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Abstract

Domain-specific languages that use a lot of
specific terminology often fall into the cate-
gory of low-resource languages. Collecting test
datasets in a narrow domain is time-consuming
and requires skilled human resources with do-
main knowledge and training for the annota-
tion task. This study addresses the challenge
of automated collecting test datasets to evalu-
ate semantic search in low-resource domain-
specific German language of the process indus-
try. Our approach proposes an end-to-end anno-
tation pipeline for automated query generation
to the score reassessment of query-document
pairs. To overcome the lack of text encoders
trained in the German chemistry domain, we
explore a principle of an ensemble of "weak"
text encoders trained on common knowledge
datasets. We combine individual relevance
scores from diverse models to retrieve docu-
ment candidates and relevance scores gener-
ated by an LLM, aiming to achieve consensus
on query-document alignment. Evaluation re-
sults demonstrate that the ensemble method
significantly improves alignment with human-
assigned relevance scores, outperforming indi-
vidual models in both inter-coder agreement
and accuracy metrics. These findings suggest
that ensemble learning can effectively adapt
semantic search systems for specialized, low-
resource languages, offering a practical solu-
tion to resource limitations in domain-specific
contexts.

1 Introduction

In NLP, a low-resource language lacks sufficient
linguistic data, resources, or tools for effective
model training and development (Hedderich et al.,
2021; Chu and Wang, 2018). Domain-specific Ger-
man, especially in areas with professional jargon,
codes, acronyms, and numeric data, qualifies as
a low-resource language because large, publicly
accessible datasets for such specialized domains
are scarce. As a result, few language models are

Time stamp  Functional locations Product Description

Gesendet an HAH Transfer von B6
nach B1 98779 H2 Wasser nach B6
98781 H2 Organik bleibt bei SFP
Wasser D.O. 2-1.59 2-3 11.06
Kohlenstofftransfer zu K2 B4 32' B9 18'
K2 20' Loto‘t BAC-Zulaufwasser

2021/08/01 Alpha-L1-R111- ABC
10:04 | T5002
Tank 5002

Figure 1: An example of a mocked text log from a shift
book in the German language. The logs contain a log
of domain-specific terms, which require domain knowl-
edge in the area and know specifics of the production
process

trained specifically for these areas. While general
German has extensive NLP resources, specialized
sublanguages often demand unique datasets that are
difficult to gather and typically limited in volume.

Shift logs in the process industry are detailed
records maintained by operators or technicians dur-
ing their work shifts (see Figure 1!). They doc-
ument key operational activities, system statuses,
production metrics, equipment performance, pro-
cess parameters, maintenance activities, safety ob-
servations, product quality, and any incidents or
anomalies. The process industry produces and
transforms raw materials into finished products
through chemical, physical, or biological processes.
The complexity of parsing and interpreting pro-
fessional terminology and industry-specific syntax
requires models trained on annotated datasets tai-
lored to the domain, which are often non-existent
or proprietary. This lack of accessible, high-quality
datasets makes it difficult to build, fine-tune, or
adapt existing NLP models for these specialized
uses. Without significant efforts in curating and la-
beling domain-specific data, language models will
struggle with accurate interpretation and generation
in these fields.

Collecting and annotating text collections for se-

'The text in Figure 1 translates to English as “Sent to HAH
Transfer B6 to B1 98779 H2 water to B6 98781 H2 organics
still at SFP Water D.O. 2-1 .59 2-3 11.06 Carbon transfer to
K2 B4 32’ B9 18’ K2 20’ Loto’d BAC inlet water supply”
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mantic search in low-resource languages presents
several significant challenges. First, finding quali-
fied annotators for this task who are both fluent in
the language and trained in linguistic annotation
can be extremely difficult. Moreover, the com-
plexity of semantic search requires annotations be-
yond basic syntactic labeling, such as entity recog-
nition and coreference resolution, which demand
specialized knowledge and increase the task’s diffi-
culty. Second, standalone general language models
trained on high-resource languages can collect the
test data to a certain extent but do not transfer well
to these low-resource contexts and lack accurate
language representation of the domain language.

This paper explores the principle of ensemble
learning to create test collections for semantic
search in domain-specific German language. En-
semble learning is a machine learning technique
that combines multiple individual models, often
called "weak learners," to create a more powerful
and accurate predictive model by mitigating each
other’s weaknesses (Mienye and Sun, 2022). Our
experiments demonstrate that combining an ensem-
ble of multiple encoders with a generative LLM
(GPT-40 in our case) to reassess relevance scores
significantly improves the quality of test collections
for semantic search evaluation. Specifically, this ap-
proach increases inter-coder agreement (measured
by Krippendorft’s alpha) by nearly four times and
improves the F1-score by 1.5 times.

2 Related work

Ensemble learning improves machine learning per-
formance by combining predictions from mul-
tiple models, thus enhancing accuracy, reduc-
ing variance, and mitigating bias (Mienye and
Sun, 2022). Ensemble learning is popular across
domain-specific domains and applications, such
as medical diagnosis and fraud detection. It has
started evolving from being used with machine
learning algorithms to deep learning models.
LLMs have already been widely used for data
annotation, specifically for domain-specific tasks
requiring specialized domain knowledge, where
human annotations are costly but crucial (Tan et al.,
2024). Multiple studies have evaluated LLMs in
biomedicine (Zhu et al., 2023; Kumar et al., 2024),
law and education (Zhu et al., 2023), and financial
sector (Aguda et al., 2024). While LLMs are a
powerful tool for data annotation, the studies show
that standalone LL.Ms perform worse than human

annotators (Lu et al., 2023; Staff et al., 2023).

To mitigate the drawbacks of LLM annotations,
new methods were proposed to involve reasoning,
reevaluating the assigned labels, or involving col-
lective decisions. One of the state-of-the-art tech-
niques is to use a human-in-loop annotation process
and help human annotators by augmenting them
with the fast LLM-pre-annotated labels (Li et al.,
2023). The most recent development employs an
ensemble of LLMs for annotation (Farr et al., 2024)
or utilizes a synergy of thoughts across multiple
smaller-scale LMs (Shang et al., 2024), similar to
ensemble learning with "weak" models.

3 Methodology

Ensemble learning is widely used in practice be-
cause it can improve model robustness and accu-
racy and reduce variance, especially when individ-
ual models are prone to errors or have high vari-
ability. The central idea is that by aggregating the
predictions of several models, the ensemble can
outperform any single model, reducing the risk
of overfitting and improving generalization. En-
semble methods leverage the strengths of different
models while compensating for their weaknesses,
leading to better performance on complex tasks
(Mienye and Sun, 2022). In stacking of ensemble
learning, different models (often of different types)
are trained, and their predictions are used as input
to a "meta-model," which learns how to combine
these predictions to make the final decision.

The methodology of the ensemble for annotat-
ing a test collection for semantic search comprises
two main parts: (1) document indexing and (2) cre-
ation of the query-document pairs. The key aspect
of document indexing is using a set of encoders
with various architectures and training strategies.
The goal is to combine different aspects of the
document similarity that each encoder has learned.
Re-ranking combines the relevance score based on
the document similarity with the score generated
by a generative LLM. LLM assesses the relevance
of the query-document pair independently from
the score used for the retrieval, thus allowing the
combining of another "point of view" to the query-
document relevance. Figure 2 depicts the proposed
methodology.

3.1 Database indexing

Multiple encoders are used for the database index-
ing. Possible ways to encode a text document in-
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Figure 2: A proposed methodology with ensembles of (L)LM encoders used to retrieve the most relevant documents,
i.e., text logs of a shift book, and with an LLM to adjust the relevance score for the document re-ranking.

clude document encoding by the model architec-
ture (i.e., bi-encoder) and mean pooling of the word
vectors (additionally, see Section 4.2). Each doc-
ument encoder may have learned different vector
representation from the others due to its architec-
ture, training setup, and dataset on which it was
trained. We encode with multiple encoders to use
this diversity of the vector representation.

For our experiments, we used three bi-encoders:
two based on the sentence transformer architecture
and one text encoder from OpenAI°. We selected
the models that supported German, had a strong
performance on the semantic search on the publicly
available benchmarks, yielded the best results on a
small manually created dataset (see Appendix A.1
for more details), and could use cosine similarity
as a score metric (see Section 3.2). Each document,

*In our implementation we used azure-text-embedding-3-
large with a private endpoint.

i.e., a text log, is of a size between a sentence
and paragraph and was encoded based on the input
capacity of an encoder, i.e., truncated if needed.

3.2 Creating query-document pairs

Query generation A query was generated from a
randomly selected document, i.e., a text log from a
database, to ensure that at least one document was
relevant to a query. We chose only long enough
documents for the query generation, i.e., at least
100 chars. A query was generated with an LLM; in
our implementation, it was GPT-40. The prompt
was designed to make generated queries extracted
keywords from the text that look like search queries.
Following the principle of rewriting a search query
in real life to retrieve more fitting documents, the
same prompt additionally generated paraphrases to
the query:

Extract {query_num} search queries from the
following text \'{text}\'. The queries need to be
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meaningful as if you are supposed to use them to
google. A query should contain between 2 to 5
words. Minimize using tokens with digits. Avoid
using persons' names. Paraphrase each extracted
query into 2 to 4 modifications. When creating
paraphrases, make them look like you want to
reformulate them for better search results. The
paraphrases should contain synonyms of the
original words in a query or syntactically
correct change of the word order. Reply with a
list of strings, with each string a query
followed by its modifications separated by a
semicolon. Keep only the text of queries, no
enumeration. Consider the entire context, as it
is crucial for understanding the text. The texts
are from the context of chemical and
pharmaceutical production environments.

If a document was long enough (i.e., more than
300 chars), multiple queries were generated and
used in the annotation pipeline. We tracked a list of
the documents already used in the query generation
and kept selecting only the unused ones.

Retrieval We used the linear search on the L2-
normalized vectors with cosine similarity as a sim-
ilarity score function. We did not use other tech-
niques to ensure each document would acquire a
similarity score. We followed a two-step approach
to make the final similarity score used for the re-
trieval more robust.

First, we computed a similarity score indepen-
dently between a query and all documents and the
query’s paraphrases and all documents. Using para-
phrases enables retrieval of a more complete list
of documents than solely using the original query
by covering a wider lexical diversity used in the
text. The mean score per encoder is used as an
intermediate similarity score for a document d and
query g vectorized by encoder e;:

1

7|QP| Z cos.sz'm%(d’e) (D)

qeQP

C0S8.81Mg e =

where QP is a set of a query and its paraphrases,
and |QP)| is the size of this set.

Second, we average the scores across all en-
coders, thus scoring query-document similarity
equally by all used vector models:

c0S.81mg =

1
Z C0S5.581M ¢ )

‘ZE|86E

where E is a set of the used encoders, and |E| is
the size of this set.

Despite the calculated score, the similarity score
of the original document is assigned to 1.0 to ensure

that it will be among the retrieved documents and
has the highest score.

Lastly, we retrieve the best-matching documents
and assign relevance scores to the query-document
pairs. To decide which documents to retrieve, we
check two conditions: (1) the documents must have
cos.simg > 0.5, and (2) per query, should have at
least two relevant documents. The following func-
tion converted the cosine similarity to the relevance
score of the ensemble of encoders on a scale of 1
to 3, where 3 meant high relevance of a document
to a query, 2 was partial relevance, and 1 referred
to marginal relevance:

1 if0.5 < cos.simg < 0.6,

ensembleg = ¢ 2 if 0.6 < cos.simg < 0.7,

3 ifcos.simg > 0.7

3)

Re-ranking The goal of re-ranking was to use an
LLM to assess the query-document pair indepen-
dently from the encoders, and (1) use its relevance
score combined with the encoders’ score, (2) check
if an LLM reevaluated the pairs as irrelevant, i.e.,
assigned 0 scores:

Assign a relevance score between 3

to @ of how a query \'{query}\' matches an
event \'{text}\' which occurred at a machinery
\'{funcloc}\'. 3 is a strong relevance, i.e.,
a document directly contains the information
requested in a query. The relevance is

strong if the query matches a document on a
synonym level and some spelling modifications
(including a match of a full phrase/word to
its abbreviation/shortening). 2 is a middle
relevance, i.e., a document contains only

some terms or synonyms (more than 1) or the
information in a document refers to an adjacent
element in a text. For example, a query
specifies a specific type of container that

is empty, and a document contains a different
type of container that is empty. Score 1 means
little relevance, i.e., a document partially
contains some information requested in a query,
e.g., some terms from the query but
distributed across the document or only 1-2
terms/synonyms from a query are mentioned in a
document, but they don’t belong to one
neighborhood to reflect the semantics of a
query. For example, for a query \'pump is
defective\' some document contains general
information about a pump. A score of @ means
that a document is not relevant to a query.
Output only the relevance score in an integer
between @ and 3.

Combining the relevance scores from the two
sources, i.e., encoders and LLM, is done with the
following formula:
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3
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C))
where
if x > 2.6,
if 2.0 <x < 2.6,
if 1.0 <x <20
ifx <1.0

6))

bins(x) =

S = N W

The formula for the combined relevance score
originates from the moderate agreement between
the ensemble and LLM. Figure 3 shows that most
scores were either annotated by the ensemble as 1
or by the GPT-40 as 3. Hence, when computing
the combined score, we give more weight to the
GPT scores when the score is 3 or to the ensemble
scores when it is 1; otherwise, we compute their
average. Moreover, GPT-40 tends to re-rank the
fourth of the ensemble-positive scores as 0. There-
fore, we keep the re-ranking score of GPT-40. The
bins(z) function was empirically derived from our
experiments.

score GPT

0 1 2 3

1 |12% 13% 11% 18%

3% 3% 3% 13%

score ensemble
N

3 110% 2% 1% 11%

Figure 3: The distribution of the relevance scores pro-
duced by an ensemble of encoders and GPT-40. While
the ensemble assigns 1 relevance score, GPT-40 leans to-
wards the score of 3. The proposed combined approach
balances out these model tendencies.

4 Evaluation

We evaluated our approach against the manually as-
signed relevance scores to the retrieved documents
(Pangakis et al., 2023). The goal was to evaluate
how the proposed approach agreed with how a hu-
man assessed the query-document pairs.

4.1 Experiments

We used the approach to create a test collection
from seven plant shift books. We have generated

at least 80 queries for each source for which at
least two relevant documents were identified. We
selected 28-30 queries with up to 1000 relevant
documents each for the manual annotation to make
the task feasible. We provided a native German
speaker familiar with the domain, and the instruc-
tions were identical to those used in the prompt.
The documents were already sorted by the auto-
mated relevance scores, but the hired annotator
was to assign the relevance scores between 3 and
0 without seeing these scores. Since recall-based
evaluation is impossible, i.e., evaluating how many
documents were retrieved from the overall number
of relevant documents, we focus on evaluating final
relevance scores.

Metrics We selected a set of diverse metrics to
evaluate the automated assignment of the relevance
score defined as various tasks: (1) inter-coder agree-
ment between two annotators (i.e., automated and
manual) measured by Krippendoff’s alpha, (2) clas-
sification metrics for the imbalanced classes, such
as macro precision, recall, and Fl-score, (3) a
ranking metric for information retrieval and rec-
ommender systems, such as nDCG.

Krippendorff’s alpha is a robust statistical mea-
sure utilized to evaluate the reliability or inter-rater
agreement across multiple annotators in categoriz-
ing or labeling data (Krippendorff, 2013). Unlike
other agreement metrics, Krippendorft’s alpha is
versatile, accommodating different levels of mea-
surement, including nominal, ordinal, interval, and
ratio scales. The metric yields a value between
0 and 1, where 1 signifies perfect agreement, and
0 indicates no agreement beyond chance. Due to
its adaptability and rigorous assessment of inter-
rater reliability, Krippendorff’s alpha is extensively
employed in fields such as content analysis and
qualitative data coding, where ensuring the consis-
tency of human judgment is critical.

In the context of imbalanced datasets, macro-
averaged precision, recall, and F1-score provide
a more balanced evaluation of classification models
by giving equal weight to each class, regardless of
its frequency. Macro precision, recall, or F1-score
first calculates these metrics for each class. Then, it
averages the results, ensuring that smaller minority
classes are not overshadowed by the majority class
and helping to assess the model’s ability to avoid
false positives across all classes. This approach is
particularly useful for imbalanced datasets, where
traditional accuracy measures might be skewed by
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Figure 4: The confusion matrices of the annotated vs. automated relevance scores for four methods: an ensemble of
encoders, GPT-40 with vague examples, GPT-40 with specific examples (SE), and combined ensemble + GPT-40-SE.
The combined approach allocates most of the results on the matrix diagonal, whereas its components separately

lean towards one score or another.

Source Stats Model Kr;ll)gﬁ: Precision | Recall F1 | nDCG
All docs: 17053 Ensemble 50.30 38.24 39.66 33.61 97.71

A # queries: 30 GPT-40-VE 31.49 52.29 41.55 | 38.63 95.37
# verified retrieved candidates: | GPT-40-SE 44.10 56.51 46.28 44.39 95.60

2739 Combined 67.03 60.90 53.42 | 54.89 97.60

All docs: 14065 Ensemble 55.57 45.49 42.02 | 39.97 98.01

B # queries: 30 GPT-40-VE 40.37 43.28 42.14 | 3845 95.32
# verified retrieved candidates: | GPT-40-SE 45.61 45.07 44.34 | 40.79 95.60

2022 Combined 68.69 51.72 49.50 | 49.96 98.05

All docs: 129345 Ensemble 31.55 36.33 3520 | 32.15 93.49

C # queries: 30 GPT-40-VE 44.41 41.17 5340 | 37.47 93.62
# verified retrieved candidates: | GPT-40-SE 46.70 41.37 54.18 | 37.89 93.74

2166 Combined 61.35 46.92 51.33 | 48.16 95.35

All docs: 70823 Ensemble 14.39 18.56 25.81 21.25 90.44

D # queries: 30 GPT-40-VE 31.40 45.65 4942 | 39.85 93.11
# verified retrieved candidates: | GPT-40-SE 38.11 45.64 | 50.48 41.11 93.72

5111 Combined 54.71 50.87 48.47 | 46.38 94.64

All docs: 9730 Ensemble 81.60 8.34 36.16 12.73 59.09

E # queries: 28 GPT-40-VE -39.27 24.07 39.85 11.32 67.64
# verified retrieved candidates: | GPT-40-SE -23.67 27.56 41.68 20.29 68.52

7562 Combined -24.91 30.00 48.40 | 24.19 66.05

All docs: 25752 Ensemble 8.56 31.16 3342 | 28.01 89.88

F # queries: 28 GPT-40-VE 26.33 39.60 | 44.14 | 36.66 91.16
# verified retrieved candidates: | GPT-40-SE 39.97 45.95 49.05 | 42.82 92.72

2741 Combined 41.74 46.48 46.79 | 44.79 91.63

All docs: 63570 Ensemble -2.31 23.53 38.09 | 28.06 87.57

G # queries: 29 GPT-40-VE -3.68 26.62 42,49 | 21.71 86.22
# verified retrieved candidates: | GPT-40-SE 1.12 32.69 45.55 25.97 86.78

4406 Combined 14.90 34.19 39.44 | 30.35 86.65

All docs: 330338 Ensemble 10.92 28.81 3577 | 27.97 88.03

Average # queries: 205 GPT-40-VE 18.72 38.96 | 4471 | 32.01 88.92
# verified retrieved candidates: | GPT-40-SE 27.42 42.11 47.37 36.18 89.52

26747 Combined 40.50 45.87 48.19 | 42.68 90.00

Table 1: The proposed approach of combining relevance scores produced by an ensemble of text encoders and
reranking by GPT-40 yields, on average, the best results in three types of metrics, i.e., intercoder agreement,

accuracy, and ranking.

the model’s performance on the dominant class.
At the same time, macro-averaging ensures a fair
evaluation of all classes.

Balanced accuracy is a metric designed to
evaluate classification performance on imbalanced
datasets, where traditional accuracy may be mis-
leading due to the disproportionate representation

of classes. It is calculated as the average of the true
positive rate (recall) for each class, ensuring that
all classes, including the minority class, are equally
considered. Unlike standard accuracy, which can
be inflated by the model’s performance on the dom-
inant class, balanced accuracy provides a more eq-
uitable assessment by giving equal weight to both
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the positive and negative classes, regardless of their
prevalence in the dataset. This makes it a more
robust metric for evaluating models in scenarios
where class imbalance is a concern, as it reflects
the model’s ability to classify both frequent and
infrequent classes correctly.

Normalized Discounted Cumulative Gain
(mDCG) is a widely used evaluation metric for
ranking tasks, particularly in information retrieval
and recommender systems (Liu and Zsu, 2009). It
measures the ranking quality by comparing the
predicted order of items to the ideal, or ground
truth, ranking. nDCG is based on the Discounted
Cumulative Gain (DCG) concept, which assigns
higher relevance scores to items ranked at the
top of the list by applying a logarithmic discount
factor to lower-ranked items. This emphasizes
the importance of correctly ranking more relevant
items higher. nDCG normalizes this score by
dividing the DCG by the ideal DCG (IDCG)—the
DCG of the perfect ranking—resulting in a value
between 0 and 1. A score of 1 indicates a perfect
ranking, while lower scores reflect the degradation
in ranking quality. This metric is particularly
useful in scenarios where the relevance of items
decreases with their position in the ranked list,
making it a robust measure for evaluating the
effectiveness of ranked outputs.

Baselines To measure the impact of each of these
components within the proposed approach, we
compare the proposed approach to ranking solely
with the ensemble of encoders (Ens.) or GPT-40
(GPT). Moreover, we compare GPT-40 scores pro-
duced by two versions of prompts: with vaguely
formulated examples of query-document relevance
(GPT-40-VE) and specific examples (GPT-40-SE)
of the pairs and corresponding scores. The pro-
posed approach is denoted as Comb. and consists
of a combined ensemble of encoders and GPT-40
re-ranking prompted with specific examples.

Results Table 1 reports metrics computed per
method across 7 created test collections and their
average. The table shows that the proposed method
of combining an ensemble of encoders and GPT-40
outperformed these methods applied independently.
The approach outperformed the baselines in all met-
rics, but Krippendorft’s alpha measures the most
significant impact. Combining the relevance scores

3We report here only a prompt with vague examples of

what we used in our experiments. We cannot provide prompts
with specific examples because they contain proprietary data.

Rel.score | Ens. | GPT-40-VE | GPT-40-SE | Comb.
0 - 18.3 38.6 38.6
1 87.9 | 30.8 314 51.2
2 274 | 232 22.7 51.3
3 29.9 | 98.7 98.6 59.8
average 36.3 | 42.8 47.9 50.2

Table 2: Recall the score classification compared to
the manually assigned relevance scores. Providing
specific examples on prompting (GPT-40-SE) outper-
formed prompting with vague examples (GPT-40-VE),
with the most noticeable improvement in recognizing ir-
relevant query-document pairs, which scored as 0. Com-
bining an ensemble of encoders (Ens.) with GPT-40-SE
yielded worse recall for relevance scores 1 and 3 but
significantly improved the recall on the more ambiguous
score 2.

produced by an ensemble of encoders with GPT-4o,
on average, improved the inter-coder agreement by
a factor of 4. The results also show that providing
explicit examples of query-document pairs with
their corresponding scores systematically improves
all metrics compared to a prompt with vague exam-
ples.

Further, we built confusion matrices to see how
the score assignment was distributed between man-
ually annotated and automated relevance scores.
Figure 4 shows that the annotator often assessed
the query-document pairs as irrelevant despite the
score. Moreover, we see that the ensemble of en-
coders assigned a lot of pairs to score 1, whereas
GPT-4o tends to assess the pairs more positively,
with a score of 3 in many cases. Providing exam-
ples of query-document pairs with positive rele-
vance scores has improved the correct assignment
of the 0 score. Table 2 shows recall computed
based on these matrices. The ensemble of encoders
has the highest recall score of 1, whereas all ver-
sions of GPT-4o0 have the highest recall score of 3.
Combining both yields the highest result on score 2
(which seems to be the hardest category to decide)
and the highest average recall.

4.2 Discussion and future work

The evaluation results show that combining mul-
tiple relevance scores from diverse scoring meth-
ods increases the approach’s agreement and per-
formance. We tested the approach on the low-
resource language of the domain-specific German
used on the production sights. Although the ap-
proach reaches moderate agreement with the hu-
man labels, it can produce a large-scale, diverse
evaluation collection with minimum human anno-
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tation effort. If the final relevance scores are not
ideal and still require manual verification of the
query-document pairs, the time required for it is
considerably lower than performing the full anno-
tation pipeline from scratch. Below, we discuss
the findings, possible adjustments to the other lan-
guages, and further improvements.

Zero- vs few-shot learning for the domain-
specific tasks Our experiments have shown that
providing specific examples of the query-document
pairs and describing how to assign each score en-
ables LLMs to provide more accurate scores. These
examples in the few-shot learning setup help shift
an LLM towards a domain of interest, which is
crucial in prompting an LLM mainly trained on the
data with common knowledge towards a specific
knowledge area.

Other languages Nowadays, there is a vast ma-
jority of publicly available and commercial docu-
ment encoders*. For example, some sentence trans-
former models support 50 languages. A model
store of HuggingFace comes in handy for select-
ing suitable document encoders for an ensemble
of encoders. One of the most recent public multi-
lingual encoders is ES Text Embeddings ¢ (Wang
et al., 2024) trained for 94 languages. Another
hub of a vast selection of encoders is available
via LangChain integration’. Moreover, for sen-
tences or short paragraphs, mean pooling of the
word vectors can serve as an extra document en-
coding method. For example, fastText supports
157 languages® and has already been applied as a
document encoder for a domain-specific language
(Zhukova et al., 2021, 2024).

The recent releases of multiple public multilin-
gual LL.Ms make the methodology more feasible to
expand to more languages. For example, LlaMa 3°,
EuroLLM-9B!°, Salamandra-7B!!, and OpenGPT-
X Teuken-7B'? can be used instead of GPT-40 for

*Some examples of commercial encoders are OpenAl em-
beddings and Cohere

5https://huggingface.co/sentence—transformers/
paraphrase-multilingual-MinilM-L12-v2

®https://huggingface.co/intfloat/
multilingual-e5-base

"LangChain supports official integration of embeddings or
APIs and offers community API for more models

8https://fasttext.cc/docs/en/crawl-vectors.
html

9h’ctps ://ai.meta.com/blog/meta-1lama-3/

Ohttps://huggingface.co/utter-project/
EuroLLM-9B

llhttps ://huggingface.co/BSC-LT/salamandra-7b

Zhttps://huggingface.co/openGPT-X/

query generation and re-ranking query-document
pairs as a free alternative. Still, the performance
comparison of these models compared to GPT-40
remains for further investigation.

Further improvements Despite the approach
performing better than the baselines, the final met-
rics can be interpreted as weak agreement or mod-
erate effectiveness. The proposed approach of com-
bining the similarity scores and, later, the relevance
scores is rather naive and can be improved. First,
the encoders may have a more sophisticated way
of score combination, e.g., from reliability weight
per encoder score to the loss function that will min-
imize disagreement between the encoders. Second,
multi-agent LLMs can be used to solve a compli-
cated task of the query-document relevance assess-
ment (Suzgun and Kalai, 2024; Becker, 2024; Yang
et al., 2024), or alternatively, various LLMs can be
asked to perform the same task (Yin et al., 2023;
Tan et al., 2024).

5 Conclusion

This paper investigates a principle of ensemble
learning with "weak" text encoders to create a test
collection for the semantic search evaluation. We
combined multiple text encoder models for doc-
ument retrieval. We experimented with creating
a test collection for semantic search evaluation in
the domain of the German process industry. The
experiments showed that computing the final rel-
evance score by combining the average score of
the ensemble of text encoders and an independent
relevance score created by an LLM for each query-
document pair increases the inter-coder agreement
and accuracy metrics for several datasets. We invite
the research community to apply further and inves-
tigate the proposed methodology across additional
languages and domains.

6 Limitations

The methodology for automated data collection for
semantic search in low-resource languages faces
several limitations.

Limited Access to Commercial LLMs The lack
of accessibility to commercial APIs of LLMs can
lead to different results when relying on publicly
available LLMs than those reported. These public
models may not have the same performance or
language support as commercial offerings, making

Teuken-7B-instruct-research-vo.4
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it difficult to ensure reliable and high-quality data
collection across different low-resource languages.

Ethical and Legal Constraints using LLMs De-
pending on a domain, using public APIs or publicly
hosted LLMs, e.g., on a university cluster, may
not be possible. For instance, the legal constraints
around data privacy in the healthcare domain (e.g.,
GDPR compliance) may be stricter than in other in-
dustries, necessitating different data handling prac-
tices. This could limit the generalizability of the
methodology when crossing into different regula-
tory environments.

Different prompting requirements Low-
resource languages may require tailored prompting
strategies to extract meaningful and accurate data
from LLMs. A prompting approach that works for
one language or model might not generalize well to
others, necessitating the design of custom prompts
for each language or LLM, adding complexity to
the automated data collection process.

Lack of multiple strong text encoders Not all
low-resource languages have sufficient encoder-
based language models for effective use in auto-
mated data collection. Some languages may have
only one or even no pre-trained encoders, limiting
the ability to implement encoder-decoder architec-
tures commonly used in semantic search, which
could reduce performance and accuracy for these
languages.

Complex adjustments for other downstream
tasks Automated collection of datasets for down-
stream tasks, such as named entity recognition, sen-
timent analysis, or machine translation, may re-
quire significant adjustments for low-resource lan-
guages. This could involve re-tuning models, mod-
ifying preprocessing pipelines, or adapting annota-
tions, which can be time-consuming and resource-
intensive, hindering the scalability of the method-
ology across different languages.

7 Ethic considerations

Data Privacy and Consent The sensitive pri-
vate data used in these studies is protected under
GDPR regulations, ensuring full compliance with
privacy laws. As a result, explicit consent from
data subjects was obtained where required. Due
to GDPR restrictions, specific examples or direct
details regarding the data cannot be provided. Ad-
ditionally, anonymization techniques were applied

to safeguard personal information.

Transparency and Accountability The code,
datasets, and implementation details that can be
shared publicly have been fully discussed, with
links provided throughout the main paper and ap-
pendix. These resources ensure the research is
transparent and can be replicated and scrutinized.
However, parts of the work that fall under commer-
cial secrets cannot be revealed due to proprietary
restrictions. This limitation impacts transparency,
but necessary steps have been taken to share as
much as possible without violating commercial
confidentiality.
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A Appendix

A.1 Selection of the bi-encoder models

The following section describes the methodology
of the semi-automated collection of the test dataset
for semantic search. The produced dataset is an
intermediate version that helped navigate the de-
cision on the model selection for the ensemble of
encoders.

We selected five publicly available text encoders
and one commercial, all supporting the German
language. All models use cosine similarity as a
similarity metric.

A.1.1 Dataset

Table 4 reports the properties of a small manually
created test dataset used to select encoders for the
ensemble.

A.1.2 Evaluation and metrics

The models listed in the Table 3 were evaluated
with multiple information retrieval metrics de-
scribed below.

Liu and Zsu (2009) defines the metrics from our
evaluation as follows.
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Models P@10 | R@10 | F1@10 | MAP@10 | MRR | nDCG@10 | AVG
T-Systems-onsite/ i 1684 | 9.08 9.85 38.02 | 45.49 2025 | 23.26
german-roberta-sentence-transformer-v2

thuan9889/

llama_embedding model_v1 27.37 12.91 14.74 37.49 | 45.83 26.86 | 27.53
PM-Al/ 3421 | 2030 | 2079 46.67 | 53.92 3142 | 34.55
bi-encoder_msmarco_bert-base_german

sentence-transformers/

msmarco-distilbert-multilingual-en-de-v2- 28.95 24.43 17.96 49.12 | 54.91 32.73 | 34.68
tmp-Ing-aligned

sentence-transformers/ 30.00 | 20.80 | 18.99 51.17 | 58.77 31.99 | 35.29
multi-qa-mpnet-base-cos-v1

azure-text-embedding-3-large 38.42 | 22.25 23.39 66.68 | 69.30 39.13 | 43.20

Table 3: An evaluation of the text encoder models to be used with the ensemble of encoders. We used a small,
manually-created test collection to assess the capabilities of the available encoders. We selected the top 3 best
encoders based on the average across six information retrieval metrics.

Parameter Value
# documents 79.6K
# queries 20

# relevant documents | 406

Table 4: Small manually created test dataset used to
select encoders for the ensemble.

Precision@N In an information retrieval system
that retrieves a ranked list, the top-n documents
are the first n in the ranking. Precision at n is the
proportion of the relevant top-n documents.

Recall@10 Recall at n is the proportion of the
relevant top-n documents given the overall number
of relevant documents.

F1@10 is a harmonic mean of precision and re-
call, providing a single metric that balances the
two.

MAP@10 The Mean Average Precision (MAP)
is the arithmetic mean of the average precision
values for an information retrieval system over a
set of n query topics. It can be expressed as follows:

1
MAPQ10 = - Zn: AP@Q10, (6)

where APQN represents the Average Precision
value for a given topic from the evaluation set of
n topics. Average precision is a measure that com-
bines recall and precision for ranked retrieval re-
sults. For one information need, the average preci-
sion is the mean of the precision scores after each
relevant document is retrieved.

3, PQ@10

APQ10 =
R

)

where r is the rank of each relevant document, R is
the total number of relevant documents, and PQ10
is the precision of the top-10 retrieved documents.

MRR The Reciprocal Rank (RR) information re-
trieval measure calculates the reciprocal of the rank
at which the first relevant document was retrieved.
RR is 1 if a relevant document was retrieved at rank
1; if not, it is 0.5 if retrieved at rank 2, and so on.
The measure is called the Mean Reciprocal Rank
(MRR) when averaged across queries.

nDCG Discounted Cumulated Gain (DCG) is an
evaluation metric for information retrieval (IR). It is
based on non-binary relevance assessments of doc-
uments ranked in a retrieval result. It assumes that,
for a searcher, highly relevant documents are more
valuable than marginally relevant documents. It
further assumes that the greater the ranked position
of a relevant document (of any relevance grade),
the less valuable it is for the searcher because the
less likely it is that the searcher will ever examine
the document — and at least has to pay more effort
to find it. nDC'G is a normalized metric calculated
on the maximum possible DCG through position p,
e.g., 10.

A.2 Results

Table 3 reports the evaluation of the selected text en-
coders. We selected the top 3 best encoders based
on the average across six information retrieval met-
rics, i.e., two public and one commercial model.
The commercial model in a multilingual encoder
LLM shows a steep metric improvement compared
to the public LMs. We assume that having an ini-
tial strong encoder in the ensemble can impact the
overall result later.

122


https://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2
https://huggingface.co/PM-AI/bi-encoder_msmarco_bert-base_german
https://huggingface.co/PM-AI/bi-encoder_msmarco_bert-base_german
https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=python-secure#embeddings-models

	Introduction
	Related work
	Methodology
	Database indexing
	Creating query-document pairs

	Evaluation
	Experiments
	Discussion and future work

	Conclusion
	Limitations
	Ethic considerations
	Appendix
	Selection of the bi-encoder models
	Dataset
	Evaluation and metrics

	Results


