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Abstract

Domain adaptation in Neural Machine Transla-
tion (NMT) is commonly achieved through fine-
tuning, but this approach becomes inefficient as
the number of domains increases. Knowledge
distillation (KD) provides a scalable alternative
by training a compact model on distilled data
from a larger model. However, we hypothe-
size that vanilla sequence-level KD primarily
distills the decoder while neglecting encoder
knowledge, leading to suboptimal knowledge
transfer and limiting its effectiveness in low-
resource settings, where both data and com-
putational resources are constrained. To ad-
dress this, we propose an improved sequence-
level KD method that enhances encoder knowl-
edge transfer through a cosine-based alignment
loss. Our approach first trains a large model on
a mixed-domain dataset and generates a Dis-
tilled Mixed Dataset (DMD). A small model is
then trained on this dataset via sequence-level
KD with encoder alignment. Experiments in
a low-resource setting validate our hypothesis,
demonstrating that our approach outperforms
vanilla sequence-level KD, improves general-
ization to out-of-domain data, and facilitates ef-
ficient domain adaptation while reducing model
size and computational cost.

1 Introduction

Domain adaptation in Neural Machine Translation
(NMT) has been extensively studied (Saunders,
2022), but significant gaps remain, particularly for
low-resource languages (Ranathunga et al., 2023).
A common approach involves fine-tuning general-
domain pre-trained models on specific target do-
mains (Chu and Wang, 2018). While effective, this
approach becomes cumbersome as the number of
domains increases, requiring separate models for
each domain. This not only increases the space
complexity of the Machine Translation (MT) sys-
tem but also incurs higher maintenance and sys-
tem costs. Moreover, it fails to exploit the shared

information inherent across domains, limiting its
efficiency.

To address these challenges, research has increas-
ingly focused on developing a single model capable
of handling multiple domains (Liang et al., 2024;
Pan et al., 2021; Currey et al., 2020; Pham et al.,
2019). One promising direction is knowledge distil-
lation (KD) (Hinton, 2015), where domain-specific
teacher models (expert models), typically deep neu-
ral networks, generate distilled target-side data for
each domain. Currey et al. (2020) demonstrated
that a student model, usually a shallower neural
network, can be trained on a mixture of the origi-
nal and distilled data, effectively capturing domain
knowledge in a compact form. This data-centric
approach not only reduces the need for maintaining
multiple models but also leverages domain similar-
ities, making it both effective and easy to adopt.

However, KD-based domain adaptation methods
may not generalize well to low-resource languages,
as training domain-specific teacher models with
limited data is inherently suboptimal. Furthermore,
existing approaches heavily rely on sequence-level
distillation (Kim and Rush, 2016), but its effec-
tiveness in low-resource settings remains unclear.
We hypothesize that sequence-level KD primarily
distills the decoder while transferring limited en-
coder knowledge, leading to suboptimal knowledge
transfer in encoder-decoder architectures (NLLB
Team et al., 2024; Liu et al., 2020; Xue et al., 2021;
Mohammadshahi et al., 2022). If this hypothesis
holds, overlooking encoder knowledge may hinder
the adaptability of distilled models across multiple
domains. To address this, we propose a cosine-
based alignment between the teacher and student
encoders to enhance the effectiveness of distilla-
tion.

Building on the methodologies of Currey et al.
(2020) and Chu et al. (2017), we propose a mixed-
domain KD approach for low-resource NMT. Chu
et al. (2017) demonstrated that training a single
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model on a mixture of domains can facilitate do-
main adaptation in low-resource scenarios. In-
spired by this, we first train a single teacher model
(with six encoder and decoder layers) on a mixed-
domain dataset. The teacher then generates dis-
tilled target text by decoding the source text from
the original dataset. Combining these distilled sen-
tence pairs with the original dataset, we construct
a Distilled Mixed Dataset (DMD), following the
approach of Currey et al. (2020).

Using this DMD, we train a randomly initialized
student model (with three encoder and decoder lay-
ers) through sequence-level distillation, augmented
with our proposed teacher-student encoder align-
ment (Stage 1). In Stage 2, we fine-tune the dis-
tilled models on two new domains to assess their
adaptability.

Our contributions are as follows:

1. We validate the hypothesis that sequence-level
distillation primarily distills the decoder, po-
tentially leading to suboptimal knowledge
transfer, and demonstrate that our encoder
alignment method effectively mitigates this
limitation.

2. We show that models trained using our pro-
posed methodology generalize better to out-
of-domain data compared to vanilla sequence-
level distillation and its successful data-centric
extensions, such as that of Currey et al.
(2020).

3. We demonstrate that models trained using
our methodology adapt effectively to new do-
mains when fine-tuned, outperforming those
trained using vanilla sequence-level distilla-
tion and its data-centric extensions, such as
Currey et al. (2020).

4. We perform our experiments in a resource-
constrained setting, with a limited training
dataset of 50K sentences and a compute-poor
environment, and demonstrate that our pro-
posed method performs effectively in this sce-
nario.

5. We conduct an ablation study on the align-
ment loss weighting parameter α in a bona
fide low-resource language setting (English–
Sinhala), and find that the optimal value is
dataset-dependent. Within the tested range
(α = 1 to α = 7), a moderate setting yields

the best in-domain performance for this spe-
cific dataset.

2 Background

2.1 Domain Adaptation for NMT

Catastrophic forgetting (Goodfellow et al., 2015;
Chu et al., 2017), the degradation of model perfor-
mance on previous tasks when continually trained
on new tasks, is a major challenge in adapting new
domains to an existing NMT system. A simple yet
effective approach to address this issue was demon-
strated by Chu et al. (2017) and Liang et al. (2023),
where the model is re-trained from scratch using
data from all domains. While this method may
not scale well as the number of domains increases,
due to the requirement of having all domain data
available, it could still be feasible in low-resource
scenarios where datasets are typically small. How-
ever, adapting a single domain is insufficient for
applications requiring NMT systems to handle mul-
tiple domains. Maintaining separate expert systems
for each domain becomes prohibitively expensive
as the number of domains grows. Multi-domain
NMT systems offer a more scalable alternative (Wu
et al., 2024; Pham et al., 2019; Britz et al., 2017).

Approaches to domain adaptation can be broadly
categorized into two types: (i) data-centric meth-
ods (Kim and Rush, 2016; Currey et al., 2020; Liu
et al., 2021; Ko et al., 2021), which focus on lever-
aging data to improve adaptability, and (ii) model-
centric methods (Bapna and Firat, 2019; Aharoni
and Goldberg, 2020; Escolano et al., 2021; Cao
et al., 2021), which involve modifications to model
architectures or training processes. In our work, we
adopt a hybrid approach. We draw inspiration from
data-centric methods such as Currey et al. (2020)
and Kim and Rush (2016), while incorporating a
novel model-centric alignment method to enhance
KD for NMT.

2.2 Knowledge Distillation for NMT.

Knowledge Distillation (KD) (Hinton, 2015), a
framework for transferring knowledge from a
teacher model (a large, slow model) to a student
model (a smaller, faster model), has become a
widely adopted technique for compressing mod-
els into more efficient forms. Its impact in NLP
became evident with the introduction of Distil-
BERT (Sanh et al., 2019; Jiao et al., 2020), a com-
pressed version of BERT (Devlin et al., 2019).
Despite its success, KD presents challenges in
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sequence-to-sequence tasks. To address these chal-
lenges, Kim and Rush (2016) extended KD to Neu-
ral Machine Translation (NMT) by introducing
sequence-level distillation, which enables KD to be
applied effectively to sequence-to-sequence learn-
ing tasks (Sutskever et al., 2014).

Leveraging sequence-level distillation, Currey
et al. (2020) demonstrated its utility for multi-
domain adaptation in NMT. Their work showed
that a single student model could outperform larger
teacher models dedicated to individual domains.
Furthermore, Liang et al. (2024) investigated do-
main adaptation using continual learning (Silver
et al., 2013), where they incrementally expanded
the domain coverage of an existing translation
model. In this context, sequence-level distilla-
tion proved instrumental in retaining knowledge
of older domains while adapting to new ones. How-
ever, these methods have not been extensively stud-
ied in resource-constrained environments, such as
compute-poor settings, low-resource languages, or
combinations of both. In our work, we specifically
target both scenarios together, addressing the chal-
lenges of compute constraints and low-resource
languages simultaneously

3 Methodology

Our methodology is based on the hypothesis that
sequence-level distillation primarily distills the de-
coder, potentially leading to suboptimal knowledge
transfer. To address this, we propose aligning the
student encoder with the teacher encoder using
a cosine-based loss function (Barz and Denzler,
2019), improving upon vanilla sequence-level dis-
tillation. Our approach consists of the following
steps:

• Step 1: Randomly initialize a large teacher
model and train it to convergence on the given
data.

• Step 2: Use the teacher model to decode the
source side of the training data, generating
“distilled" target data.

• Step 3: Combine the distilled data with the
original data to create the distill mixed dataset
(DMD).

• Step 4: Randomly initialize a smaller student
model and train it on the DMD to convergence,
applying cosine embedding loss to align the
student encoder with the teacher encoder.

The training schema is illustrated in Figure 1. As
shown in the figure, the output of the final layer of
the encoder is passed through a mean pooling unit
to obtain a single vector representation. We chose
mean pooling because BehnamGhader et al. (2024)
demonstrated that it performs best for sequence-to-
sequence models.

The final loss consists of two components: (1)
the cosine embedding loss (L1) and (2) the negative
log-likelihood loss (L2). Since the DMD is used,
L2 includes the standard negative log-likelihood
loss for NMT (LNLL) and the sequence-level nega-
tive log-likelihood loss (LSEQ-KD). For details on
sequence-level negative log-likelihood loss, refer
to Section 3.2 of Kim and Rush (2016). The total
loss is defined as:

Ltotal = α · L1 + L2

Here, α is an attenuation factor used to control
the contribution of the cosine embedding loss. α
is treated as a hyperparameter, and its value is var-
ied in increments of 0.5 to determine the optimal
setting.

4 Experimentation Details

4.1 Datasets

For our experiments, we selected the German-
to-English language direction and created train-
ing, development, and test sets using six do-
mains: europarl (parl) (Koehn, 2005), law
(JRC-Acquis) (Tiedemann, 2012), medical (med)
(EMEA corpus) (Tiedemann, 2012), news com-
mentary (news) (Tiedemann, 2012), open subti-
tles (opensub) (Lison and Tiedemann, 2016), and
Ted2020 (ted) (Reimers and Gurevych, 2020). All
datasets were sourced from OPUS1 (Tiedemann,
2012).

For our ablation study on the weighting parame-
ter α, we utilize a real low-resource language set-
ting: English–Sinhala. We select three available
domains for evaluation—CCAligned (ccalign) (El-
Kishky et al., 2020), OpenSubtitles (opensub) (Li-
son and Tiedemann, 2016), and SITA (gov) (Fer-
nando et al., 2020), the latter of which was con-
structed from government documents of Sri Lanka.

To emulate a low-resource setting, we randomly
sampled and deduplicated 50K sentences for the
training set and 1K sentences each for the develop-
ment and test sets. Sentences were selected with

1https://opus.nlpl.eu/
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Figure 1: The figure illustrates our proposed method. The teacher model’s weights are frozen, while the student
model’s weights are learnable. The final loss is computed as the sum of two components: (1) the cosine embedding
loss between the mean-pooled final encoder layer outputs of the teacher and student models, and (2) the negative
log-likelihood loss of the student model. Note that the input data for both the teacher and student models is the
distill mixed dataset (refer to §3).

word counts between 4 and 120.
The experiments were conducted in two stages:

1. In Stage 1, we tested our proposed improve-
ment to sequence-level distillation. The train-
ing data consisted of a combined dataset of
parl, law, news, and med. Additionally, we
evaluated the generalization ability of these
models to out-of-domain data using the Flo-
res200(Flores) (NLLB Team et al., 2024)
development-test set.

2. In Stage 2, we assessed whether distilled mod-
els perform better in domain adaptation by
fine-tuning the models from Stage 1 on open-
sub and ted datasets. We followed the stan-
dard vanilla fine-tuning method in this stage.

4.2 Model Configurations

To evaluate the impact of our proposed methodol-
ogy, we trained five different models under varying
configurations:

• L-ADO: Large model trained on the All-
Domain Original dataset.

• S-ADO: Small model trained on the All-
Domain Original dataset.

• S-ADD: Small model trained on the All-
Domain Distilled dataset (vanilla sequence-
level distillation (Kim and Rush, 2016)).

• S-DMD-NoAlign: Small model trained on
the Distilled Mixed Dataset (DMD) without
teacher-student encoder alignment (as fol-
lowed in (Currey et al., 2020)).

• S-DMD-Align: Small model trained on the
DMD with teacher-student encoder alignment
(using the proposed methodology).

All-Domain refers to the combined dataset,
formed by concatenating all available domains. L-
ADO serves as the teacher model for all small mod-
els that utilize KD. The Distilled Mixed Dataset
(DMD) is constructed by combining the original
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dataset with the distilled dataset, where the latter is
generated by the teacher model decoding the orig-
inal source text. The large models consist of six
encoder and decoder layers, while the small models
have three.

4.3 Implementation Details

Hardware Specifications: All experiments were
conducted on a single machine with an Intel i9-
9900K CPU, 64GB of RAM, and an Nvidia Quadro
RTX 6000 (24GB VRAM).

Software Specifications: All models and train-
ing code were developed using the HuggingFace
(HF) Transformers (Wolf et al., 2020) library. For
evaluation, we use chrF score from the evaluate2

library of HF.

Models: To emulate a compute-constrained en-
vironment and meet the requirement of having the
teacher model present during student training, we
selected T5-small (77M parameters), a variant of
the T5 model (Raffel et al., 2019), as the teacher.
The student model was created by halving T5-
small, removing three layers each from the encoder
and decoder. All models were randomly initialized
to avoid influence from pre-trained knowledge.

Training Details: All models were trained for a
maximum of 100 epochs with early stopping (pa-
tience: 4). A learning rate of 2 × 10−4 was used
across all experiments. The batch size was set to 64,
with gradient accumulation of 2, resulting in an ef-
fective batch size of 128. The maximum sequence
length was set to 120.

Inference & Generation Details: During infer-
ence, a maximum sequence length of 120 was used,
and beam search (Graves, 2012) with a beam size
of 5 was employed. The same settings were applied
for generating target data for KD.

α med parl law news Flores
1.0 63.44 56.84 63.99 54.55 52.64
1.5 63.56 56.91 63.88 54.68 52.50
2.0 63.43 56.92 64.08 54.88 52.90

Table 1: ChrF scores of our model trained with differ-
ent α values, evaluated on in-domain test sets (med,
parl, law, news) and the out-of-domain Flores200
development-test set.

2https://github.com/huggingface/evaluate

Model med parl law news Flores
L-ADO 63.27 56.33 63.73 53.80 50.89
S-ADO 62.31 55.66 62.39 53.28 50.23
S-ADD 62.36 56.08 62.92 53.87 50.90
S-DMD-NoAlign 61.38 55.49 61.89 52.91 49.88
S-DMD-Align 63.43 56.92 64.08 54.88 52.90

Table 2: ChrF scores of models trained with vari-
ous configurations, evaluated on in-domain test sets
(med, parl, law, news) and the out-of-domain Flores200
development-test set. Refer to §4.2 for configuration
naming conventions.

5 Results and Discussion

To evaluate the effectiveness of our proposed ap-
proach, we conduct experiments in two distinct
settings. The primary evaluation is carried out on
the German–English language pair in a simulated
low-resource setting (§5.1), where we have access
to multiple domains and can systematically con-
trol the amount of training data. This setup allows
us to isolate and analyze the core contributions
of our method under controlled conditions. Ad-
ditionally, we conduct an ablation study on the
English–Sinhala language pair to examine the ef-
fect of the weighting parameter α under a bona fide
low-resource scenario with limited parallel data
and minimal domain diversity (§5.2). This analysis
helps assess the robustness of our method when ap-
plied to real-world low-resource language settings.

5.1 Main Results: Simulated Low-Resource
Setting

Table 1 shows a general trend of increasing ChrF
scores across all domains as the attenuation factor
(α) increases, except for the law domain and the
out-of-domain Flores200 test set. Based on these
results, we select α = 2.0 as the optimal setting.
Given the extensive training time required for each
experiment (12+ hours per run), we evaluated α
within a limited range.

Table 2 demonstrates that our proposed align-
ment methodology, used in S-DMD-Align, consis-
tently outperforms all small models across different
configurations, including the standard sequence-
level distillation model (S-ADD) (Kim and Rush,
2016). Notably, S-DMD-Align also surpasses the
large model (L-ADO), reaffirming Hinton (2015)’s
observation on the effectiveness of knowledge dis-
tillation. These results validate our hypothesis that
sequence-level distillation primarily distills the de-
coder, leading to suboptimal knowledge transfer.

Our approach achieves superior performance
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Model opensub ted
L-ADO 39.94 51.32
S-ADO 39.21 51.03
S-ADD 39.59 50.51
S-DMD-NoAlign 39.13 50.41
S-DMD-Align 40.43 51.94

Table 3: ChrF scores for Stage 1 models fine-tuned on
single domains (Open Subtitles and Ted2020) to eval-
uate domain adaptation. Each model is fine-tuned on
an individual domain and evaluated on its correspond-
ing test set. Refer to §4.2 for configuration naming
conventions.

across all domains while utilizing a more com-
pact small model with half the encoder and de-
coder layers, making it well-suited for deploy-
ment in resource-constrained environments. In
contrast, the S-ADD model underperforms com-
pared to the large model (L-ADO), indicating that
vanilla sequence-level distillation leads to inade-
quate knowledge transfer. Interestingly, S-ADD
achieves results comparable to the straightforward
combined-domain training approach (S-ADO), sug-
gesting that S-ADO is a more practical alternative
to S-ADD due to its simpler training process.

Beyond multi-domain performance, our method
enhances generalization to out-of-domain data, as
evidenced by the Flores evaluation. The S-DMD-
Align model surpasses the large model (L-ADO)
by +2.01 and the student model S-ADD by +2.67
on Flores200, demonstrating that knowledge distil-
lation can effectively enable multi-domain adapta-
tion even in low-resource and compute-constrained
settings.

To further assess the domain adaptation capabil-
ity of the distilled models, we fine-tune the models
from Stage 1 (refer to §4.1) on individual domains
(opensub and ted). Table 3 presents the results of
this Stage 2 experiment. Consistent with our find-
ings from Stage 1, S-DMD-Align outperforms all
baselines, including the large model (L-ADO), con-
firming that distilling models using our proposed
methodology, followed by fine-tuning, enhances
domain adaptation.

5.2 Ablation on α in a Real Low Resource
Setting

In this ablation study, we examine the effect of
the weighting parameter α in our proposed method
using the English–Sinhala language pair, which
represents a bona fide low-resource scenario. Due

α ccalign opensub gov Flores
1.0 38.91 28.71 44.25 28.11
2.0 39.06 28.88 44.35 28.04
3.0 38.79 28.21 43.80 27.43
4.0 39.54 28.91 44.66 27.54
5.0 37.96 28.43 43.65 27.73
6.0 36.27 27.89 41.85 25.41
7.0 38.59 28.86 43.91 27.71

Table 4: ChrF scores of our model trained on the
English–Sinhala language pair with different α values
using the distilled dataset, evaluated on three in-domain
test sets and the out-of-domain Flores200 development-
test set.

to the scarcity of parallel data and domain cover-
age, we limit our evaluation to three in-domain
datasets and one out-of-domain test set. Since our
approach is primarily designed as an extension of
vanilla sequence-level knowledge distillation, we
consider both the standard sequence-level distilla-
tion (S-ADD) and the no-distillation baseline as
points of comparison. This focused setup allows
us to analyze the relative contribution of α under
practical low-resource constraints.

Table 4 reports ChrF scores across various values
of the weighting parameter α, evaluated on three
in-domain datasets (ccalign, opensubs, and gov)
and one out-of-domain dataset (Flores). For the
purpose of hyperparameter tuning, we use only the
distilled dataset, as it is smaller and more efficient
to experiment with. Once the optimal value of α is
identified, we retrain the model on the full DMD
dataset for comparison against standard baselines
(Table 5). We observe that there is no consistent or
monotonic trend as α increases—performance fluc-
tuates across domains rather than improving uni-
formly. Nonetheless, the choice of α = 4.0 consis-
tently yields the best in-domain performance across
all three datasets, indicating that our proposed ob-
jective benefits from higher alignment weighting
in low-resource, domain-limited settings.

Interestingly, the out-of-domain Flores evalua-
tion achieves its highest score at α = 1.0, where
the NMT loss and the cosine embedding alignment
loss are equally weighted. Moreover, the optimal
value of α appears to be dataset-dependent, as our
earlier experiments on the German–English pair
revealed a different sensitivity to α compared to
the English–Sinhala setting explored in this study.

We pick two optimal α values (1 and 4) from
the results in Table 4 and evaluate them against the
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Model alpha ccalign opensub gov Flores
L-ADO – 41.95 28.88 48.44 29.81
S-ADO – 39.23 28.58 45.69 28.34
S-ADD – 38.41 28.67 43.46 27.15
S-DMD-NoAlign – 42.34 30.11 47.62 30.47
S-DMD-Align 1.0 42.78 30.36 47.25 30.54
S-DMD-Align 4.0 43.11 30.42 48.20 31.03

Table 5: ChrF scores of models trained with various
configurations for the English–Sinhala translation di-
rection, evaluated on three in-domain test sets and the
out-of-domain Flores200 development-test set. Refer
to §4.2 for a description of the configuration naming
conventions.

standard baselines, including sequence-level distil-
lation (S-ADD). In Table 5, we find that our model
with α = 4 outperforms all baselines by a consid-
erable margin, except in the gov domain, where
L-ADO marginally outperforms our model by 0.24
ChrF points. It is also worth noting that vanilla
sequence-level distillation (S-ADD) lags behind
the other baselines, suggesting that this approach
is suboptimal in resource-constrained settings.

When comparing α = 1 and α = 4, although
α = 1 yielded the best performance on Flores dur-
ing hyperparameter tuning, we observe that when
trained on the DMD dataset, α = 4 consistently
outperforms α = 1 across all domains. This high-
lights the importance of utilizing a combined data
setting (original + distilled) during the training of
an alignment-based model. Finally, we observe
that in the low-resource language direction, greater
importance is attributed to encoder alignment, as
reflected by the superior performance of the model
with α = 4.

6 Conclusion

Our experiments validate the hypothesis that
sequence-level distillation primarily distills the de-
coder, potentially leading to suboptimal knowledge
transfer, and demonstrate the efficacy of our pro-
posed methodology in addressing this limitation.
We show that vanilla sequence-level distillation
often produces underperforming models, making
it unsuitable for resource-constrained settings in-
volving low-resource languages and compute-poor
environments. In contrast, models trained using our
approach exhibit superior generalization to out-of-
domain data and demonstrate enhanced capabilities
as domain adapters.

By conducting all experiments on a single ma-
chine under constrained resources, we highlight the
practicality of our method and aim to inspire fur-

ther research on domain adaptation through knowl-
edge distillation, even in resource-limited settings.
Our findings underline the potential of knowledge
distillation as a viable strategy for achieving ef-
fective multi-domain adaptation. Furthermore, our
ablation study on the alignment loss weighting (α)
in the English–Sinhala direction reveals that the
optimal setting is dataset-dependent, with each lan-
guage direction benefiting from a different choice
of α.

7 Limitations

Our experiments were conducted under strict re-
source constraints, including a compute-poor en-
vironment and a limited training dataset of 50K
sentences. While this setting highlights the prac-
ticality and efficiency of our method, it may limit
the generalizability of our findings to larger-scale
or high-resource scenarios. Additionally, our ap-
proach has only been evaluated on models trained
from scratch; it remains an open question whether
the proposed alignment objective would yield simi-
lar benefits when applied to pretrained models or
larger architectures. We leave this exploration for
future work.
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