Evaluation metric
w#%  Fluency
Bl Accuracy

N w &

Average human validation score
=

o

Control BWT & 600

dict
sentences
Training Data

Figure 3: Average scores across all language directions
of human judgements for accuracy (solid) and fluency
(hatched) of translated sentences from the reference sets
(control) and from models trained on Bible and WT data
(BWT) and Bible, WT and 600 dictionary sentences.
Standard errors across all judgements for each condition
are shown with error bars.

5.3 Impact of Translation Direction on
Performance

In both previous sets of experiments, Portuguese-
Kiriol models showed the highest performance
across most training data setups (Figure 1, Fig-
ure 2). The performance of MT systems has been
shown to depend on the characteristics of the lan-
guages being translated, including historical relat-
edness and vocabulary overlap (Birch et al., 2008)
and morphological complexity (Koehn, 2005; Park
et al., 2021; Cotterell et al., 2018). Creoles are typi-
cally morphologically simple languages (Farquhar-
son, 2007) that share vocabulary with their lexifier
languages, making these particularly interesting ar-
eas of investigation in an MT context. While the
higher performance of Portuguese-Kiriol models
might suggest greater language similarity or lex-
ical overlap between the two languages, models
trained on the opposite direction from Kiriol to Por-
tuguese do not always show the same advantages,
and display higher variability in scores.

5.3.1 Intrinsic Analysis

To explore this, we first investigate how the vocab-
ularies of Kiriol, English, and Portuguese might
impact tokenisation efficiency. Using all available
training data (as described for the best-performing
models in section 5.2), we train shared and separate
tokenisers for each language direction with vocab-
ulary sizes of 10k, 20k, and 30k. For the models
with separate tokenisers, half the vocabulary is al-
located to each of the source and target languages,
keeping the overall number of tokens consistent
across shared and separate conditions.
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We first count the number of overlapping tokens
across separate tokenisers for each language pair,
and calculate the average lengths of these overlap-
ping tokens (Table 3). We find, firstly, that for the
separate Kiriol, Portuguese and English tokenisers,
there is a much higher degree of overlap between
the Kiriol and Portuguese vocabularies than be-
tween the Kiriol and English vocabularies. This
effect persists across all vocabulary sizes, and the
tokens shared by Portuguese and Kiriol are on aver-
age longer than those shared by English and Kiriol.
This is strong evidence for a greater degree of lex-
ical overlap between Kiriol and Portuguese than
Kiriol and English, consistent with what we know
about creole genesis (Mufwene, 1996).

Vocab.

size Kir-Eng  Kir-Por
# overlapping tokens 10k 689 1119
between source and 20k 1306 1982
target vocabularies 30k 2149 2890
10k 3.04 3.51
overapping tokens 20K 330399
ppIng 30k 3.99 4.25

Table 3: Number of overlapping tokens in tokeniser
vocabularies when separate tokenisers are trained for
English, Kiriol and Portuguese using the best combina-
tion of training data from Section 5.2.

We also explore the number of overlapping to-
kens in the combined tokenisers’ vocabularies by
first applying these tokenisers to each language’s
training data and calculating the how many unique
tokens are present in each tokenised dataset. We
then add the numbers of unique tokens from both
languages together and subtract the size of the vo-
cabulary (10k, 20k or 30k), to calculate how many
tokens must be shared between both datasets given
the overall vocabulary size. We also calculate the
number of tokens from the combined tokeniser
which are unique to each language, by subtracting
the number of shared tokens from the number of
unique tokens present in each language’s tokenised
training data. The results (Table 4) show again that
there is a greater degree of overlap between Kiriol
and Portuguese compared to Kiriol and English; for
example, with vocabulary size of 10k tokens, 3.5k
are shared between Kiriol and Portuguese but only
2.6k shared between Kiriol and English. The re-
sults also show that Kiriol has fewer unique tokens
than either of the other languages across all vocab-
ulary sizes, indicating that more of the combined
vocabulary space is allocated to tokens specific to

English or Portuguese than to Kiriol.

Kir-Eng
chab. Shared Kir Eng
size
# shared and 10k 2649 3025 4326
unique tokens 20k 3490 6691 9819
across languages 30k 3408 11142 15450
Kir-Por
chab. Shared Kir Por
size
# shared and 10k 3493 2448 4059
unique tokens 20k 4784 5336 9880
across languages 30k 5195 8658 16147

Table 4: Number of overlapping and separate to-
kens in all training datasets when tokenised by com-
bined tokenisers trained for Kiriol-English and Kiriol-
Portuguese using the best combination of training data
from Section 5.2.

To investigate these differences further, we com-
pare the fertility of the separate and combined to-
kenisers on the training datasets in each language,
dividing the number of tokens in tokenised datasets
by the number of words in untokenised datasets
(Rust et al., 2021). We expected combined tokenis-
ers to result in better (lower) fertility scores than
their equivalent separate tokenisers, as tokens com-
mon to both languages occupy only one space in
a combined tokeniser vocabulary but two spaces
across two separate ones. We show the differences
in fertility scores between shared and separate con-
ditions on all language pairs in Table 5. We see that
the combined tokenisers for both Kiriol-English
and Kiriol-Portuguese perform better than separate
English-only and Portuguese-only tokenisers on
the English and Portuguese data, and this gain is
larger for the Portuguese data where we know there
is a higher degree of token overlap between Kiriol
and Portuguese data (Table 3). However, when the
tokenisers are applied to the Kiriol data, the sep-
arate tokenisers are as good as, or slightly better
than, the combined ones. As above, this indicates
that the Kiriol data is somehow disadvantaged in
the combined tokeniser setup, even despite the po-
tential efficiencies of sharing vocabulary with the
paired language in the case of Portuguese.

Based on prior work which shows that the en-
coding efficiency of a tokeniser depends on a lan-
guage’s morphological characteristics (Arnett and
Bergen, 2024), we explore whether these disparities
are related to morphological differences between
Portuguese, English and Kiriol. The Portuguese
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Vocab. Kir-Eng Kir-Por
size Kir  Eng Kir Por

10k 152 148 151 1.61

%’gﬁg‘;‘i 20k 137 132 138 142
‘ 30k 129 125 129 132

Sevarat 10k 151 155 151 1.72
Toilzj‘lri‘;‘;s 20k 134 137 134 152
30k 129 129 129 1.40

Difference in 10k 0.01 -0.07 0.00 -0.11
tokeniser 20k 0.03 -0.05 0.04 -0.10
fertility 30k 0.00 -0.04 000 -0.08

Table 5: Fertility of combined Kiriol-English and Kiriol-
Portuguese tokenisers and of separate Kiriol, English
and Portuguese tokenisers on all training data. Negative
differences indicate a tokeniser that has lower fertility
(i.e. is more efficient) in the combined condition).

datasets have the most unique words and they are
on average longer, while the Kiriol datasets have
the least unique words with a shorter average word
length (see Table 6); this reflects that Portuguese
has the greatest degree of inflectional morphology,
and Kiriol the least (Koehn, 2005). The greater
number of morphemes and word variability in the
Portuguese and English data may result in more em-
bedding space being allocated to Portuguese- and
English-specific tokens than Kiriol-specific ones in
a combined tokeniser setup, leading to the gains
in tokeniser performance observed for Kiriol data
when a separate tokeniser is used.

Unstemmed Stemmed
# unique Avg # unique Avg
Language words length words length
Kiriol 50k 4.50 - -
English 66k 4.85 30k 4.12

Portuguese 91k 5.12 29k 3.77

Table 6: Number of unique words and average lengths
of words in all datasets in each language, across both
regular and stemmed datasets.

To test whether this hypothesis is correct, we ex-
plore whether the fertility of combined tokenisers
on Kiriol data improves when the morphological
complexity of the shared language (English or Por-
tuguese) is synthetically reduced. We stem the
Portuguese and English data, using the RSLP stem-
mer (Moreira and Huyck, 2001) and the English
Porter stemmer (Porter and Boulton, 2001) respec-
tively, implemented in the NLTK toolkit (Loper and
Bird, 2002). This significantly reduces the number
of unique morphemes present in each language’s
datasets (Table 6). When we train combined to-

kenisers on the parallel data for Kiriol and stemmed
English, and Kiriol and stemmed Portuguese, we
indeed find that the fertility improves slightly for
Kiriol across all vocabulary sizes (see Table 7),
even though the Kiriol data remains unchanged
and unstemmed. This would indicate that, as the
morphological complexity of the paired language
is reduced, more vocabulary space is allocated to-
wards tokens which are more useful for Kiriol data.

Vocab. . Kir-Eng . Kir-Por
size Kir-Eng (Stemmed) Kir-Por (Stemmed)
10k 1.52 1.49 1.51 1.47
20k 1.37 1.33 1.38 1.32
30k 1.29 1.28 1.29 1.28

Table 7: Fertility of combined tokenisers for Kiriol-
English and Kiriol-Portuguese, where the non-Kiriol
language is either stemmed or unstemmed, on all Kiriol
datasets.

5.3.2 Extrinsic Analysis

To investigate further the impacts of vocabulary
sharing in both tokenisation and model training,
we train new MT models on all of the training data,
with combined and separate tokenisers, and shared
and separate embedding spaces, for the three vocab-
ulary sizes (10k, 20k, 30k). We show the average
test scores for models trained with a vocabulary of
10k in Figure 4, with full results and figures for the
20k and 30k vocabularies in Appendix B.'3

While there is no consistent difference in mod-
els’ BLEU scores across combined and separate
tokeniser conditions, models with shared embed-
dings show better average performance than those
with separate embeddings, across all language di-
rections and vocabulary sizes. When we compare
the size of the improvements in BLEU across the
shared vs separate embeddings conditions (Fig-
ure 5), Portuguese-Kiriol models show the great-
est improvements, usually followed by the Kiriol-
Portuguese models (except the 20k vocabulary set-
ting). We tentatively take this as further evidence
that lexical overlap between Kiriol and Portuguese
is impacting model training, as a shared embed-
ding space is more important for Portuguese/Kiriol
models than English/Kiriol models. Further inves-
tigation is needed with more reliable optimisation
and noise-reduction to corroborate this.

BFor models trained with separate embeddings, there is
high variability, with many models failing to train. To manage

this, we remove any seeds which are more than 3.0 BLEU
worse than the best-performing seed on the validation set.
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Figure 4: Average BLEU on test set using shared or sep-
arate embeddings, with combined (solid) and separate
(hatched) tokenisers of vocabulary size 10k. Standard
errors across model sets shown with error bars.
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Figure 5: Improvements in average BLEU on test set by
models using shared embeddings compared to models
using separate embeddings. Results averaged across
combined and separate tokeniser conditions.

6 Conclusion and Future Work

We introduce a new dataset for the machine trans-
lation of Guinea-Bissau Creole, comprising around
40k sentences. This dataset is mostly from the
Bible and Jehovah’s Witnesses texts, with a small
amount of general-domain data, and we use this to
investigate how to optimise real-world translation
performance with mostly religious text.

While all of our translation models show lim-
ited overall performance, our results provide in-
sights into both the utility of different data types
for domain generalisation and also the consistent
differences in translation performance over differ-
ent language pairs. While the performance of all
of the models we train is limited, and human vali-

dation shows that overall results remain poor, we
show that adding even a few hundred sentences of
the target domain dictionary data to the Bible and
WT training data considerably improved BLEU
scores on the test set, indicating that this may be
a strategy worth exploring in other low-resource
scenarios. Collecting a small amount of manually
translated sentences in the target domain should be
possible in many low-resource MT settings where
there is a specific domain of interest, and we show
that these small sets can also be oversampled in the
training data mix to further improve performance.

We also investigate two well-known proper-
ties of creole languages, morphological simplicity
and lexical overlap with a lexifier language. We
show that differences in morphological complex-
ity between Kiriol and English or Portuguese ap-
pear to result in differential tokenisation efficiency,
whereby more tokenisation space is allocated to the
more morphologically complex languages which
disadvantages the more morphologically-simple
Kiriol. We also show that using shared embed-
dings results in better average model performance
over all languages, but that the difference is most
pronounced for Kiriol-Portuguese and Portuguese-
Kiriol models, indicating that the overlap in vocab-
ulary between Kiriol and Portuguese can be better
leveraged during training with shared embeddings.

There are many avenues for future research even
within these limited data scenarios, including ex-
ploring tokenisation strategies that specifically ben-
efit creole-lexifier translation scenarios, or investi-
gating how lexical overlap impacts other areas of
model training outside of tokenisation and learning
the embedding space; for example, by exploring
patterns in attention mapping over input sentences.
However, developing functional translation mod-
els for Kiriol will require either using Kiriol data
to finetune pre-trained multilingual models, as in
Robinson et al. (2024), or collecting much more
domain-diverse data from the Kiriol community
to create better quality from-scratch models. As
has been made clear elsewhere (Mager et al., 2023;
Guridi et al., 2024), those research avenues will re-
quire careful consultation with the Kiriol-speaking
community, to explore how they may want Kiriol to
be represented—or not—in digital tools and tech-
nologies, and to find ways of making such research
and language technology development maximally
accessible to and beneficial for Kiriol speakers.
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Limitations

* Our investigations explore how the character-
istics and relatedness of Kiriol and Portuguese
impacts MT model training and performance,
but these findings may not generalise to dif-
ferent creole-lexifier pairs. This is likely to
depend on the way in which the creole in ques-
tion formed, the degree of lexical overlap be-
tween the two languages, and the specific mor-
phological structure and characteristics of the
creole and lexifier languages in question.

* We rely on BLEU scores, an automated met-
ric, as a proxy for translation quality, but these
scores (particularly when they are so low) may
not accurately reflect the quality of transla-
tions as well as other metrics or correlate with
human judgements.

* Our work focuses on training from-scratch
models, in order to investigate how fine-
grained differences in training data and to-
kenisation setups impact downstream MT per-
formance; but these findings may not scale to
MT for Kiriol utilising finetuned models.

* As the bilingual dictionary was only parallel
in Portuguese and Kiriol, we relied upon auto-
matic translation to generate the English texts
for this dataset. While each synthetic English
sentence was manually checked against the
Kiriol version by the lead author, who is flu-
ent in both English and Kiriol, this method
may impact the overall quality of the English
translations.
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A Parameters

In Table 8, we provide a full list of model parame-
ters:

Model Parameters Value
Hidden size 512
Layers 6
Heads 8
Dropout 0.1
Attention dropout 0.1
Train steps 20k
Warmup steps 1,000
Validation steps 1,000
Validation metrics BLEU

Early stopping 5
Src words min frequency 2
Tgt words min frequency 2

Batch type Tokens
Batch size 4,096
Validation batch size 2,048
Accum count 4
Accum steps 0
Compute dtype FP16
Optimizer Adam
Learning rate 2
Warmup steps 1,000
Decay method Noam
Adam beta2 0.998
Inference

Beam size 5

Table 8: Model Parameters

B Average model performance scores and
standard errors

In Table 9, we show the average scores across 5
model seeds for each training data setup and lan-
guage direction from Section 5.1. In Table 10 we
do the same for models from Section 5.2. In Ta-
ble 11 we show the results of all models trained
for the experiments in Section 5.3, and those with
the anomalous seed models removed as reported
above in Table 12. Figure 6 and Figure 7 show the
corresponding results for Figure 4 for vocabulary
sizes of 20,000 and 30,000 respectively.
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Figure 6: Average BLEU scores on test set using shared
or separate embeddings, with combined (solid) and sep-
arate (hatched) tokenisers of vocabulary size 20k. Stan-
dard errors across model sets are shown with error bars.
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Figure 7: Average BLEU scores on test set using shared
or separate embeddings, with combined (solid) and sep-
arate (hatched) tokenisers of vocabulary size 30k. Stan-
dard errors across model sets are shown with error bars.
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Bible & WT Bible & WT Bible & WT Bible & WT

Bible wT Bible & WT NT & WT OT & WwT (shortest 50%) (longest 50%) (undersampled) (oversampled)
(30k) (7%) (36k) (14k) (29k) (18k) (18k) (13k) (59K)
Language Pair  Evaluation Set Avg  StdE Avg StdE Avg StdE Avg StdE Avg StdE Avg StdE Avg StdE Avg  StdE Avg  StdE
Val bible 20.88 095 0.78 041 1974 072 6.64 1.18 17.88 0.62 1426 0.65 13.68 196 1040 1.24 18.30 0.72
Kir-Eng Val WT 098 0.15 426 177 884 020 7.4 132 890 027 18 008 700 125 7.8 126 9.74  0.14
Val all 1093 044 252 1.08 1429 043 689 124 1339 039 806 034 1034 160 9.3 125 14.02  0.36
Test 392 029 058 035 454 021 200 062 364 025 366 018 062 017 190 049 428 023
Val bible 19.50 143 0.18 0.07 1894 037 7.84 054 1820 023 14.00 0.30 1430 252 922 074 9.30  3.66
Kir-Por Val WT 042 004 250 081 758 032 7.84 028 798 0.4 206 005 622 113 6.06 0.66 462 149
Val all 996 073 1.34 044 1326 030 7.84 040 13.09 0.18 8.03 0.14 1026 1.82 7.64 0.69 696 257
Test 240 016 0.10 0.03 312 046 268 008 338 015 244 0.11 048 0.22 156  0.36 1.50  0.69
Val bible 2062 1.62 030 0.05 2252 152 9.06 071 1658 263 13.12 148 1490 276 9.72 1.86 1592 3.08
Eng-Kir Val WT 148 010 252 037 824 063 836 060 750 1.06 236 032 594 123 648 117 744 126
Val all 11.05 078 141 021 1538 107 871 0.65 1204 183 7.74 0.89 1042 199 810 151 11.68 2.14
Test 392 028 0.08 0.02 412 065 252 042 382 084 278 0.60 1.66 040 180 048 372 084
Val bible 23.64 075 0.14 0.06 21.06 2.83 732 128 19.82 098 1526 0.44 1570 1.78 876 251 17.26  3.56
Por-Kir Val WT 1.1I8 006 09 043 812 099 668 092 826 048 222 0.3 616 085 552 148 750  1.33
Val all 1241 039 055 024 1459 191 7.00 1.10 1404 072 874 028 1093 131 7.4 200 1238 243
Test 458 040 004 002 514 110 222 072 416 060 412 004 200 054 1.80 095 464 110

Table 9: Average performance and standard errors for all sets of models from Section 5.1 on the test set of 1,603
domain-general dictionary sentences and the validation datasets of 500 sentences from the Bible and 500 from the
WT. Each is averaged over five random seed models. Number of sentences in each training data setup shown in
brackets.

BWT & 300 Dict. BWT & 600 Dict. BWT & 600 Dict. BWT & 600 Dict.

BWT & Lexicon BWT & Donations BTW & all
sentences sentences sentences X 5 sentences x 10
(37.7k) (36.0k) (36.1k) (36.4k) (38.8k) (41.8k) (41.0k)

Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE Avg StdE Avg StdE Avg StdE Avg StdE
Val bible 18.84 0.78 19.34 0.71 19.80 0.11 20.18 0.53 17.74 3.90 17.40 2.96 19.68 0.52

Kir-Eng Val WT 8.60 0.23 8.66 0.28 9.28 0.23 9.30 0.15 8.06 1.62 8.22 1.35 9.08 0.37
Val all 13.72 0.44 14.00 0.48 14.54 0.16 14.74 0.32 12.90 2.76 12.81 2.15 14.38 0.42

Test 4.58 0.44 4.06 0.22 7.56 0.20 9.48 0.46 8.88 2.10 8.24 1.73 10.14 0.96

Val bible 20.7 0.44 20.04 0.79 19.88 0.45 19.94 0.34 20.46 0.36 19.86 0.49 19.16 0.96

Kir-Por Val WT 7.98 0.10 7.90 0.05 8.00 0.08 7.88 0.15 7.80 0.13 7.50 0.15 8.20 0.13
Val all 14.34 0.19 13.97 0.41 13.94 0.24 13.91 0.22 14.13 0.18 13.68 0.27 13.68 0.41

Test 4.10 0.14 4.04 0.15 7.88 0.31 10.22 0.41 12.66 0.26 10.32 0.84 13.06 0.60

Val bible 22.60 0.56 21.36 .72 22.04 0.59 22.88 0.7T 22.58 0.87 22.80 0.48 22.34 0.65

Ene-Kir Val WT 9.06 0.12 7.92 0.84 8.54 0.30 9.08 0.25 9.18 0.12 10.64 0.16 9.02 0.17
© Val all 15.83 0.31 14.64 1.27 15.29 0.43 15.98 0.47 15.88 0.44 16.72 0.32 15.68 0.36
Test 4.90 0.38 3.7- 0.42 7.26 0.24 8.90 047 11.00 0.31 9.84 0.74 11.14 1.17

Val bible 23.58 0.37 23.04 0.69 23.82 0.41 20.16 373 19.34 3.85 23.04 0.67 19.24 4.04

Por-Kir Val WT 9.16 0.05 9.42 0.26 9.34 0.10 7.84 1.39 7.66 1.40 8.72 0.42 7.76 1.45
Val all 16.37 0.19 16.23 0.46 16.58 0.25 14.00 2.56 13.5 2.62 15.88 0.55 13.5 2.73

Test 5.88 0.24 5.96 0.46 10.12 0.29 10.32 2.37 10.94 2.73 11.66 175 13.06 3.02

Table 10: Average performance and standard errors for all models from Section 5.2 on the test set of 1,603 domain-
general dictionary sentences and the validation datasets of 500 sentences from the Bible and 500 from the WT.
Number of sentences in each training data setup shown in brackets.
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Combined Tokeniser, Shared Embeddi Vocabulary Size

10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 19.68 0.52 18.96 0.31 16.80 1.62
Kir-Eng Val WT 9.08 0.37 9.34 0.30 7.42 0.94
Val all 14.38 0.42 14.15 0.29 12.11 1.27
Test 10.14 0.96 11.46 0.24 8.86 1.40
Val bible 19.16 0.96 17.16 247 175 .19
Kir-Por Val WT 8.20 0.13 7.02 1.08 6.72 0.70
Val all 13.68 0.41 12.09 1.77 12.11 0.94
Test 13.06 0.60 8.62 2.03 7.36 1.56
Val bible 2234 0.65 23.20 0.40 2232 0.45
Eng-Kir Val WT 9.02 0.17 9.74 0.19 9.18 0.28
Val all 15.68 0.36 16.47 0.25 15.75 0.29
Test 11.14 1.17 11.96 0.32 11.44 0.33
Val bible 19.24 4.04 20.62 0.54 21.76 0.07
Por-Kir Val WT 7.76 1.45 7.94 0.21 8.7 0.17
Val all 13.50 2.73 14.28 0.27 15.23 0.10
Test 13.06 3.02 115 1.40 12.44 0.54
Combined Tokeniser, Separate Embeddi Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 17.92 1.37 13.64 2.23 15.28 3.47
Kir-Eng Val WT 7.18 0.87 5.22 0.91 5.86 1.27
Val all 12.55 1.11 9.43 1.55 10.57 2.36
Test 7.52 1.42 5.64 1.35 5.78 1.53
Val bible 12.12 1.86 15.88 2.36 14.40 1.88
Kir-Por Val WT 4.06 043 5.50 0.78 4.94 0.58
Val all 8.09 1.14 10.69 1.56 9.67 1.21
Test 3.46 0.83 5.56 1.29 4.34 1.05
Val bible 1838 2.92 19.68 .10 16.58 2.62
Eng-Kir Val WT 6.48 1.01 7.34 10.56 5.66 1.10
Val all 12.43 1.96 13.51 0.81 11.12 1.85
Test 6.38 1.25 7.08 1.04 5.80 1.56
Val bible 13.62 2.17 12.96 313 139 2.12
Por-Kir Val WT 4.66 0.67 452 0.95 4.64 0.60
Val all 9.14 1.41 8.74 2.04 9.27 1.36
Test 4.58 1.34 3.88 1.42 4.24 0.90
Separate Tokeniser, Shared Embeddi Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 15.28 0.42 17.22 0.37 14.32 298
Kir-Eng Val WT 2.24 0.12 242 0.06 2.16 0.44
Val all 8.76 0.24 9.82 0.18 8.24 1.71
Test 10.82 0.15 10.36 0.50 9.1 2.15
Val bible 15.88 0.69 17.24 0.44 17.76 0.20
Kir-Por Val WT 222 0.04 2.9 0.06 2.66 0.19
Val all 9.05 0.34 10.07 0.20 10.21 0.15
Test 13.00 0.24 12.42 0.33 11.92 0.29
Val bible 20.24 0.51 20.08 0.87 20.14 0.37
Eng-Kir Val WT 2.78 0.15 2.86 0.10 2.76 0.24
Val all 11.51 0.31 11.47 0.47 11.45 0.26
Test 11.84 0.82 12.78 0.24 12.58 0.47
Val bible 17.76 3.04 18.00 3.95 16.98 349
Por-Kir Val WT 222 0.44 242 1.48 2.60 0.54
Val all 9.99 1.74 10.21 222 9.79 2.01
Test 12.52 2.83 14.08 343 125 3.00
Separate Tokeniser, Separate Embedding: Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 19.78 0.62 15.64 1.93 19.62 0.86
Kir-Eng Val WT 7.50 0.18 5.72 0.77 742 0.28
Val all 13.64 0.34 10.68 1.34 13.52 0.51
Test 8.22 0.43 5.94 1.16 8.66 0.52
Val bible 17.32 .17 1322 239 16.94 0.61
Kir-Por Val WT 5.16 0.48 4.52 0.72 52 0.39
Val all 11.24 0.82 8.87 1.55 11.07 0.44
Test 6.30 0.91 5.00 1.48 5.72 0.81
Val bible 17.36 2.14 15.30 371 12.82 424
Eng-Kir Val WT 6.64 0.80 6.08 1.27 5.00 1.48
Val all 12.00 1.46 10.69 248 8.91 2.86
Test 5.78 1.19 4.72 1.45 4.54 1.87
Val bible 17.80 2.80 14.94 431 15.06 377
Por-Kir Val WT 5.94 0.92 5.5 1.28 4.94 1.28
Val all 11.87 1.86 10.22 2.79 10.00 2.52
Test 6.90 1.64 6.64 242 6.08 2.15

Table 11: Average performance and standard errors for all models from Section 5.3 on the test set of 1,603
domain-general dictionary sentences and the validation datasets of 500 sentences from the Bible and 500
from the WT.
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Combined Tokeniser, Shared Embeddi Vocabulary Size

10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 19.68 0.52 18.96 0.31 19.40 0.55
Kir-Eng Val WT 9.08 0.37 9.34 0.30 8.87 0.39
Val all 14.38 0.42 14.15 0.29 14.13 0.47
Test 10.14 0.96 11.46 0.24 10.73 0.09
Val bible 19.16 0.96 19.63 0.26 19.17 0.61
Kir-Por Val WT 8.20 0.13 8.10 0.12 7.80 0.15
Val all 13.68 0.41 13.86 0.09 13.48 0.38
Test 13.06 0.60 10.60 0.57 9.67 0.28
Val bible 22.34 0.65 23.20 0.40 2232 0.45
Eng-Kir Val WT 9.02 0.17 9.74 0.19 9.18 0.28
Val all 15.68 0.36 16.47 0.25 15.75 0.29
Test 11.14 1.17 11.96 0.32 11.44 0.33
Val bible 2323 0.83 20.62 0.54 21.76 0.07
Por-Kir Val WT 9.20 0.18 7.94 0.21 8.70 0.17
Val all 16.21 0.41 14.28 0.27 15.23 0.10
Test 15.98 1.01 11.50 1.40 12.44 0.54
Combined T iser, Separate Embeddil Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 19.20 0.63 17.85 1.05 18.68 0.90
Kir-Eng Val WT 7.93 0.57 7.30 0.30 7.08 0.49
Val all 13.56 0.60 12.58 0.68 12.88 0.65
Test 8.65 1.11 8.75 0.65 7.20 0.74
Val bible 16.20 1.40 18.13 0.93 16.23 0.58
Kir-Por Val WT 5.05 0.25 6.23 0.38 5.48 0.29
Val all 10.63 0.82 12.18 0.63 10.85 0.35
Test 5.45 0.07 6.70 0.78 5.20 0.77
Val bible 21.25 0.66 21.47 0.19 22.05 0.15
. Val WT 745 0.38 8.17 0.23 8.20 0.00
Eng-Kir
Val all 14.35 0.51 14.82 0.17 15.13 0.07
Test 7.55 0.58 8.27 1.22 9.20 0.90
Val bible 18.50 2.00 19.50 0.50 18.60 1.30
Por-Kir Val WT 6.00 1.10 6.50 0.60 6.05 0.25
Val all 12.25 1.55 13.00 0.55 12.33 0.77
Test 7.20 2.40 7.05 1.05 6.10 1.50
Separate T iser, Shared Embeddi Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 15.28 0.42 17.22 0.37 17.28 0.51
Kir-Eng Val WT 2.24 0.12 242 0.06 2.58 0.21
Val all 8.76 0.24 9.82 0.18 9.93 0.34
Test 10.82 0.15 10.36 0.50 11.23 0.45
Val bible 15.88 0.69 17.24 0.44 17.76 0.20
Kir-Por Val WT 2.22 0.04 2.9 0.06 2.66 0.19
Val all 9.05 0.34 10.07 0.20 10.21 0.15
Test 13.00 0.24 12.42 0.33 11.92 0.29
Val bible 20.24 0.5T 20.08 0.87 20.14 0.37
Eng-Kir Val WT 2.78 0.15 2.86 0.10 2.76 0.24
Val all 11.51 0.31 11.47 0.47 11.45 0.26
Test 11.84 0.82 12.78 0.24 12.58 0.47
Val bible 20.78 0.51 21.95 0.25 20.45 0.42
Por-Kir Val WT 2.65 0.10 2.90 0.04 3.13 0.14
Val all 11.71 0.30 12.43 0.10 11.79 0.23
Test 15.33 0.49 17.50 0.27 15.40 1.00
Separate Tokeniser, Separate Embedding: Vocabulary Size
10000 20000 30000
Language Pair Evaluation Set Avg StdE Avg StdE Avg StdE
Val bible 19.78 0.62 19.45 1.85 19.62 0.86
Kir-Eng Val WT 7.50 0.18 7.35 0.95 7.42 0.28
Val all 13.64 0.34 13.40 1.40 13.52 0.51
Test 8.22 0.43 8.55 0.75 8.66 0.52
Val bible 18.35 0.72 18.00 1.00 16.94 0.61
Kir-Por Val WT 5.58 0.31 6.00 0.50 5.20 0.39
Val all 11.96 0.50 12.00 0.75 11.07 0.44
Test 6.95 0.83 7.95 2.15 5.72 0.81
Val bible 20.83 0.33 22.10 0.60 21.50 .10
Eng-Kir Val WT 7.93 0.20 8.60 0.60 8.15 0.55
Val all 14.38 0.07 15.35 0.60 14.83 0.83
Test 7.67 0.47 7.85 0.15 8.70 0.20
Val bible 20.53 0.85 21.93 0.70 19.43 0.73
Por-Kir Val WT 6.80 0.44 7.57 0.33 6.57 0.27
Val all 13.66 0.64 14.75 0.48 13.00 0.49
Test 8.30 1.10 10.50 0.96 8.57 242

Table 12: Average performance and standard errors for selected models from Section 5.3 on the test set of
1,603 domain-general dictionary sentences and the validation datasets of 500 sentences from the Bible and
500 from the WT. Models with BLEU score on the validation set of more than 3.0 BLEU lower than the
highest-scoring model on the validation set in that group have been removed.
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C Human validation

We recruited one native speaker of creole who is
fluent in Portuguese and English to evaluate sample
sentences from models trained on the Bible and
WT data alone, and models trained on the Bible and
WT data with 600 sentences from the dictionary.
We selected 25 sentences from the test set, and
then used both models in each of the four language
directions (Portuguese-Kiriol, Kiriol-Portuguese,
English-Kiriol, Kiriol-English) to translate the
selected sentences for the participant to evaluate.
This provided 50 sentences for each language
direction, 25 from the model with dictionary data
included and 25 from the model without. For
each language direction, we also included 10
translations from the reference set, to serve as a
control measure and check the instructions were
being followed appropriately. This resulted in 60
sentences per language direction for the participant
to evaluate, so 240 sentences overall. We expected
the task to take between 2 and 4 hours, allocating
£76 to give an hourly fee of £19-£38 per hour
depending on the participant’s speed. The task was
carried out via a Qualtrics survey. The instructions
are included below, and Figure 8 shows the average
judgements for each language direction over all
three conditions.

Instructions
In this questionnaire, you’ll be presented with 240
pairs of sentences, with the first sentence as the
original sentence and the second sentence as the
translated sentence. There are translations from:

1. Kiriol into English
2. Kiriol into Portuguese
3. English into Kiriol

4. Portuguese into Kiriol

The sentences and their translations will be
presented like this:

Source: A chuva trouxe alegria na aldeia.
Translation: I manda cuba na tabanka.

For each question, first read the source and the
translation sentence carefully. You will then be
asked to rate the translation for its adequacy (how
much of the meaning of the source sentence it
captures) and its fluency (how natural a sentence it
is in the target language). You can give a rating

of 1-5 for each metric by sliding the marker. You
should think of the scores as follows:

Adequacy:

All Meaning

Most Meaning
Much Meaning
Little Meaning

i

None
Fluency:

Flawless
Good
Non-native
Disfluent

A

Incomprehensible

You might want to keep a copy of these guidelines
to hand as you answer the questions.

A sentence might be adequate in terms of meaning,
but not very fluent if it doesn’t sound natural or
have the correct grammar. Conversely, a sentence
might be very fluent but have very little to do with
the source sentence, rendering it inaccurate.

Please provide a score for both adequacy and
fluency for each sentence. Some of the source
sentences are the same, but the translations will
always be slightly different.

We will also provide a comment box at the
bottom of each page in case you wish to comment
on specific examples or word choices that you
think are interesting, or for example if one of
the translations is rude or culturally insensitive
(please list the relevant question number next to
your comment). There is no obligation to provide
comments unless you wish to.

Your answers will be saved by Qualtrics and so
you can take breaks when you need to and come
back to finish at a later time. We anticipate that
you should be able to complete all 240 sentences
within 4 hours (roughly 1 minute per sentence).

If you have any questions about the instructions
or about specific examples, please do not hesitate
to contact jacqueline.rowe@ed.ac.uk for further
guidance.
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Figure 8: Average scores of human judgements for accuracy (solid) and fluency (hatched) of translated sentences
from the reference sets (control) and from models trained on Bible and WT data (BWT) and Bible, WT and 600
dictionary sentences. Standard errors across model sets are shown with error bars.
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