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The BabyLM challenge called on participants Pretrained on 13m isiXhosa words
to develop sample-efficient language models.
Submissions were pretrained on a fixed English RoBERTa 87.0101 854104 97.6.05
corpus, limited to the amount of words chil- MLSM 874101 87.0404 954102
dren are exposed to in development (<100m). ELC-BERT 87. 705 88.6.0¢ 950403
The challenge produced new architectures for . . .
data-efficient language modelling, which out- Massively multilingual pretraining
performed models trained on trillions of words. XIL.M-R 88.1 88.1 89.2
This is promising for low-resource languages, Afro-XLLMR 88.7 89.9 97.2
where available corpora are limited to much Nguni-XLMR 383 90.4 98.2

less than 100m words. In this paper, we explore
the potential of BabyLMs for low-resource lan-
guages, using the isiXhosa language as a case
study. We pretrain two BabyLLM architectures,
ELC-BERT and MLSM, on an isiXhosa corpus.
They outperform a vanilla pretrained model on
POS tagging and NER, achieving notable gains
(+3.2 F1) for the latter. In some instances, the
BabyLMs even outperform XLM-R. Our find-
ings show that data-efficient models are viable
for low-resource languages, but highlight the
continued importance, and lack of, high-quality
pretraining data. Finally, we visually analyse
how BabyLLM architectures encode isiXhosa.

1 Introduction

Large language models (LL.Ms) are trained on tril-
lions of words (Touvron et al., 2023). Humans
are much more efficient language learners — chil-
dren are exposed to less than 100 million words
of speech/text by age 13 (Gilkerson et al., 2017).
This mismatch motivated the establishment of the
BabyLM challenge (Warstadt et al., 2023), a shared
task in which participants were invited to propose
data-efficient language modelling techniques. Sub-
missions were pretrained on a fixed corpus of devel-
opmentally plausible English (e.g. child-directed
speech, educational content) and ranked according
to performance on natural language understanding
(NLU) benchmarks.

The top submissions comfortably outperformed
standard Transformer-based (Vaswani et al., 2023)

Table 1: BabyLM performance on isiXhosa tasks, com-
pared to a RoOBERTa baseline trained from scratch and
three large-scale multilingual PLMs. We boldface best
per-category performance and underline best overall.

models pretrained on the same fixed corpus, even
surpassing state-of-the-art pretrained language
models (PLMs) trained on orders of magnitude
more data. The main aims of the BabyLLM chal-
lenge was to build cognitively plausible models of
language acquisition and enable compute-limited
language modelling research (Warstadt et al., 2023).
In this paper, we investigate an additional opportu-
nity arising from the shared task: its potential to
improve LMs for low-resource languages.

BabyLLMs aim to optimise performance on a lim-
ited training budget. For the BabyLLM challenge,
this was simulated by creating a constrained En-
glish corpus. For low-resource languages, such con-
straints represent the reality of their NLP resources.
Most languages do not have publicly available cor-
pora consisting of trillions of words, so out of ne-
cessity they operate on a limited training budget.
The data-efficiency of BabyLLMs therefore presents
a promising opportunity to achieve real-world per-
formance gains for certain languages.

To investigate BabyLMs in a low-resource con-
text we turn to isiXhosa, a South African language
with over 22 million speakers (Eberhard et al.,
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Figure 1: Downstream task performance for model checkpoints at different stages of pretraining.

2019). We pretrain two of the top BabyLLM sub-
missions, Every Layer Counts BERT (ELC-BERT)
(Georges Gabriel Charpentier and Samuel, 2023)
and Masked Latent Semantic Modeling (MLSM)
(Berend, 2023b), for isiXhosa. We evaluate on
isiXhosa NLU tasks and compare performance to
a baseline RoBERTa architecture (Liu et al., 2019)
pretrained on the same isiXhosa corpus.

Our results confirm the potential of data-efficient
architectures for low-resource languages, with both
BabyLMs obtaining performance gains over the
RoBERTa baseline on POS tagging and NER. ELC-
BERT proves especially effective, even rivalling
one of our skylines (large-scale existing PLMs for
isiXhosa). Unlike in the BabyLM challenge, our
models do not outperform the best skylines, which
we attribute to a lack of developmentally plausible
data for isiXhosa. In summary, while our results
indicate that low-resource gains are available from
architectural innovations, they also highlight the
continued need to develop higher-quality datasets
for low-resource languages.

2 Background
2.1 PLMs for isiXhosa

Pretraining corpora for isiXhosa are limited to 20m
words (Xue et al., 2021). This is greater availability
than most languages, but still two orders of mag-
nitude less than even early PLMs (Devlin et al.,
2019). As for other low-resource languages, mul-
tilingual modelling has improved performance for
isiXhosa NLU. IsiXhosa is included in XLM-R
(Conneau et al., 2020), a masked language model
(MLM) pretrained on 100 languages. Two pre-
vious works improved performance for isiXhosa
by adapting XLM-R through continued pretrain-
ing. Afro-XLMR (Alabi et al., 2022) adapts XLM-
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R for 23 African languages, including isiXhosa.
Nguni-XLMR (Meyer et al., 2024) narrows the
linguistic scope by adapting XLM-R for the four
Nguni languages (isiXhosa, isiZulu, isiNdebele,
Siswati), the closest linguistic relatives of isiXhosa.

2.2 BabyLM Architectures

The BabyLLM challenge hosted three competition
tracks, corresponding to different data restrictions.
The Small and Strict-Small tracks were respectively
limited to 100m and 10m words for pretraining,
while the Loose track allowed non-linguistic data.
ELC-BERT (Georges Gabriel Charpentier and
Samuel, 2023) won both the Small and Strict-Small
tracks, outperforming skyline models Llama2 (Tou-
vron et al., 2023) and RoBERTa-base (Liu et al.,
2019). MLSM (Berend, 2023a) was runner-up in
the Strict-Small track. The Strict-Small data restric-
tion (10m words) most closely aligns with the size
of publicly available corpora for isiXhosa, which
is why we chose the top models from this category.

2.2.1 Every Layer Counts BERT
(ELC-BERT)

ELC-BERT (Georges Gabriel Charpentier and
Samuel, 2023) adapts LTG-BERT (Samuel et al.,
2023), an architecture designed to optimise pre-
training on small corpora. ELC-BERT modifies
residual connections to selectively weigh outputs
from previous layers. Each layer’s input is a combi-
nation of outputs from previous layers, weighted by
learnable layer-specific weights. This is in contrast
to standard residual connections, where the input
is an equally weighted sum of all preceding out-
puts. The added expressivity of ELC-BERT, which
allows the model to dynamically weigh how pre-
ceding layers are incorporated into computations,
enables more sample-efficient learning.
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Figure 2: Layer contribution heatmaps of isiXhosa ELC-BERT at different stages of pretraining.

2.2.2 Masked Latent Semantic Modeling
(MLSM)

MLSM (Berend, 2023b,a) is an alternative to stan-
dard masked language modeling. Instead of tasking
the model with predicting specific tokens, which
can be challenging given limited training data, the
model is trained to predict broader semantic cat-
egories. For example, if the model is tasked to
predict the masked word “barbecue”, it would gen-
erate predictions towards the semantic attributes
associated with the word (e.g. “food”, “outdoors”,
“fire””). MLSM uses a teacher model to determine
latent semantic distributions for masked tokens, via
sparse coding of their hidden representations. The
final model is then a student model, trained to pre-
dict these latent semantic distributions rather than
the exact identities of masked tokens.

3 Experimental Setup

Pretraining Our BabyLMs and baseline are pre-
trained on the WURA isiXhosa corpus (Oladipo
et al., 2023), which is a compiled by filtering mC4
(Xue et al., 2021) to remove noise. The isiXhosa
dataset contains 13m words, similar in size to
BabyLM Strict-Small. Our models are trained for
200 epochs on a Tesla V100 GPU. We detail our
training process in Appendix A.

Evaluation We evaluate on three isiXhosa
datasets — MasakhaPOS (Dione et al., 2023) for
POS tagging, MasakhaNER (Adelani et al., 2022)
for NER, and MasakhaNEWS (Adelani et al., 2023)
for news topic classification (NTC). Test set results
are averaged across 5 finetuning runs.

4 Results

Table 1 presents our results. Both BabyLMs out-
perform the baseline on POS and NER, achiev-
ing large gains for NER (+3.2 F1 for ELC-BERT
and +1.6 F1 for MLSM). As in the original shared
task, ELC-BERT is the top-performing BabyLM.
ELC-BERT demonstrates superior efficiency in
both data utilisation (shown in Figure 1) and com-
putate requirements (its pretraining time is 70%
faster than MLSM). The BabyLMs fail to outper-
form RoBERTa on NTC. We attribute this to topic
classification being an easier task than POS and
NER, so data-efficiency is less critical. In fact, our
RoBERTa baseline even outperforms two skylines
on NTC, reaffirming previous findings that pretrain-
ing from scratch is sufficient for the simpler task of
NTC (Ogueji et al., 2021; Dossou et al., 2022). We
also posit that the architectures of ELC-BERT and
MLSM are more suitable for word-level tasks than
sequence-level tasks (discussed in section 5).

ELC-BERT outperforms one skyline, XLM-R,
on two tasks. Unlike in the shared task, our models
do not outperform the top skylines. We attribute
this to an important difference between our setup
and the shared task — the quality of pretraining data.
The WURA corpus does not match the quality of
the BabyLLM data, which was curated to include
developmentally plausible text (e.g. child-directed
speech, educational content). The previous suc-
cess of these models in English is due to a com-
bination of modelling innovations and extremely
high-quality pretraining data, which is lacking for
low-resource languages like isiXhosa.
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Figure 3: Top 10 semantic categories predicted by isiXhosa MLSM for named entities (sampled from MasakhaNER).

5 Analysis

The BabyLMs studied in this paper achieve data-
efficiency by augmenting the standard MLLM archi-
tecture. We now analyse how their unique architec-
tural innovations encode the isiXhosa language.

ELC-BERT The residual connections of ELC-
BERT learn to selectively weigh the output of pre-
vious layers. We visualise learned weights in Fig-
ure 2, comparing early pretraining to complete pre-
training (intermediary stages are visualised in Fig-
ure 4 in the appendix). The weighting exhibits
significant deviations from a standard Transformer
layer (which assigns equal weight to all preceding
outputs). In early stages of pretraining, the model is
biased to the embedding layer and immediately pre-
ceding layers. As pretraining progresses, the model
reduces its reliance on embeddings in favour of im-
mediately preceding layers, but still assigns more
weight to the embedding layer than the BabyLM
ELC-BERT submission. We posit that this empha-
sis on the embedding layer underlies ELC-BERT’s
performance gains on POS tagging and NER, since
embeddings encode information about word-level
syntactic roles (Tenney et al., 2019).

MLSM During pretraining, MLSM predicts
the latent semantic categories of masked to-
kens. To inspect the semantic distribution learned

by the model, we extract the predictions for
masked named entities in sentences sampled from
MasakhaNER. Figure 3 shows the top 10 seman-
tic categories (each corresponding to an index) as-
signed to four named entities. For each target word,
we also plot the probabilities produced for the other
words to compare distributions. In our sampled sen-
tences, two of the words (Justin and Augustine) are
names of persons, while the other two (Morocco
and Soweto) are names of locations. The plots
demonstrate more semantic overlap between the
same types of named entities. The names of per-
sons have seven overlapping semantic categories,
while the names of locations have nine overlap-
ping categories. Between the two named entity
types, only two semantic categories overlap. This
pattern indicates that MLSM effectively encodes
the semantic properties of these named entities, to
which we attribute its NER performance gains. We
present a similar analysis for target words across
POS tags in Appendix B.

6 Conclusion

This study explored the potential of two architec-
tures from the BabyLLM challenge, ELC-BERT and
MLSM, to benefit low-resource languages. Com-
paring our findings to those of the BabyLM chal-
lenge, we draw three main conclusions. Firstly, the
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gains obtained by isiXhosa BabyLMs show that
the sample-efficiency sought by the BabyLLM chal-
lenge can prove effective in real low-resource set-
tings. Secondly, ELC-BERT once again emerges as
the most data-efficient solution, even outperform-
ing massively multilingual PLMs. Lastly, the fact
that our BabyLMs do not outperform all skylines
shows that the absence of high-quality corpora for
isiXhosa poses a barrier to further gains. The find-
ings of the BabyLM challenge can be attributed
to both architectural innovations and specifically
curated pretraining data. The BabyLLM pretraining
corpus includes child-directed speech, educational
video subtitles, and articles from Simple Wikipedia
(an edition of Wikipedia written in simplified En-
glish, using shorter sentences and common words).
Such high-quality, developmentally plausible data
is not publicly available for isiXhosa. Our results
show that this limits the potential of BabyLMs for
low-resource languages.

More generally, this work unites two directions
of research — cognitively plausible modelling and
NLP for low-resource languages. We hope more
researchers pursue work at the intersection of these
two subfields, since they share the goal of improv-
ing data-efficiency in the era of scaling.

7 Limitations

Our study focussed on a single language, isiXhosa,
so our findings might not generalise to other low-
resource languages. We chose isiXhosa because its
data availability was well suited to our study. Pub-
licly available pretraining corpora for isiXhosa are
similar in size to the BabyLM Strict-Small corpus.
In terms of downstream evaluation data, isiXhosa
also has sufficient NLU datasets available to allow
evaluation across sequence labelling and sequence
classification tasks. The BabyLLM challenge eval-
uated submissions across many more tasks than
we did, some of which are much more challenging
than our isiXhosa evaluation tasks. Ideally, one
would evaluate our isiXhosa BabyLLMs on datasets
that test more aspects of language competence.
This would reveal further insights into the value of
BabyLLM architectures compared to standard base-
lines and/or skylines, which might not align with
our current findings. We hypothesise that more
complex evaluation tasks would further highlight
the value of BabyLLMs over standard Transformer
baselines, but due to the lack of additional isiXhosa
evaluation datasets we are unable to test this.
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A Training Details

For pretraining, we use the training scripts accom-
panying the BabyLM submissions, and use their
hyperparameter settings for the Strict-Small track
as a starting point. We pretrain our BabyLMs and
RoBERTz2 baseline for 200 epochs of the isiXhosa

WURA corpus. Our hyperparameter settings are
listed in Table 2.

Model LR SL H BS
RoBERTa 5¢=® 512 12 8
ELC-BERT 5% 128 12 128
MLSM (teacher) 1le™* 128 12 64
MLSM (student) le=* 128 12 64

Table 2: Pretraining hyperparameters (Learning Rate,
Sequence Length, Hidden layers, Batch Size)

ELC-BERT pretraining Due to computational
constraints, we trained our ELC-BERT model for
200 epochs, instead of the 2000 epochs of the
BabyLM submission. Regardless, downstream per-
formance for POS tagging and NER does plateau
by 200 epochs (Figure 1). Besides the number of
epochs, we made two changes to the hyperparame-
ter settings of the ELC-BERT submission (Georges
Gabriel Charpentier and Samuel, 2023). Firstly, we
used a batch size of 128 (instead of 256) due to
computational constraints. Secondly, the original
learning rate (1e~2) produced an unstable training
loss, so after some experimentation we settled on a
learning rate of 5e 4.

MLSM pretraining We trained the teacher and
student model from scratch on the WURA dataset,
keeping the same hyperparameters as the MLSM
submission (Berend, 2023a). Our teacher model is
based on the BERT-base-cased architecture! and
is trained using a standard masked language mod-
elling objective. We used the teacher model hidden
layers to create a semantic dictionary for the stu-
dent model. The student model is also based on
the BERT-base-cased architecture, but is trained
to predict semantic categories instead of masked
tokens.

Finetuning We use the finetuning scripts pro-
vided by the MasakhaPOS (Dione et al.,
2023), MasakhaNER (Adelani et al., 2022), and
MasakhaNEWS (Adelani et al., 2023) datasets
where possible, and adapt them for ELC-BERT.
Each model is fine-tuned for 20 epochs per task,
using the default hyperparameters provided in the
respective dataset fine-tuning scripts. For each task,
we perform 5 finetuning runs using different ran-

1https://huggingface.co/google—bert/
bert-base-cased
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dom seeds. We report the averages and standard
deviations over these runs in Table 1.

B MLSM Analysis

The predictions shown in Figure 3 are obtained
by masking the target words in sentences sampled
from MasakhaNER. We conduct a similar analysis
for target words with different POS tags, sampling
sentences from MasakhaPOS. Figure 5 shows the
top 10 semantic categories assigned to four words
with different parts of speech. Two of the words
(phambi and emva) are adpositions, while the other
two (kwaye and ukaba) are conjunctions. The plots
demonstrate less semantic overlap between same
POS tags than named entity types. The adposi-
tions have three overlapping semantic categories,
while the conjunctions share four overlapping cat-
egories. Between the different POS tags, there
is still minimal overlap: phambi shares one cat-
egory with kwaye and three categories with uk-
aba, while emva shows no overlap with either con-
junction. We attribute this pattern to the broader
and less interchangeable nature of POS tags com-
pared to named entities, making them less suited
to MLSM’s strengths. The reduced semantic over-
lap, compared to named entities, might be why
MLSM’s effectiveness varies across linguistic tasks.
This aligns with the results shown in Table 1, where
MLSM’s performance gains for POS tagging show
a narrower margin over the baseline compared to
the improvements in NER.
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Figure 4: Layer contribution heatmaps of isiXhosa ELC-BERT at different stages of pretraining.
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Figure 5: Top 10 semantic categories predicted by isiXhosa MLSM for target words (sampled from MasakhaPOS).
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