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Abstract

Instruction-tuned large language models have
demonstrated remarkable capabilities in follow-
ing human instructions across various domains.
However, their proficiency remains notably de-
ficient in many low-resource languages. To
address this challenge, we begin by introduc-
ing FarsInstruct: a comprehensive instruction
dataset designed to enhance the instruction-
following ability of large language models
specifically for the Persian language—a signif-
icant yet underrepresented language globally.
FarsInstruct encompasses a wide range of task
types and datasets, each containing a mix of
straightforward to complex manual written in-
structions, as well as translations from the Pub-
lic Pool of Prompts, ensuring a rich linguistic
and cultural representation. Furthermore, we
introduce Co-CoLA, a framework designed to
enhance the multi-task adaptability of LoRA-
tuned models. Through extensive experimental
analyses, our study showcases the effectiveness
of the FarsInstruct dataset coupled with training
by the Co-CoLA framework, in improving the
performance of large language models within
the Persian context. As of the current writing,
FarsInstruct comprises 197 templates across
21 distinct datasets, and we intend to update it
consistently, thus augmenting its applicability.

Keywords: Instruction-tuned LLMs, Low-
resource languages, Parameter efficient fine-
tuning

1 Introduction

The modern era of artificial intelligence is marked
by numerous breakthroughs, among which is the
rise of large language models (LLMs), such as
GPT4 (OpenAl et al., 2024), Llama3 (Dubey
et al., 2024) and PaLM (Chowdhery et al., 2022).
Instruction-tuning emerges as a vital technique in
the evolution of language models, involving train-
ing a model on a wide range of tasks described
through natural language instructions. This method
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diverges from traditional task-specific fine-tuning
and adapts the model’s behavior to respond to user
queries with relevant and helpful answers. This
technique offers a more generalized and versatile
approach to model training, thus contributing sig-
nificantly to the advancement of LLMs.

Despite the steady progress of instruction-tuned
language models, a persistent limitation remains:
their difficulty in capturing the nuanced complexi-
ties of low-resource languages. This critical chal-
lenge stems from the significant gap in the avail-
ability of high-quality instruction datasets tailored
to these languages. Wang et al. (2023b) highlights
this concern, demonstrating that datasets lacking
sufficient multilingual diversity can cause models
to lose previously learned multilingual capabili-
ties, leading to performance degradation. More-
over, translating English-centric datasets offers
only partial solutions due to several inherent limita-
tions (Naous et al., 2024; Ramesh et al., 2023; Van-
massenhove et al., 2021). While efforts have been
made to compile extensive multilingual instruction
datasets (Wang et al., 2022b; Singh et al., 2024;
Muennighoff et al., 2022), gaps remain in creating
diverse and complex prompts for languages like
Persian compared to other languages.

In this study, we propose Farslnstruct, a compre-
hensive human-annotated instruction dataset cre-
ated from existing Persian NLP datasets. It includes
a mixture of manually written instructions rang-
ing from basic to proficient language levels, along-
side translations from the Public Pool of Prompts
(P3) (Sanh et al., 2022), which is a collection of
prompted English datasets. To ensure the diversity
and representativeness of FarsInstruct, we devel-
oped 197 prompt templates derived from 21 distinct
public datasets. Each prompt template comprises
an input template and a target template, both of
which function to extract relevant data fields from
their respective datasets and reformat them into a
unified structure designed for the instruction-tuning
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Entailment

Input:

Can the hypothesis be concluded from the premise? Yes, No, Can not determine
Premise: There are three major cultural groups in Irag. Sunni Kurds (20%),
Sunni Arabs (25%) and Shia Arabs (55%).

Hypothesis: Sunni Kurds make up 20 percent of Iraq's population.

Target:
Yes

(.

Figure 1: An example of the prompts utilized in the
training process. The Persian version of the prompt is
employed for training purposes, while the translated
English version is provided to enhance comprehension.
The instruction component is highlighted in black, the
data fields are marked in orange, and the target answer
is indicated in gray. In Appendix D, this example is
shown in the PromptSource environment.

objective. For example, in the case of a Textual
Entailment dataset containing the fields Premise,
Hypothesis, and Label, an input template might
be: "Can the hypothesis be concluded from the
premise? Premise: {Premise}, Hypothesis: { Hy-
pothesis}", while a corresponding target template
could be "The answer is: {label}".

The collected public datasets encompass ten dif-
ferent task categories: Text Summarization, Textual
Entailment, Text Classification, Sentiment Analy-
sis, Word Sense Disambiguation, Query Paraphras-
ing, Question Answering, Reading Comprehension,
Named Entity Recognition (NER), and Translation.
Figure 1 depicts an instance of a prompt within
our dataset after applying its respective template.
A detailed overview of the FarslInsturct dataset is
provided in Section 3.

Additionally, parameter-efficient fine-tuning
(PEFT) methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2021), not only face challenges
in multi-task settings but are also prone to catas-
trophic forgetting (Wang et al., 2023a; Li et al.,
2024; Kalajdzievski, 2024). To address these is-
sues, we propose Co-CoLA, a novel integration
of CoLA (Xia et al., 2024) with rehearsal train-
ing (Kirkpatrick et al., 2017). More specifically,
we adopt an iterative optimization framework that
merges learned low-rank matrices into the model
parameters and reinitializes optimization for new
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LoRA modules. At each iteration, we retrain a sub-
set of data from previously learned tasks, mixing
it with the current task’s data during training. This
periodic revisiting of earlier tasks ensures that the
model retains performance across both old and new
tasks, all while preserving computational efficiency.
Section 4 presents an in-depth explanation of the
Co-CoL A method.

In summary, our contributions to advancing Per-
sian instruction understanding are threefold: (1)
We present Farslnstruct, a comprehensive human-
annotated instruction dataset for Persian, cover-
ing varied and representative tasks for different
categories such as text summarization, named en-
tity recognition, and translation. (2) We introduce
Co-CoLA, a method that combines CoL A with re-
hearsal training to mitigate catastrophic forgetting
in multi-task learning. (3) We release FarsInstruct
as an open-source resource, with a commitment to
its continued expansion to include a broader range
of tasks and modalities' 2.

2 Related work

Instruction-tuning: Instruction tuning refers to
the process of training language models using spe-
cific input-output pairs derived from diverse data
sources. This approach enhances the ability of
a pre-trained LLM to interpret and respond to a
wide range of human requests expressed in nat-
ural language. Instruction datasets used for this
purpose are typically created in one of three ways:
(1) manually created by researchers from existing
NLP datasets (Wang et al., 2022b; Wei et al., 2021),
(2) synthesized by prompting proprietary models
with a small, seed dataset (Taori et al., 2023; Wang
et al., 2022a; Honovich et al., 2023), or (3) gener-
ated entirely from scratch, involving human-written
prompt-response pairs (Conover et al., 2023; Kopf
et al., 2024). In this work, we adopt the first ap-
proach to develop FarsInstruct. Previous works
such as FLAN (Wei et al., 2021) and P3 (Sanh
et al., 2022) have been instrumental in advancing
instruction dataset creation. FLAN encompasses
over 60 NLP datasets, while P3 features more
than 2,000 prompts from 177 datasets, each sig-
nificantly contributing to the field. SuperNaturalln-
struction (Wang et al., 2022b) further advanced the
field by assembling a comprehensive benchmark

1https://huggingface.co/datasets/PNLPhub/
FarsInstruct

2https://github.com/Hojjat—Mokhtarabadi/
FarsInstruct


https://huggingface.co/datasets/PNLPhub/FarsInstruct
https://huggingface.co/datasets/PNLPhub/FarsInstruct
https://github.com/Hojjat-Mokhtarabadi/FarsInstruct
https://github.com/Hojjat-Mokhtarabadi/FarsInstruct

featuring 1,616 expert-written NLP tasks, cover-
ing 76 unique task types, and extending support
to multiple languages. xP3 (Muennighoff et al.,
2022) expanded on P3’s groundwork by including
content from 46 languages, adding new tasks like
Translation and Program Synthesis that P3 had not
tackled. Similarly, Aya (Singh et al., 2024) rep-
resents a major multilingual effort, featuring an
extensive dataset of 513 million instances across
114 languages. This was achieved through a global
collaboration involving fluent speakers who con-
tributed instructional content. Our dataset distin-
guishes itself from these collections in its depth and
adaptability, especially with the inclusion of more
challenging tasks in Persian, offering a high level
of detail not found in many multilingual efforts.
While most such projects primarily use machine
translations and cover a narrow range of tasks, our
dataset presents a wide array of culturally and lin-
guistically rich tasks.

Parameter effecient fine-tuning: Conventional
full-parameter fine-tuning becomes computation-
ally impractical as model size and the number
of downstream tasks increase. To address this
challenge, recent advancements in PEFT methods
advocate for training only a small subset of pa-
rameters while leaving the majority of pre-trained
model parameters intact. One of the most widely
utilized paradigms in PEFT is Low-Rank Adap-
tation (LoRA) (Hu et al., 2021). LoRA modi-
fies only a small, low-rank portion of the model’s
weights by incorporating low-rank matrices into
the model’s weights during the training process.
Despite the significant computational advantage of
LoRA, it falls short in multi-task adaptation, Ad-
ditionally, Kalajdzievski (2024) demonstrated that
PEFT techniques, including LoRA, remain vulner-
able to catastrophic forgetting, where models lose
previously acquired knowledge when fine-tuned
on new tasks. MultiLoRA (Wang et al., 2023a)
addresses the limitations of LoRA by reducing
the dominance of top singular vectors, horizon-
tally scaling LoRA modules, and altering the ini-
tialization of adaptation matrices, which leads to
improved performance across multiple tasks with
minimal additional parameters. MixLoRA (Li
et al., 2024) introduces multiple LoRA-based ex-
perts within a frozen pre-trained model using a
top-k routing strategy to efficiently distribute tasks,
independently configure attention layer adapters,
and apply auxiliary load balance loss, significantly
enhancing performance while reducing GPU mem-
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ory consumption and training latency. Further,
CoLA (Xia et al., 2024) introduces an iterative op-
timization framework designed to improve the fine-
tuning of LLMs by employing multiple iterations
of LoRA. In this paper, we design Co-CoLA to
address the issue of catastrophic forgetting, while
ensuring an effective multi-task adaption.

3 Farslnstruct Dataset

With about 130 million® speakers, Persian — also
referred to as Farsi in Iran — is an important lan-
guage in the Middle East and Central Asia. FarsIn-
struct represents a project to provide a compre-
hensive public instruction dataset for the Persian
community. As of this writing, FarsInstruct has
197 carefully designed and created prompt tem-
plates for 21 already-published public datasets and
some translations from existing prompted datasets.
Unlike multilingual collections focusing on com-
mon tasks such as Text Summarization and Ques-
tion Answering, FarsInstruct introduces more task
types, including Named Entity Recognition and
Word Sense Disambiguation. The creation proce-
dure, statistics, task augmentation, and quality of
the dataset are covered in detail in the following
subsections. Additional illustrations and tables are
provided in the Appendix B, C, D.

3.1 Dataset Construction

The development of FarsInstruct entailed trans-
forming Persian NLP datasets into their prompted
format, described in plain language. This pro-
cess involved a combination of manual ideation,
during which our team meticulously brainstormed
and refined prompt templates, along with invalu-
able insights from Persian language instructors.
For datasets with multiple data fields, prompts
were crafted to interrelate these fields, as elabo-
rated in Section 3.2. Additionally, synonyms were
employed to diversify the instructions within the
prompts and reduce repetition. Each prompt tem-
plate falls into one of two classes: categorization
or generation. Categorization prompts guide the
model in classifying text into predefined categories
from dataset labels or identified through dataset
analysis. In contrast, generation prompts require
the model to produce full-length text, such as sum-
marizing longer texts or answering questions based
on the provided information. These instructions

3https://en.wikipedia.org/wiki/Persian_
language
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Figure 2: The detailed depiction of 11 task types utilized in our dataset. Each box within the figure lists the specific
datasets associated with the respective task type. Datasets designated for training are highlighted in blue, and those
reserved for testing are marked in orange. Additionally, manual datasets, which have been specifically curated and
prompted by our team, are enclosed with solid borders. In contrast, datasets that have been translated from English

to Persian are enclosed with dashed borders.

also include scenarios where the model needs to
generate missing content from partial text inputs.

To efficiently create a large collection
of prompts, we primarily utilized Prompt-
Source (Bach et al., 2022), an open-source tool
designed for creating, sharing, and managing
prompts for NLP tasks. A key design choice
in Bach et al. (2022) is the use of Jinja2* as a
templating language, providing the flexibility
crucial for crafting clear and effective prompts.
Each dataset has multiple prompt templates,
each of which consists of an input and a target
template. These templates map raw data fields
into natural language, structuring both the input
and target sequences. Practically, templates allow
users to mix arbitrary text with data fields. We
refer to the text within the input template that
guides the model’s behavior as "Instruction".
Additionally, each prompt template documents
essential metadata, including evaluation metrics
and the language used.

The PromptSource toolkit offers an interface for
interactively writing prompts on datasets. Howeyver,
the original version did not support Persian, so we
modified its source code to handle Persian datasets.
Our updated version is publicly available, provid-
ing the Persian community with a tool to simply

*https://jinja.palletsprojects.com/en/3.1.x/
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create and develop prompts’. Appendix D depicts
an illustration of the PromptSource interface with
an example of a Textual Entailment dataset. More-
over, since this system was originally integrated
with Huggingface Datasets library (Lhoest et al.,
2021), we gathered datasets from various sources
and consolidated them into a unified public reposi-
tory on HuggingFace. Appendix D provides a sam-
ple of the crafted prompt templates for different
datasets.

In addition to manual templating, we have
decided to translate a subset of three question-
answering datasets from the P3 collection (Sanh
et al., 2022). This decision was made to enhance
the comprehensiveness and utility of our work by
providing a broader scope of data. To ensure a high-
quality translation, we utilized the No Language
Left Behind (NLLB) (Costa-jussa et al., 2022) ma-
chine translation model, capable of single-sentence
translations between 200 languages and dialects
in various scripts. We employed the largest NLLB
model with 3.3B parameters to achieve the best per-
formance. A complete list of manually templated
and translated datasets is given in Figure 2.

The final dataset is standardized through a se-
ries of preprocessing steps like deduplication and

5https://github.com/Hojjat—Mokhtarabadi/
promptsource
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Figure 3: Distribution of NLP tasks across the FarsIn-
struct dataset, highlighting the expanded data volumes
after applying prompt templates and the number of
prompts designed per task type. For each dataset, the
final size is determined by multiplying the number of
samples (N) by the number of prompt templates (M),
resulting in a dataset size of N*M.

removing irrelevant elements (HTML tags, hyper-
links, emojis, and offensive language). Figure 3
shows the distribution of tasks across FarsInstruct,
with Table 1 listing the total number of categoriza-
tion and generation prompts for each task type.

3.2 Task Augmentation and Quality Control

Instruction-tuned language models are known for
their significant benefits from exposure to a broad
array of tasks. In this regard, we aimed to diver-
sify the tasks through two approaches. First, we
phrased the instructions at varying language levels,
ranging from basic to advanced. Second, build-
ing on best practices outlined in the FLAN Collec-
tion (Longpre et al., 2023), TO (Sanh et al., 2022),
and MetalCL (Min et al., 2022), we enhanced task
diversity by mixing and swapping different data
fields within a given dataset. For instance, while
a dataset may initially assess a model’s ability to
answer question X based on input Y, we train the
model to generate question X when provided with
answer Y, thereby effectively broadening the range
of prompts available within a limited data pool.
To ensure the accuracy and cultural relevance
of the instructions, we incorporated public input
and expert evaluations. Feedback was gathered
from 15 randomly selected individuals and three
experts in Persian literature and psychology. Par-
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Task Type ‘ Cat Gen
Question Answering 1 9
Translation 2 10
NER (Named Entity Recognition) 4 19
Multiple Choice QA 9 1
Word Sense Disambiguation 10 O
Classification 15 12
Summarization 4 15
Reading Comprehension 2 18
Query Paraphrasing 10 7
Sentiment Analysis 24 13
Textual Entailment 16 5

Table 1: List of task types, along with the number of
categorization and generation prompts dedicated to each
task type. The expanded version of this table can be
found in the Appendix C.

ticipants were asked to help craft instructions in
various writing formats, including formal and in-
formal styles, and to express the same instruction
in different ways, then two psychology experts and
one literature professor were consulted to refine the
instructions. Their expertise informed revisions,
ensuring that the responses were grammatically
and linguistically correct and resonated with the
general Persian-speaking population. Further, the
datasets adopted in FarsInstruct are predominantly
used for single-task fine-tuning, as their widespread
use indicates higher quality.

4 Methodology and Experimental Setup

To maintain our model’s robustness and generaliza-
tion capabilities, we integrate the CoL A framework
(Xia et al., 2024) with continual learning (Kirk-
patrick et al., 2017). This section offers a thorough
overview of the training procedure and evaluation
setup.

4.1 Training Procedure

Given the significant computational demands of
full fine-tuning, we aim to employ LoRA for the
training procedure, specifically using the Farsln-
struct dataset. However, as noted in the studies
by (Wang et al., 2023a; Li et al., 2024), LoRA
tends to underperform in multi-task training scenar-
ios due to its limitations in capturing complex inter-
actions between tasks, leading to suboptimal perfor-
mance. To mitigate this challenge, Chain of LoRA
(CoLA) (Xiaet al., 2024), presents an iterative opti-
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Figure 4: The Continual-Chain of LoRA training procedure, containing Tuning, Merging, and Expanding. In Step
1, the pretrained language model is LoRA-tuned on dataset_1, with the replay memory initialized as empty and
merged. In Step 2, the model is expanded with a new LoRA module and further tuned on a subset of dataset_1,
determined by the rehearsal hyperparameter, alongside dataset_2, preparing it for Step 3. This process is iteratively

repeated in subsequent steps.

mization framework based on the principles of the
Frank-Wolfe algorithm (Frank et al., 1956). This
method involves an iterative process of LoRA fine-
tuning on a single task, merging the learned param-
eters with the base model, and reinitializing with a
new LoRA module. Xia et al. (2024) shows this pro-
cess allows the model to learn higher-rank adapta-
tions more effectively. Another persistent challenge
affecting the performance of LoRA-tuned models
is catastrophic forgetting. Kalajdzievski (2024) ana-
lyzed this phenomenon and revealed that forgetting
significantly undermines both model safety and
performance on reasoning benchmarks.

In this study, we propose Continual-Chain of
LoRA (Co-CoLLA), an extension of the CoLA
framework that incorporates rehearsal with replay
during training. More specifically, rehearsal train-
ing is an approach within the continual learning
framework that involves revisiting a portion of
previously learned tasks while training new tasks.
The core mathematical operation in LoRA involves
updating the low-rank matrices A and B, which
are applied to modify the transformer layers of
the model. The update rule can be expressed as
W' = W + BA where W represents the trans-
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former layer’s original weights, and W’ shows the
updated weights after applying the low-rank adjust-
ments A and B. Essentially, Co-CoLLA structures
the training procedure by iterating over the follow-
ing three phases:

Tuning: Following the standard LoRA approach,
the weights of the base model remain frozen, while
only the model’s LoRA parameters, represented by
matrices A and B are fine-tuned. During this phase,
a subset of previously trained data is replayed along
with the new data. Formally, let 7" = (71,...,T},)
denote the sequence where each T; represents the
training data obtained by applying the prompt tem-
plate ¢ to its corresponding dataset. The training
data augmented with rehearsal is defined as:

i—1
T; =T, U | Y rT;
j=1

)]

where r is the rehearsal hyperparameter that con-
trols the percentage of examples sampled from pre-
vious tasks 7%, ...,T;_1.

Merging: After the tuning phase, the newly up-
dated LoRA parameters are merged with the exist-
ing model weights based on the standard method
in Hu et al. (2021). These merged weights are fixed



and do not receive any gradient update in subse-
quent steps.

Expanding: The final phase involves preparing
the model for subsequent training rounds by reini-
tializing the LoRA modules with new parameters
(A’ and B’). Following Hu et al. (2021) A’ adopts
Gaussian initialization and B’ is initialized to zero.

An illustration of this iterative three-staged ap-
proach is provided in Figure 4.

4.2 Evaluation Setup

The performance of our model is assessed across
two categories of task types: those included in
the training dataset ("Held in") and those intro-
duced for the first time during evaluation ("Held
out"). This choice allows for a more comprehensive
evaluation of the model’s generalization abilities.
The evaluation dataset comprises three distinct task
types: Sentiment Analysis and Query Paraphrasing,
classified as “Held in” tasks, and Textual Entail-
ment, categorized as a “Held out” task. As shown
in Figure 2, the evaluation includes one dataset
each for sentiment analysis and paraphrase iden-
tification, as well as two datasets specifically for
entailment tasks.

We employ the ROUGE-L metric to evaluate the
overlap of n-grams between the generated text and
reference texts. Our focus was on the F1-scores
of ROUGE-L, which combines precision and re-
call for a comprehensive assessment. As shown
by Wang et al. (2022b), the rankings generated
by this metric correlate strongly with accuracy for
categorization templates.

5 Results

To investigate the applicability of FarsInstruct, we
instruction-tuned Ava—a Llama-3-based Persian
LLM—using the Co-CoLA framework across a suit
of tasks. The results were compared with mono-
lingual and multilingual instruction-tuned models,
using quantitative evaluations. For a comprehen-
sive overview of the training configuration, please
refer to the Appendix A.

5.1 Quantitative Evaluation

We evaluate our model against several existing
models fine-tuned on instruction data. Specifi-
cally, PersianMind (University of Tehran, 2024)
is a Llama-2 7B-based model, trained in 3 phases
on different Persian datasets. Though its training
data is unavailable, Ava (Moghadam, 2024) is a

37

Task | Type Model ROUGE-L
Aya-13B 45.58
> o PersianMind-7B 17.07
g § - Mistral-7B 6.89
SE s Ava-8B 6.67
,g 2 Ava-LoRA-8B 8.73
58 CoLA-8B 20.88
Co-CoLA-8B 45.86
= Aya-13B 28.41
é PersianMind-7B 18.19
22| - Mistral-7B 2.46
35|35 Ava-8B 8.69
g :ﬂé‘ 2 Ava-LoRA-8B 5.72
.‘E’D Ava-LoRA-8B 5.72
A CoLA-8B 25.62
Co-CoLLA-8B 40.87
Aya-13B 37.61
PersianMind-7B 17.05
= 3 Mistral-7B 5.74
é: g Ava-8B 12.48
E I Ava-LoRA-8B 9.07
T CoLA-8B 15.64
Co-CoLA-8B 36.35
Aya-13B 42.64
PersianMind-7B 4.45
= % 5 Mistral-7B 493
£E g Ava-8B 15.04
g 'g 5 Ava-LoRA-8B 7.18
@ | T CoLA-8B 22.55
Co-CoLA-8B 55.32

Table 2: ROUGE-L F1 Scores for Different Models
across Tasks

newly introduced model, fine-tuned on the Llama-
3 8B model for Persian tasks. Aya (CohereForAl,
2024) is a 13B encoder-decoder model trained on a
subset of 25 million samples from the Aya dataset
and Mistral-7B (MistralAl, 2024) is a decoder-
only model trained on publicly available prompted
datasets.

Table 2 summarizes the comparative perfor-
mance of various models, including our proposed
method, Co-CoLLA, across several NLP Datasets:
ParsiNLU Query Paraphrasing, Digikala Senti-
ment Analysis, FarsTail, and ParsiNLU Entail-
ment. These models are evaluated using ROUGE-
L F1 scores. As illustrated in Table 2, Co-CoLA
performs comparably well to the Aya model, de-
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Figure 5: Comparative performance of different models on Persian language tasks using the ROUGE-L metric. The
bar chart depicts the superior performance of Co-CoLA across multiple tasks, particularly excelling in the ParsiNLU

Entailment task.

spite having fewer parameters and being trained
on less instruction data and significantly outper-
forms all other models, indicating the effectiveness
of Co-CoLA. The factors contributing to this per-
formance gap are further discussed in Section 6.
Moreover, the scores of Ava-LoRA, reflecting the
performance of raw LoRA fine-tuning of Ava on
FarsInstruct and naive CoL A are inferior to those
achieved with Co-CoLA training, highlighting the
effectiveness of our method.

6 Discussion

Figure 5 provides a detailed breakdown of the over-
all performance reported in Table 2. Each dot in the
plot represents the ROUGE-L F1 score of the given
model on the selected template. As clearly illus-
trated, other Persian instruction-tuned models fail
to achieve a high ROUGE-L F1 score. One signifi-
cant factor contributing to this disparity is the low
precision score. The F1 score combines precision
and recall and serves as a comprehensive metric for
evaluation. Precision measures the proportion of
the longest common subsequence (LCS) in the can-
didate text that matches the reference text, while
recall measures the proportion of the LCS in the
reference text that is present in the candidate text.
Although these models achieve acceptable recall
scores, they fall short in precision, a critical met-
ric for categorization templates. In contrast, Aya
demonstrates proficiency in handling both genera-
tion and categorization templates within the Persian
context. Compared to Aya, Co-CoLA enhances the
model’s ability to manage both categorization and
generation tasks effectively while being less com-
putationally expensive. Despite the limited suc-
cess of continual learning frameworks, the study
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by Scialom et al. (2022) demonstrated that contin-
ual training of language models, such as TO (Sanh
et al., 2022) with rehearsal, can effectively help
them in comprehending new instructions via in-
struction composition. Our results confirm this
finding within the Chain-of-LoRA framework, re-
sulting in better generalization and improved per-
formance on new tasks.

7 Conclusion

This study aims to address the limitations in
instruction-following capabilities of language mod-
els for Persian, an important but underrepresented
language, by introducing a novel instruction dataset
and a training approach specifically designed to en-
hance the instruction comprehension of large lan-
guage models. Farslnstruct presents a carefully
curated dataset that combines human-annotated
instruction data with translations from English-
centric instruction datasets, featuring tasks in dif-
ferent forms and from varying levels of difficulty.
Further, Co-CoLA leverages the strengths of CoLA
with rehearsal training to mitigate catastrophic for-
getting and improve multi-task adaptation, through
its iterative optimization framework. Our results
demonstrate that this allows for sustained model
performance over diverse tasks while optimizing
computational resources. We hope our dataset fills
the critical gap and serves as a valuable resource to
the multilingual NLP community.

8 Limitations

This section delineates the principal limitations
of our study, which, while providing substantial
contributions to Persian NLP, presents certain chal-
lenges. Addressing these challenges in future devel-



opments could enhance its utility and applicability
in broader linguistic contexts.

Data Diversity and Representation: Although
FarsInstruct broadens the corpus of Persian lan-
guage resources, it does not fully capture the rich
tapestry of dialects and sociolects that characterize
the Persian-speaking world. Also, the collected
templates are generally biased towards short re-
sponses, which might affect the overall perfor-
mance of the model.

Complexity of Instructions: The dataset
prompts vary in complexity but still may not suf-
ficiently challenge or train models to handle the
types of complex instructions encountered in ev-
eryday human interactions. Real-world applica-
tions often demand a high level of interpretative
depth and context awareness—qualities that cur-
rent models may struggle with when trained on
existing datasets. Future versions of FarsInstruct
could benefit from integrating prompts that require
higher-order cognitive processing, such as irony,
metaphor understanding, and techniques that in-
volve prompting the model to break down complex
tasks into intermediate steps, mimicking human
reasoning processes (Wei et al., 2022).

Dependency on External Datasets: The effec-
tiveness of the FarsInstruct dataset is contingent
upon the quality and variety of the external datasets.
This dependency creates vulnerability, as biases or
errors in source datasets may be passed to FarsIn-
struct. A rigorous process for source data, coupled
with efforts to develop original, high-quality train-
ing materials, could diminish reliance on external
datasets and enhance the overall integrity of the
dataset.

Evaluation Metrics: The metrics currently used
to evaluate models trained on FarsInstruct may
not fully capture the nuanced and multifaceted as-
pects of language comprehension and generation.
Furthermore, for certain tasks such as rewriting,
ROUGE-L may not serve as an adequate measure
of quality.

Performance Stability: While Co-CoLLA has
demonstrated effectiveness in terms of computa-
tional efficiency and consistent performance across
all tasks it learned, mitigating catastrophic forget-
ting, we observe that its overall performance is
heavily dependent on the model’s performance at
each tuning iteration. We leave potential solutions
to this problem to future work.
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Appendix

A

Training Configuration

All implementations were carried out using PyTorch (Paszke et al., 2019), Transformers (Wolf et al.,
2020) and Accelerate (Gugger et al., 2022) libraries. For efficient training, we randomly selected 25
prompt templates and applied them to their corresponding datasets. Consequently, for instance, a dataset
with two selected templates would be upsampled to twice its original size. To generate the training data
for each iteration, we sampled up to 10,000 instances from the dataset based on the selected template,
with the rehearsal hyperparameter of Co-CoLA set to 0.01. Following the established practices, we used
Paged-AdamW as the base optimizer and trained for a total of four epochs in each tuning phase. A linear
learning rate scheduler was applied, with an initial learning rate of 6 x 1075 and a batch size of 16. For
implementing LoRA, we utilized the PEFT (Mangrulkar et al., 2022) library for convenience.

B Datasets Details

Digikala Sentiment Analysis (Tehranipour, 2019): A collection of Digikala product reviews labeled
by customer star ratings. It categorizes sentiment into five labels (e.g., buy, not buy, neutral).

Snappfood Sentiment Analysis (Tehranipour, 2022): A dataset of 70,000 user reviews from
Snappfood, an online food delivery service. It contains equal numbers of positive and negative
reviews (35,000 each), supporting effective sentiment analysis.

ParsiNLU (Khashabi et al., 2021): A comprehensive suite for Persian NLP tasks, covering reading
comprehension, multiple-choice question-answering, sentiment analysis, textual entailment, question-
answering, and machine translation. These datasets are collected in a multitude of ways, often
involving manual annotations by native speakers. This results in over 14.5k new instances across 6
distinct NLU tasks, serving as a key Persian NLP benchmark.

ExaPPC (Sadeghi et al., 2022): A paraphrase corpus with 2.3 million Persian sentence pairs labeled
as paraphrase or non-paraphrase. It includes both formal and colloquial sentences, making it ideal
for models like BERT.

FarsTail (Amirkhani et al., 2023): A Persian textual entailment dataset with 10,367 samples,
classifying premise-hypothesis pairs into entailment, contradiction, or neutral, essential for natural
language inference in Persian.

Pars-ABSA (Ataei et al., 2019): A dataset for aspect-based sentiment analysis in Persian, with 5,114
positive, 3,061 negative, and 1,827 neutral data points. It is useful for studying fine-grained sentiment
in reviews.

WikiSummary (Farahani, 2020): A summarization dataset with 45,654 entries derived from Persian
Wikipedia articles, paired with highlights designed for summarization tasks with reduced article
lengths.

Pn-Summary (Farahani et al., 2021): The Pn-Summary dataset contains 93,207 news articles from
six news agencies, each paired with a human-generated summary. The dataset was curated from an
initial pool of 200,000 articles, covering various categories.

PersianQA (Ayoubi, 2021): PersianQA is a reading comprehension dataset with over 9,000 entries
sourced from Persian Wikipedia, including both answerable and unanswerable questions. It supports
the development of models that can recognize unanswerable queries, similar to SQuAD 2.0.

PersianNews (Mehrdad Farahani, 2020): This dataset consists of 16,438 news articles from online
Persian news agencies, categorized into eight classes such as Economic, International, Political,
Science & Technology, and Sport.
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» DigiMag (Mehrdad Farahani, 2020): DigiMag contains 8,515 articles from the Digikala Online
Magazine, divided into seven categories including Video Games, Shopping Guide, Health & Beauty,
and Art & Cinema.

« PEYMA (Shahshahani et al., 2018): The PEYMA dataset features 7,145 sentences with 302,530
tokens, 41,148 of which are annotated with seven entity classes, including Organization, Money,
Location, Date, and Person.

* Persian NER (Poostchi et al., 2016): This is a manually-annotated named entity recognition dataset
with 250,015 tokens and 7,682 sentences. The dataset includes six named entity classes like Person,
Organization, Location, and Event, in IOB format.

* Syntran-fa (Farsi et al., 2024): A Farsi question-answering dataset with nearly 50,000 question-
answer pairs. It extends short answers into fluent, complete responses using syntactic rules and
parsing methods like stanza.

* XL-WiC (Raganato et al., 2020): XL-WiC is a multilingual dataset for word sense disambiguation,
involving binary classification of word meaning across 12 languages, including Farsi. It evaluates
models on cross-lingual semantic contextualization.

* SciQ (Lu et al., 2022): A multimodal dataset with 21,208 science questions from elementary and
high school curricula. It covers various sciences, with questions annotated with images, lectures, and
explanations, making it a rich resource for science QA.

* TriviaQA (Joshietal., 2017): A large QA dataset with 950,000 question-answer pairs from Wikipedia
and web documents. It is more challenging than datasets like SQuAD due to longer contexts and
non-direct text spans, including human-verified and machine-generated pairs.

* AdversarialQA (Bartolo et al., 2020): A dataset designed to test the robustness of QA models
against adversarially crafted questions. It includes adversarially modified questions from SQuAD,
TriviaQA, and NewsQA to challenge model reasoning and generalization.
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C Datasets Illustrations
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Table 3: Detailed Overview of Datasets Utilized for Categorization and Generation Tasks. As shown in this table
Categorization and Generation tasks are not equally distributed across all datasets. Some datasets, such as Digimag,
are originally designed for categorization tasks. We have enhanced these datasets by incorporating generation
prompts. Conversely, translation tasks, which are inherently generative, have been augmented with categorization
prompts. This dual-purpose approach enriches the datasets, facilitating both categorization and generation tasks
and providing a more versatile training and testing framework. This table provides insight into the distribution and
specialization of prompts across different datasets, highlighting the balance and focus within the training and testing
framework.
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Distribution of dataset after applying the instructions over different task type and datasets
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Figure 6: A treemap visualization that organizes datasets by task type, post-instruction application size, and data
category (training vs. testing). Each primary rectangle represents a distinct task type within the natural language
processing field, encompassing areas such as Question Answering, Classification, Translation, and more. Within
these primary rectangles, smaller sub-rectangles represent individual datasets. The area of each sub-rectangle is
scaled to the logarithm of the size of the dataset to accommodate the broad variance in dataset sizes, ensuring a
more balanced visual representation that allows for the inclusion of both large and small datasets on the same scale.
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D Prompts

Name

Promptsource ¥ - do_they_relate
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No of prompts created for

:10 Accuracy X ay

Select Example Prompt Languages
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o
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Dataset Schema

Figure 7: An example shown in the PromptSource environment. PromptSource is an advanced toolkit designed
for creating, sharing, and utilizing natural language prompts. Prompt templates function as mappings that convert
examples from datasets into natural language inputs and corresponding target outputs. In PromptSource, we develop
input templates, target templates, and choice templates. Inputs typically consist of questions or instructions, while
the output code specifies the expected answer or result. For categorization tasks, the choice template includes
predefined options for answering questions, while generation tasks do not require this template. In this picture,
The "Metrics" box is set to measure Accuracy for categorization tasks, and the "Prompt Language" used is Farsi
(Persian). "Answer choices" are provided within the template, which comprises an instruction followed by data
fields. The premise and hypothesis are selected from the "Data Schema" on the left side of the interface. The |||
symbol separates instructions from outputs, and the output employs Jinja code for conditional logic: if the label is c,
it outputs (no); if the label is e, it outputs (yes); and if the label is n, it outputs (cannot determine).
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Dataset: persiannlp/parsinlu_entailment
1. GPT3_Style
Input Template:

ibaie Ll ) Saila Ll ) £ 53 az oo 4y Carasd pga alaz g Jg) alaz o oS colse)

ja.u).oLl JA.).?)A EQJ‘A..‘ 3929

{{sentl}} : gl alox>
{{sent2}} :pga adax
u\y
Target Template:
{{ {”C”: 7’141‘-.;)4[-.'77, 79679: ”Mﬁ”, ’7n77: ”A)‘A-.‘ 33?5 ‘.:a-‘ajd LL}_.;J‘?? } [label] }}

Answer Choices Template:

515 a9y (sidie o5 M pebllllass 1o

2. based_on_the_previous_passage

Input Template:
€t S i |y cjlie Olgie Ll oas aala (e &y azgi b
aly -
)_‘_7. -
ala -
{{sentl}} :is
{{sent2}} :lic
5 g‘y
Target Template:

{{ {”C”: ”)-":}”’ ’96’9: ”d‘L.'”, ”n77: ’9;£L;:"9 } [label] }}
Answer Choices Template:

abLallljslllaly

3. can_you_infer
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Input Template:
i) ) poa cojlie Olgive O Gulalp L) o) sas aala Jg) cojlic oS (S jguai
QS g_:L>_\"_v‘ o eala sla M.J)i O J'l ?3)5
oyl -

ay -

ala -

{{sentl}} :Jol = lic
{{sent2}} :pga oujlic
u‘g?

Target Template:
{{ {"n”: "xuls”, "¢ 7w, Ve Ve 1”7 } [label] }}
Answer Choices Template:
abslllasils ;)
4. claim_relation
Input Template:

(e b po o asetials ccmiin baipe) 10S Cuumd |y sas sala sleal g (o s abail)

{{sentl}} :Jsl sleal
{{sent2}} :pgs sleal
u‘g?
Target Template:
(707 7 Gt 767 s L o™, "C™: " s L o™ } [label] })
Answer Choices Template:
Craa b el bt julll jaseisls

5. classify
Input Template:
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OS abyaiws oy oS a5l (So ol lie 90 0yl bl )l g8
mbu.o]al;u!bu_uh.csﬁmu)l_\_cmvyb ZAL.&;SU..,NS—
s JB Do bale b cnn ja 0,50 Olgiead opato wjlic ay azgi b 1 i WS -

ol sl

{{sentl}} :paie «ujlic
{{sent2}} : Jb = lic
Zg‘y
Target Template:
{{ {san”: ”u—t\} u“ys”, ”C”: ”:\Lfal‘ w%”, 7’6”: ”LLIYJ UHJS” } [label] }}
Answer Choices Template:
alay SIS QWS s WIS

6. comparison
Input Template:

sl ezt az () i) o5 oIS Lt 5 (Sleaiie (28) Js) &S Ly Uy acemlito

CanSe

{{sent1}} :Jsl oIS o
{{sent2}} :pga oS an

Target Template:
{{ {”n”: ”fj.l.!.otv”, ”e”: 9 .. cUL..uo °)b§ w-\-l 5 )A”, ”C”: usl.ﬂ_l.c LQ 0)b§ w-\-l”

? i } [label] }}

7. classify
Input Template:
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S Ol eas o)) ol e chalia )y ag3 Olisebs) e
. ! L -

Onb Olisebl -

W Oliseb] -

{{sentl}} :Jol = lic
{{sent2}} :pgs ujlic
u‘y
Target Template:
{{ {”n”: 77%L‘”’ ”C”: ”L.)HL‘I. Ot‘_}oL"” ”e”: 7’}1[_] OL“_}AL"’ } [label] }}

Answer Choices Template:

Yo il sl Olsaballl ialasts

8. does_this_imply
Input Template:

OS il g9 Gl @iy S O 3l Tasly Jgl e prygie ilgine rgn O L
oL-

-

als -

{{sentl}} :Jol (yie
{{sent2}} :pgs (yis
u_:‘?
Target Template:
{{ {”C”: ”)-.‘.}”’ ?’e79: ”o-l_.‘7?’ ”n”: ’,AﬂL‘j‘” } [label] }}
Answer Choices Template:
abLalll jesllaly

9. evaluate
Input Template:
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U8 bl plaS e Ll O Ll ) wail sas Gly cilisee le Ml auie ga 3l ag jlai g
?2)‘3

Liyo oy (I

L el (o

{{sentl}} :Jsl apba
{{sent2}} :pga ay las

1lg>
Target Template:
{{ "™ 727, 7¢”: 7, e "Ll ) [label] )}
Answer Choices Template:
iz

10. gen_sent
Input Template:

2l o) Soyge @ Olabls)) g5 o ) @S ay Gugiy alox G ) G elax @ azgil,

”C”:”ja.):l')‘olj”}[label]}} ”e”:”ja.)..l')‘o”, {{{nn”:n <A t'”, :L’\-‘—'J‘ &5_‘
{{sentl}} :ala>

:&.4‘9.?

Target Template:

{{sent2}}

Dataset: PNLPhubsnappfoodsentimentanalysis
1. comment
Input Template:
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iagy ool Olsan > ) LT e Ol ey s Ol it IS oBaa (88 s o b
fa b

{{comment}} :s8xa

e J lg=>
Target Template:

{% if label_id == 0%}

g ol paa B ) G lse
{% else %}

a9 () a2 s pide
{% endif %}

2. feelings
Input Template:

sl 6a S awelli b Jbrags |y s ite Jgame (1l U\mp;ulﬂuﬁﬁ#ﬁb

{{comment}} :s€xa

) J lg=>
Target Template:

{% if label == "HAPPY %}

Sl 038 Jrig ) s pise 25 O
{% else %}

Sl 038 2l |y (s ide 29 5 O
{% endif %}

3. gen_sentiment
Input Template:
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w).qwbb;ujd\ﬁmas)&(umgdfmua‘,uéabboa..udjl)l;;q)l_\_c;
CaiSue Jitie ) (o> az 02 sals

{{label}} ‘iz
{{comment}} :o)le
HEmES

Target Template:

{% if label == "SAD”%}
{% else %}

Jois>
{% endif %)

4. is_it_neg
Input Template:

9 G890 b (b)) TaiSee Jaite satilys a ) o b aie uo s sala lgize ]
aab Oie Ol g0 Gululy

{{comment}} : yio
u‘g?
Target Template:
{% if label_id == 1%}
Bt
{% else %}
{% endif %}

5. is_it_pos
Input Template:

56



il arte anl) s ol sat a8l i T

{{comment}} : yio

) J 9=
Target Template:

{% if label_id == 0%}
Bt
{% else %}

P
{% endif %}

6. possibility
Input Template:

(\ngwwﬁ)s‘_s)m)?ﬁ@ygn_d:\mdud.u?m;u_..gbq)lm‘;)aj
?ﬁgj\qpbd}&“w'aaz¢ésjhdw' LO‘ASA.J).\SJ

{{comment}} : ks
u‘?

Target Template:

{% if label_id == 0%}

sl ol 43S (gyla 2 1) Jgeazee Gal 22 Syl Jlaix
{% else %}

crwl (S aiS gl > ) Jgeme (nl 2azme Sayl Jloix
{% endif %}

7. rate
Input Template:
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QTA_.'L;J'Q_LJA.? sl p) g an g ) eas bl s (s ine I i b )8
AENEETR)

o)l_\”_m@j_;—
0)13....4&5.3'

{{comment}} : . ks
kel
Target Template:
{% if label == "THAPPY %}
b)l:\.m é.u
{% else %}
OJl:\_m kSJ
{% endif %}
Answer Choices Template:
OJl:\_m é.ul”éjl_\_m kj.'

8. what_is_sentiment
Input Template:

sl WS O a3l O age s b g i Jeaome SG 2l G oS
Ol i b cma] Yoty e j>

{{comment}} : L
ile
Target Template:
{{ {"SAD”: ”>| i, "JHAPPY”: ” Jl>x24>"} [label] }}
Answer Choices Template:

) illl Yt g>
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0.1 Prompts (Translated to english)
Dataset: persiannlpparsinlu_entailment

1. GPT3_Style
Input Template:

Choose what kind of relationship exists between the first and second
sentence? No logical connection, Related, Unrelated

First sentence: {{sentl}}
Second sentence: {{sent2}}
Answer:

Target Template:

{{ {7c”: ,”Unrelated” ~e”: ,”Related” ”n”: "No logical connection” } [label]

H

Answer Choices Template:
RelatedlllUnrelatedllINo logical connection

2. based_on_the_previous_passage

Input Template:
Based on the given text, can the statement be concluded?
- Yes

- No
- Maybe

Text: {{sentl}}
Statement: {{sent2}}
Answer :
Target Template:
{{ {"c” ”No” "¢”: ,"Yes” "n”: "Maybe” } [label] }}

Answer Choices Template:
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YesllINollMaybe

3. can_you_infer
Input Template:

Imagine the first statement is given. Based on that, can the second
statement be inferred? Choose from the given options
- Yes
- No
- Maybe

First Statement: {{sentl}}
Second Statement: {{sent2}}
Answer:
Target Template:
{ { {”n”: ’”Maybe” ”C”: ’7’N077 77e’7: 77Yes77 } [1abel] } }

Answer Choices Template:
YesllINollMaybe

4. claim_relation

Input Template:

Determine the relationship between the two given claims: (Related,
Uncertain, Unrelated)

First Claim: {{sentl}}
Second Claim: {{sent2}}
Answer:
Target Template:
{{ {"n”: ,”Uncertain” ”e”: ,”Related” ”c”: "Unrelated” } [label] }}

Answer Choices Template:

UncertainllIRelatedlllUnrelated
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5. classify
Input Template:

Classify the relationship between these two statements into one of the
three categories below
- Implication class: Considering the premise, the subsequent statement is
correct
- Contradiction class: Considering the premise, the subsequent statement
is incorrect
- Neutral class: Considering the premise, it’s not possible to definitively
state whether the subsequent statement is correct or incorrect

Premise: {{sentl}}
Subsequent statement: {{sent2}}
Answer:

Target Template:

9 99 9,

{{ {"n”: ,’Neutral class” ”c”: ,”Contradiction class” ”e”: ,”Implication
class” } [label] }}

Answer Choices Template:

Neutral classlllImplication classlllContradiction class
6. comparison
Input Template:

By comparing the first premise (preliminary assumption) and the second
premise, what conclusion do you draw?

First premise: {{sentl}}
Second premise: {{sent2}}
Result:

Target Template:

{{ {"n”: ,”Unknown” "e”: ,”Both premises are similar” ”c”: "The premises
are different” } [label] }}
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7. classify
Input Template:

Express your confidence level in the similarity of the given statements
- Uncertain

- Low confidence

- High confidence

First statement: {{sentl}}
Second statement: {{sent2}}
Answer:

Target Template:

99 99 99, CIRTIRE)

{{ {"n”: ,"Uncertain” ”c”: ,”Low confidence” “e”: ,”High confidence” }
[label] }}

Answer Choices Template:
UncertainlllILow confidencelll[High confidence
8. does_this_imply
Input Template:
Can the second text be the meaning of the first text? Choose from the
options
- Yes

- No
- Maybe

First text: {{sentl}}
Second text: {{sent2}}
Answer:
Target Template:
{{ {”C”: ’”N097 7?e77: ’?’YeSQ7 7?n?’: ’”Maybe?’ } [label] }}

Answer Choices Template:

YesllINollMaybe
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9. evaluate
Input Template:

Two theories from different information sources are stated. In which
evaluation do their relationships belong?
a) Highly related
b) Unrelated
¢) Uncertain

First theory: {{sentl}}
Second theory: {{sent2}}
Answer:

Target Template:
{{ {"n”: ,”Uncertain” ”c”: ,”Unrelated” ”e”: ,”Highly related” } [label] }}
Answer Choices Template:

UncertainlllUnrelatedllIHighly related

10. gen_sent
Input Template:

Considering the sentence below, write a sentence such that their relation-
ship is as follows

Relationship type: {{{’n””Uncertain”, ”e”:”Related”,
”¢”:”Unrelated” }[label] } }

Sentence: {{sentl}}

Answer:

Target Template:

{{sent2}}

Dataset: PNLPhub/snappfood-sentiment-analysis
1. comment
Input Template:
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Considering the overall customer perspective towards this product, were
they satisfied with their purchase?

Perspective: {{comment} }
Answer:

Target Template:

{% if label;d == 0%}
The customer was satisfied with their purchase

{% else %}
The customer was not satisfied with their purchase

{% endif %}

2. feelings
Input Template:
Considering the buyer’s comment, did this product make the customer
happy or disappointed?

Perspective: {{comment}}
Answer:

Target Template:

{% if label == "HAPPY %}
This purchase made the customer happy

{% else %}
This purchase disappointed the customer

{% endif %)

3. gen sentiment
Input Template:
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Carefully read the provided statement and decide what emotion it conveys
based on the given label.

Label: {{label}}
Statement: {{comment} }
Emotion:

Target Template:

{% if label == "SAD”%}
Sad
{% else %}

Happy
{% endif %}

4. is it neg
Input Template:

Does the given content convey a negative or bad feeling to the reader? The
evaluation should be precise and based on the way the text is expressed.

Text: {{comment} }
Answer:

Target Template:

{% if label;d == 1%}
Yes

{% else %}

No

{% endif %}

5. is it pos
Input Template:

Does the presented text have a positive emotional charge?

Text: {{comment} }
Answer:
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Target Template:

{% if label;d == 0%}
Yes

{% else %}

No

{% endif %}

6. possibility
Input Template:

Assess the customer’s opinion on various aspects of the product they
purchased and decide whether there is a likelihood of repurchasing it?

Opinion: {{comment}}
Answer:

Target Template:

{% if label;d == 0%}
The likelihood of repurchasing this product is high

{% else %}
The likelihood of repurchasing this product is low

{% endif %}

7. rate
Input Template:

A customer feedback form has been received as follows. What rating
would you give it?

- Five stars

- One star

Feedback form: {{comment}}
Rating:

Target Template:
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{% if label == "HAPPY” %}
Five stars
{% else %}
One star
{% endif %}
Answer Choices Template:
One starlllFive stars
8. what is sentiment

Input Template:

A user has the following opinion about a product they purchased. Deter-
mine whether they are happy or sad about their purchase.

Opinion: {{comment}}
Answer:

Target Template:

{{ {"SAD”: ,”Sad” "HAPPY”: "Happy” [label] }}
Answer Choices Template:

HappyllISad
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