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Abstract

Contemporary machine translation systems pri-
oritize fluent, natural-sounding output with flex-
ible word ordering. In contrast, interlinear

translation maintains the source text’s syntac-
tic structure by aligning target language words
directly beneath their source counterparts. De-
spite its importance in classical scholarship,
automated approaches to interlinear translation
remain understudied.

We evaluated neural interlinear translation from
Ancient Greek to English and Polish using four
transformer-based models: two Ancient Greek-
specialized (GreTa and PhilTa) and two general-
purpose multilingual models (mT5-base and
mT5-large). Our approach introduces novel
morphological embedding layers and evaluates
text preprocessing and tag set selection across
144 experimental configurations using a word-
aligned parallel corpus of the Greek New Tes-
tament.

Results show that morphological features
through dedicated embedding layers signifi-
cantly enhance translation quality, improving
BLEU scores by 35% (44.67 → 60.40) for
English and 38% (42.92 → 59.33) for Polish
compared to baseline models. PhilTa achieves
state-of-the-art performance for English, while
mT5-large does so for Polish. Notably, PhilTa
maintains stable performance using only 10%
of training data.

Our findings challenge the assumption that
modern neural architectures cannot bene-
fit from explicit morphological annotations.
While preprocessing strategies and tag set selec-
tion show minimal impact, the substantial gains
from morphological embeddings demonstrate
their value in low-resource scenarios.1

1We gratefully acknowledge Polish high-performance com-
puting infrastructure PLGrid (HPC Center: ACK Cyfronet
AGH) for providing computer facilities and support within
computational grant no. PLG/2024/017156. The research
presented in this paper was partially supported by the funds of
Polish Ministry of Science and Higher Education assigned to
the AGH University of Kraków.

1 Introduction

Machine translation (MT) is a well-established sub-
field in Natural Language Processing (NLP), pri-
marily focused on producing accurate and natural
translations. In typical scenarios, MT systems have
the flexibility to reorder words or go beyond literal
meanings to account for syntactic differences be-
tween source and target languages. While these
conventional MT systems prioritize natural and
fluent translations, there exists a spectrum of trans-
lation approaches, ranging from free translation to
extremely literal renderings.

At the far end of this spectrum lies interlin-

ear translation (Shuttleworth and Cowie, 2014),
a method that strictly preserves the source text’s
syntactic structure. This approach aligns target
language words directly below or above their cor-
responding source text elements. Commonly ap-
plied to ancient (and oftentimes sacred) texts, this
method allows readers unfamiliar with the source
language to understand both the meaning and struc-
ture of the original text. Such alignment enables
students to critically evaluate translations by ob-
serving how specific source words were translated,
which is especially crucial for interpreting source
texts in fields such as philosophy and religious stud-
ies. Figure 1 illustrates an example of interlinear
translation.

Despite the significance of interlinear translation,
which Benjamin (1923/2000) called “the archetype
or ideal of all translation”, there has been limited
research on automating this process. This may
be attributed to the pre-existing interlinear trans-
lations for many influential texts. However, we
believe automating this process remains relevant,
making these texts more accessible to those without
expertise in ancient languages.

While prior research (Tenney et al., 2019) sug-
gests that modern neural architectures like BERT
inherently learn linguistic patterns without explicit
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Figure 1: Interlinear translation example from John 5:8, showing Ancient Greek source text, English translations,
and BibleHub morphological tags.

linguistic annotations, our findings challenge this
assumption in low-resource scenarios. We demon-
strate that for small datasets with limited sentence
pairs, properly encoded morphosyntactic tags sig-
nificantly enhance translation performance.

In the presented paper we aim to achieve the
following objectives:

• Evaluate interlinear translation of Ancient
Greek texts using modern MT models for both
English and Polish targets,

• Study how linguistic features affect translation
quality, focusing on morphological tags and
text preprocessing methods,

• Compare specialized ancient language mod-
els (PhilTa, GreTa) with general multilingual
transformers (mT5) in low-resource settings.

We focus on the Greek New Testament as our
source corpus, given its international significance,
original Ancient Greek text (Nestle et al., 2012),
and abundant translations. Our analysis compares
model performance between two syntactically dis-
tinct target languages: English (positional) and Pol-
ish (inflectional).

Our contributions This paper presents three
main contributions. Firstly, we construct a novel
word-level-aligned parallel corpus of the Greek
New Testament with interlinear translations in En-
glish and Polish, based on data from BibleHub
(BH) and Oblubienica (OB).

Secondly, we present the first systematic ap-
proach to automating interlinear translation using
modern machine learning methods. We evaluate
four base models – PhilTa, GreTa (Riemenschnei-
der and Frank, 2023a) and mT5 (Xue et al., 2020)
(in two sizes) – across 144 experimental scenarios,
providing comprehensive insights into the task’s
feasibility.

Finally, our experiments demonstrate that in-
corporating morphological information in low-
resource settings significantly improves translation

quality, with proper morphological tag encoding
yielding improvements of 38% for Polish and 35%
for English over the baseline. We also find that
the choice of normalization method and tag set has
minimal impact on model performance.

We make the resources developed as part of this
work (parallel corpus, training code, and fine-tuned
models) publicly available.2

2 Related Work

Recent years have witnessed substantial advances
in applying machine learning to ancient languages,
particularly Ancient Greek (Sommerschield et al.,
2023). While most research focuses on tasks like
POS tagging and lemmatization, machine trans-
lation of ancient texts presents unique challenges
that intersect multiple research areas. This section
examines relevant work across these domains.

2.1 Current State of Machine Translation

Recent studies demonstrate significant progress in
machine translation across different resource set-
tings. For high-resource language pairs, state-of-
the-art models achieve BLEU scores between 30-
33 when translating into English, and 22-26 when
translating from English (Zhang et al., 2020). More
recent research (Xu et al., 2024) reports similar per-
formance levels, with BLEU scores of 32.2 for
translation into English and 27.8 for translation
from English for Central and Eastern European
languages.

For low-resource scenarios (less than 0.1M train-
ing pairs), performance varies significantly but re-
mains surprisingly robust. Models trained on lim-
ited data consistently outperform zero-shot trans-
lation approaches, which typically achieve BLEU
scores between 4 and 15 (Zhang et al., 2020).

2
https://github.com/mrapacz/

loreslm-interlinear-translation

https://github.com/mrapacz/loreslm-interlinear-translation
https://github.com/mrapacz/loreslm-interlinear-translation
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2.2 Machine Translation for Ancient Greek

Recent research in Ancient Greek Natural Lan-
guage Processing has primarily focused on en-
coder models from the BERT family (Devlin et al.,
2019). These models have been successfully ap-
plied to foundational tasks like Part-of-speech tag-
ging, lemmatization (Singh et al., 2021), translation
alignment (Yousef et al., 2022; Keersmaekers et al.,
2023) and dependency parsing (Nehrdich and Hell-
wig, 2022).

Despite this progress in encoder models, ded-
icated sequence-to-sequence models for Ancient
Greek remain scarce. Only one notable effort ex-
ists: Riemenschneider and Frank (2023a) devel-
oped two T5-based models – GreTa (monolingual)
and PhilTa (trilingual, trained on Ancient Greek,
Latin, and English).

This scarcity of translation models is matched
by limited parallel corpora. The OPUS project
(Tiedemann, 2012), a major repository of parallel
texts, contains just 635 sentence pairs for Ancient
Greek-English and only 2 pairs for Ancient Greek-
Polish. These numbers firmly place Ancient Greek
translation in the low-resource category according
to established benchmarks (Zhang et al., 2020),
which classify language pairs with fewer than 0.1M
training examples as low-resource.

2.3 Machine Translation for Biblical Texts

The exponential growth in Bible translations across
languages (Gerner, 2018) has made it a valuable
parallel corpus for machine translation research.
However, most studies utilizing biblical texts fo-
cus on translation between modern language pairs,
such as Navajo-English (Liu et al., 2021), Mizo-
English (Devi et al., 2022), and other contemporary
languages (Hurskainen, 2020), rather than working
with the original ancient source texts.

While some research has explored ancient lan-
guage processing of biblical texts, such as Latin-
Spanish translation (Martínez Garcia and Gar-
cía Tejedor, 2020) and Greek-English corpus align-
ment (Riemenschneider and Frank, 2023b), these
efforts primarily focus on intermediate translations
or specific NLP tasks like embedding evaluation
(Krahn et al., 2023). Direct translation from origi-
nal Ancient Greek biblical manuscripts to modern
languages remains largely unexplored, particularly
in the context of structured translation approaches
that preserve source text characteristics.

2.4 Interlinear Translation Approaches

While we have not found prior work directly ad-
dressing interlinear translation, the related field of
interlinear glossing has been extensively studied,
particularly in the context of language documen-
tation and preservation. Morpheme-level glossing
dominates research compared to word-level gloss-
ing, likely due to its applications in language preser-
vation. Word-level glossing, while less common,
serves primarily as a tool for readers to better un-
derstand source texts without necessarily knowing
the source language (Carter, 2019).

Research has explored both using source lan-
guage glosses to generate free translations (Zhou
et al., 2020) and generating glosses as part of
the output (Moeller and Hulden, 2018; McMillan-
Major, 2020; Zhao et al., 2020). The field’s signif-
icance is highlighted by SIGMORPHON’s recent
introduction of an interlinear glossing shared task,
which focuses on producing morpheme-level gram-
matical descriptions of input sentences.

2.5 Role of Morphological Information

The impact of morphological features on neural
models, especially in low-resource settings, is still
under investigation. While Moeller et al. (2021)
found mixed results for part-of-speech tags, Per-
era et al. (2022) reported improvements in specific
language pairs. Overall, incorporating linguistic
information, as shown in Chakrabarty et al. (2020,
2022, 2023), can enhance translation quality in
resource-constrained scenarios.

Chakrabarty et al. (2020) introduced a neural
model using linguistic features via self-relevance
and word-relevance methods. Both involve pro-
jecting feature embeddings and applying a sigmoid
non-linearity to combine with original embeddings.
These methods improved BLEU scores by 0.67-
3.09 points for English-to-Asian language transla-
tion. Chakrabarty et al. (2022) showed that sim-
ple feature embedding concatenation with a Trans-
former model pre-trained on span reconstruction
also yields significant improvements.

For Ancient Greek, with its rich morphology and
relatively free word order, the value of morphologi-
cal information may be more significant. Beyond
basic part-of-speech tags, detailed morphological
features – including mood, tense, voice, person,
case, gender, and number – could potentially en-
hance translation quality, though this hypothesis
requires empirical validation.
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Figure 2: A passage (Acts 1:19) showing differences
between the source texts in both corpora. The first line
originates from Bible Hub (BH) while the the second
from Oblubienica (OB). Differences include casing (BH
varies casing, OB uses only lowercase), diacritics (used
in BH, but not in OB), and an extra article (τον) in Bible
Hub’s version.

3 Methodology

In this section we discuss our corpora, including
gathering, alignment, and preprocessing of the data.
Further, we cover models employed and our ap-
proaches for encoding the morphological metadata
in their inputs. Finally, we describe how the models
were fine-tuned.

3.1 Datasets

For our fine-tuning dataset, we prepare a word-
level-aligned corpus consisting of two interlinear
translations available online – an Ancient Greek
New Testament translated into English (sourced
from BibleHub) and one into Polish (sourced from
Oblubienica). Each translation contains source text,
translation, and morphological tags, discussed in
the following paragraphs.

Source Text The corpora include different crit-
ical editions of the Greek text. Specifically, the
Greek text in the Oblubienica corpus follows Nes-
tle Aland Novum Testamentum Graece 28 – NA28
(Nestle et al., 2012), while Bible Hub merges
NA28’s predecessor – NA27 (Aland, 1927) – with
other critical editions (Robinson and Pierpont,
2005; Scrivener, 1881; Westcott and Hort, 1882;
Holmes, 2010; Nestle, 1904), each marked using
special quotes. Although the primary disparity be-
tween the two corpora lies in the textual edition
used, there are additional distinctions, which in-
clude varying casing, usage of diacritics, and punc-
tuation, as depicted in Figure 2.

Translations The Oblubienica corpus provides
a Polish translation that combines three sources:
Gdansk Bible (1632), Updated Gdansk Bible
(2009) and Polish Interlinear Translation (1993).
Bible Hub provides an English translation, though
its source is not specified. Both translations are
aligned word-by-word with the Greek text.

Tag Sets share common categories like Part of
Speech, Pronoun (with subtypes), Person, Tense,

Mood, Voice, Case, Number, Gender, and De-
gree (see Appendix A). The corpora differ in total
unique tags (Oblubienica: 1068, Biblehub: 693),
primarily due to verbs (Oblubienica: 743, Bible-
hub: 385), while other parts of speech have similar
counts (Table 1).

Part of Speech Bible Hub Oblubienica

Verb 385 743
Pronoun 169 193
Adjective 68 56
Noun 31 39
Article 30 23
Adverb 3 5
Particle 3 4
Interjection 1 1
Preposition 1 1
Conjunction 1 1
Hebrew Word 1 1
Aramaic Word 0 1

Table 1: Comparison of the number of unique mor-
phological tags per part of speech (including dedicated
categories for Hebrew and Aramaic words) between
Oblubienica and Bible Hub.

Oblubienica’s detailed tagging system results in
more unique verb tags. It distinguishes first and sec-
ond aorist tenses (+100 forms), marks Attic dialect
verbs (+100 forms), and notes uncertain participle
genders (+50 forms) more often. Additionally, it
employs more combinations of voice categories
with tense and mood (+370 forms). This gap might
narrow with a larger dataset, as Bible Hub’s sys-
tem allows for these distinctions but doesn’t utilize
them fully.

Both corpora use natural language tags (e.g., Ar-
ticle – Nominative Masculine Plural) and abbre-
viated forms (e.g., A-NMP). When encoding tags
directly in text, we use the shorter forms due to
model memory constraints.

The corpora occasionally differ in word classi-
fication – for example, δαυιδ (David) is tagged as
N-GMS (Noun – Genitive, Masculine, Singular) in
Bible Hub but as ni proper (Properly Indeclinable
Noun) in Oblubienica.

Corpus Alignment To enable tag set compari-
son across models, we performed word-level align-
ment between the two corpora. First, we standard-
ized the Bible Hub text by retaining only NA27 tex-
tual editions to match Oblubienica’s NA28 version.
We then implemented a hierarchical matching algo-
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rithm that first attempted exact word matches, fol-
lowed by within-verse matches, and finally nearest-
neighbor matching for ambiguous cases. This ap-
proach successfully aligned over 99% of words
between the corpora. We excluded the remaining
unmatched words, to maintain consistent tag cover-
age across both datasets.

Word Forms Our corpus maintains two ver-
sions of each Greek word. The first version pre-
serves diacritics, following Bible Hub’s spelling
which includes breathing marks, accents, and other
diacritical signs. The second version is normal-
ized: stripped of diacritics and converted to lower-
case. Since our corpora are aligned, we use Bible
Hub’s spelling as the canonical form with diacrit-
ics, discarding the corresponding words in Oblu-
bienica. This dual representation enables experi-
ments with both diacritical and normalized text pro-
cessing approaches, following two major schools
of thought in Ancient Greek NLP: preservation
of full orthographic information (Riemenschneider
and Frank, 2023a) versus normalized processing
(Yamshchikov et al., 2022).

Final Dataset The aligned corpus contains
Greek words (with diacritics and normalized),
paired with morphological tags (Oblubienica and
Bible Hub) and translations (English and Polish).
Table 2 summarizes the dataset.

Statistic Count

Verses 7,940
Words (GR) 137,323
Words (PL / EN) 133,581 / 185,722
Unique Tags (OB / BH) 1,068 / 693

Table 2: Corpus statistics: verses, source words (Greek),
target words (Polish/English), and unique morphologi-
cal tags in the corpus (Oblubienica/BibleHub).

3.2 Base Models

We use four T5-based models (Chung et al.,
2022): GreTa and PhilTa (Riemenschneider and
Frank, 2023a) (both T5-base variants), and mT5-
base/large (Xue et al., 2020). GreTa was trained
on Ancient Greek texts, while PhilTa was trained
on Ancient Greek, Latin and English. mT5 was
trained on mC4 (Raffel et al., 2020), covering 101
languages including English and Polish. While
mC4 includes Modern Greek, it does not contain
Ancient Greek – these are distinct languages that
differ significantly in vocabulary, grammar and syn-

tax. We include mT5-base to match GreTa/PhilTa’s
size and mT5-large to test if more parameters help
performance.

3.3 Tokenizer Efficiency

We evaluate tokenizer efficiency across our models
using the average number of tokens per word met-
ric (Yamshchikov et al., 2022), reported in Table
3. For Greek text with diacritics, mT5 requires
approximately twice as many tokens per word com-
pared to PhilTa or GreTa. However, this gap disap-
pears when processing normalized text. For Polish,
English, and morphological tags, mT5 generally
achieves better tokenization efficiency.

The tag tokenization shows notable differences
between corpora, with Oblubienica tags requiring
significantly more tokens than Bible Hub tags. This
stems from Oblubienica’s more verbose tagging for-
mat – for example, where Bible Hub uses N-DFS,
Oblubienica expresses the same information as n_

Dat Sg f. It is worth noting that this distinction af-
fects only the scenarios where morphological tags
are encoded as part of the text input.

Tokenizer GreTa PhilTa mT5
Dataset

GR – diacritics 1.49 1.50 3.15
GR – normalized 2.45 2.30 2.31

PL 4.02 4.14 2.31

EN 3.45 1.86 1.94

Tags (OB) 7.20 6.89 5.39

Tags (BH) 5.00 5.20 3.76

Table 3: Overview of tokenization metrics. The consecu-
tive rows display the average number of tokens required
by each tokenizer for: a Greek word with diacritics, a
normalized Greek word, a Polish word, an English word,
a tag from the Oblubienica (OB) tag set, and a tag from
the Bible Hub (BH) tag set, respectively.

3.4 Model Inputs

We evaluate the impact of morphological tags on
interlinear translation performance through five sce-
narios, grouped into three categories. Each cate-
gory is visualized below:

Baseline No morphological information;
Greek words separated by sentinel tokens.
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Tags Within Text (t-w-t) Tags encoded as part
of the text input, using sentinel tokens to separate
word-tag pairs and demarcate word-tag boundaries:

Morphological Embeddings (emb-*) Intro-
duces a dedicated embedding layer trained
during fine-tuning. Text is tokenized and
tags are one-hot-encoded, maintaining align-
ment. For multi-token words, tags are repli-
cated. The combined vector input maintains
pre-training dimensions (768 for -base, 1024
for -large). This approach is visualized below:

We explore three variations of this embedding-
based approach:

• Embeddings – Sum (emb-sum): Sums embed-
ded text and tag embeddings.

• Embeddings – Autoencoder (emb-auto): Com-
presses and decompresses tag embeddings be-
fore summing with text embeddings.

• Embeddings – Concatenation (emb-concat):
Concatenates compressed text and tag embed-
dings.

These three solutions are visualized in detail in
Figure 3.

3.5 Model Output Format

Models output translations in a format similar to
text-only input, using distinct tokens to separate
translated Greek words.

3.6 Experimental Setup

Dataset Splits The New Testament’s 7940 verses
were randomly shuffled and split into training
(6352 verses, 80%), validation (794 verses, 10%),
and test (794 verses, 10%) sets.

Experiment Configurations Our experiments
covered 144 distinct configurations, as detailed in
Table 4. This number is lower than the theoreti-
cal maximum of 160 combinations since text-only
scenarios do not use morphological tags.

Factor Options #

Language EN, PL 2
Tag Set BH, OB 2
Preprocessing Diacritics, Normalized 2
Base Model mT5-base, mT5-large,

GreTa, PhilTa
4

Input Encoding baseline, t-w-t, emb-sum,
emb-auto, emb-concat

5

Table 4: Experiment configuration factors and their op-
tions.

Training Configuration Each experiment used
an A100 GPU with an effective batch size of 32
(achieved through gradient accumulation). For the
morphological embedding layers, we used a ded-
icated optimizer and learning rate, as shown in
Table 5.

Parameter Value

Effective Batch Size 32
Morph. Emb. Optimizer Adafactor
Morph. Emb. Learning Rate 3e-3
Morph. Emb. Size 64
Tokenizer Max Length 512

Table 5: Training hyperparameters.

Sequence Length Handling We set a maximum
tokenizer length of 512 tokens per verse to match
the models’ pre-training configuration. To ensure
fair comparison across all parameter combinations,
we normalized verse lengths by trimming each
verse to the number of words that could be en-
coded by the least efficient model configuration.
This approach resulted in the removal of only 151
words (0.11%) from the dataset.

4 Evaluation

We evaluate model performance using BLEU (Pap-
ineni et al., 2002) and SemScore (Aynetdinov and
Akbik, 2024) backed by all-mpnet-base-v23.
While modern metrics like COMET (Rei et al.,
2020) could provide better assessment, they lack
Ancient Greek support, so we could not apply
them in these experiments. To ensure fair eval-
uation, separator tokens are removed from the out-
put sequences before comparison with references,

3
https://huggingface.co/sentence-transformers/

all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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(a) emb-sum (b) emb-auto (c) emb-concat

Figure 3: Three embedding-based strategies for incorporating morphological information: (a) positional sum of text
(T) and morphological (M) embeddings, (b) compression and decompression of morphological embeddings before
summation, and (c) compression and concatenation of both text and morphological embeddings.

preventing the metrics from artificially rewarding
proper output formatting. Statistical significance
of differences between configurations was assessed
using two-sided Mann-Whitney U tests (Nachar
et al., 2008).

5 Results

We address each research question in the subse-
quent sections, beginning with an examination of
the overall performance of the models. We then
compare the performance of each base model used
for fine-tuning. Finally, we investigate the impact
of morphological metadata and text preprocessing
on the final results. All scores presented in this
section represent the BLEU score obtained on the
test split.

5.1 Feasibility of Automated Interlinear

Translation

BLEU and SemScore metrics for all experiment
sets are presented in Figure 4 (see Appendix B for
complete results).

Top results for both languages are very high,
showing that the task is feasible – SemScore of 0.8
was surpassed and BLEU scores above 60 were
achieved.

Both translation tasks received comparable top
results, but in case of Polish there is a visible sam-
ple of results (roughly 40%) that never surpassed a
BLEU score of 2. However, looking at how these
results perform at SemScore, they’re usually placed
between 0.4 and 0.7. The plot allows for further
analysis of discrepancies between the two metrics.
While both metrics are strongly correlated, the cor-
relation is not as strong for Polish (r=0.89) as for
English (r=0.97). A brief, manual analysis of the
unsuccessful experiments with BLEU < 2 shows
that SemScore values of 0.7 can indeed be treated
as very low.
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Figure 4: Distribution of BLEU and SemScore for En-
glish and Polish translations across 144 fine-tuned mod-
els.

The top results between languages suggest that
interlinear translations’ strict syntax may enable
cross-language comparisons that normally are im-
possible in regular, free translation settings.

5.2 Impact of Linguistic Features

We examine the impact of morphological metadata
on translation performance, focusing on encoding
strategies and tag set selection.

Morphological Feature Integration Table 6
compares morphological feature encoding strate-
gies (see Appendix C for more detailed results).
Two embedding-based approaches significantly
outperform the baseline model (p < 0.05), with
improvements of 38% for Polish (59.33 vs 42.92)
and 35% for English (60.40 vs 44.67) BLEU scores.
This demonstrates that transformer models can ef-
fectively utilize dedicated morphological embed-
dings in low-resource settings.

Both emb-auto and emb-sum yield significant
improvements (p < 0.02). In contrast, encoding
tags directly in text (t-w-t) and emb-concat per-
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form worse than baseline on average, even though
the latter one achieves better results in the best case
scenario (55.55 vs 42.92 for Polish and 55.93 vs
44.67 for English). The poor performance of this
method likely stems from compression disrupting
pre-trained representations, suggesting maintaining
these representations is crucial for effective transla-
tion.

Regarding morphological tag sets, both Bible
Hub and Oblubienica perform similarly across lan-
guages (p > 0.07, see Appendix D for detailed
statistical analysis), suggesting that the encoding
strategy has more impact on performance than tag
set choice.

PL EN
Encoding Avg Best Avg Best

baseline 17.57 42.92 32.40 44.67

t-w-t 12.73 41.93 30.86 46.00
emb-concat 10.74 55.55 26.33 55.93
emb-auto 42.58 59.33 53.26 60.40

emb-sum 36.75 58.92 48.04 60.10

Table 6: BLEU scores for different encoding strategies:
baseline (text only), t-w-t (tags within text), emb-sum
(embedding sum), emb-auto (embedding autoencoder),
and emb-concat (embedding concatenation).

Text Preprocessing Strategies Analysis of pre-
processing strategies (preserving vs. removing
diacritics) showed no statistically significant dif-
ferences in translation performance for either lan-
guage (p > 0.4). Detailed results are presented in
Appendix E.

5.3 Comparison of Model Architectures

Table 7 compares the base models (see Appendix F
for more detailed results). For Polish translations,
mT5-large significantly outperforms all other mod-
els (p < 0.01). For English, PhilTa achieves the
highest scores, significantly outperforming GreTa
and mT5-base (p < 0.01), though not mT5-large
(p = 0.46). Larger models generally perform bet-
ter – mT5-large outperforms mT5-base for both
Polish (p < 0.01) and English (p = 0.02). Notably,
PhilTa achieves the best English results despite
being smaller than mT5-large, suggesting that tar-
geted pre-training can compensate for model size.
This raises the question of whether a model pre-
trained on both Ancient Greek and Polish could
achieve similar gains for Polish translations.

PL EN
Base Model Avg Best Avg Best

GreTa 21.69 51.30 29.94 55.22
PhilTa 3.12 15.37 48.75 60.40

mT5-base 27.75 54.63 32.46 52.43
mT5-large 46.61 59.33 44.13 56.51

Table 7: BLEU scores for base models on Polish (PL)
and English (EN) translations.

We further compared learning efficiency be-
tween PhilTa and mT5-large models using vary-
ing amounts of training data (10%-80%). PhilTa
demonstrated remarkable stability and efficiency,
achieving a BLEU score in range [36.20 - 43.52]
with just 10% of the dataset (794 verses), with
performance improving monotonically as data in-
creased. In contrast, mT5-large showed instability
with smaller dataset samples, failing to achieve
even a BLEU 1 with 10% data across all experi-
ments, despite eventually matching PhilTa’s perfor-
mance with the full training split.

The results challenge the assumption that mT5-
large’s multilingual exposure offers an advantage
in normalization. PhilTa’s focused Ancient Greek
pretraining proved more effective, excelling in
low-resource settings with stable, efficient, and
predictable performance. In contrast, mT5-large
showed volatile scaling, making data-driven im-
provements uncertain.
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Figure 5: Mean learning efficiency with 95% confidence
intervals comparing PhilTa and mT5-large models us-
ing varying training split sizes (10%-80%) on English
translations.

6 Conclusions

We demonstrated the feasibility of automated inter-
linear translation from Ancient Greek, achieving
BLEU scores above 60 and SemScore values ex-
ceeding 0.8 for both target languages. PhilTa out-
performed larger models for English (60.40 BLEU),
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while mT5-large performed best for Polish (59.33
BLEU).

Our novel morphological information encoding
through dedicated embedding layers substantially
improved translation quality, with gains of 38% for
Polish (59.33 vs 42.92 BLEU) and 35% for English
(60.40 vs 44.67 BLEU) over the baseline.

PhilTa showed remarkable stability in low-
resource scenarios, maintaining consistent perfor-
mance (BLEU 36.20-43.52) with just 10% of the
dataset, while mT5-large struggled with smaller
samples. This challenges the assumption that expo-
sure to multiple languages necessarily provides an
advantage in adaptation.

The interlinear translations’ strict syntax enabled
cross-language comparisons, revealing different
metric correlations (BLEU-SemScore: r=0.97 En-
glish, r=0.89 Polish). While models trained on text
with preserved diacritics achieved numerically bet-
ter results, these differences were not statistically
significant. Similarly, the choice between morpho-
logical tag sets showed minimal impact across both
target languages.

Future work could explore targeted Polish pre-
training, given PhilTa’s English success.

7 Ethics

We acknowledge the use of GPT-4 and Claude 3.5
Sonnet for assistance with text editing and experi-
mental code refinement.

8 Limitations

Limited Corpus Scope Our research focused
solely on the New Testament due to its readily
available interlinear format. While this ensured a
consistent dataset, it may limit the broader applica-
bility of our findings. Future work should explore
other classical texts with interlinear translations,
such as the Septuagint or Homeric epics, to test our
findings across varied genres and styles.

Bias in Generative Language Models Mod-
els used for translating Bible text may have been
trained on it, risking biased output. Instead of test-
ing translation ability, we might be assessing mem-
orization. Carlini et al. (2021) used methods like
perplexity and model-to-model comparison to de-
tect training data in LLM outputs, finding that 604
of 1800 GPT-2 samples, including 25 from reli-
gious texts, originated from its training set.

Limited Dataset Size Our dataset of 137,000
words is small compared to modern machine trans-

lation datasets with millions of parallel sentences.
This low-resource setting limits the models’ ability
to learn complex patterns and generalize, especially
for ancient languages with scarce parallel data.

Ancient Greek Interlinear translation is a valu-
able tool for studying ancient languages like An-
cient Greek, Latin, Sanskrit, and Syriac. Our study
focused on Ancient Greek as the source language
of the New Testament, our chosen corpus. Chal-
lenges included obtaining high-quality interlinear
translations and the limited availability of language
models for ancient languages, especially Sanskrit
and Syriac.

Inclusion of Two Target Languages Our study
focused on two target languages: English and Pol-
ish. Alternatives like Turkish or Chinese could add
linguistic and cultural diversity, requiring central
texts like the Quran or Confucian works. How-
ever, this expansion would complicate the research
beyond our current scope.

Morphological Tag Coverage The morphologi-
cal tagging systems we used, while comprehensive
with over 700 - 1100 unique tags, may not cap-
ture all nuances of Ancient Greek grammar. Some
rare grammatical constructions or dialectal vari-
ations might be inadequately represented, poten-
tially affecting translation quality for specific text
segments.

Transformer Models Our study focused on neu-
ral networks, specifically the transformer archi-
tecture, which dominates NLP research. Emerg-
ing paradigms, like the S4 architecture in the
Mamba model (Gu and Dao, 2023), show promise,
but transformers offer a strong ecosystem of
pre-trained models for languages and tasks like
sequence-to-sequence MT. Pre-training new mod-
els to evaluate these paradigms is beyond our scope.

Model Size Constraints Our research com-
pared Ancient Greek models (GreTa: 250M,
PhilTa: 300M) with the multilingual MT5-base
(580M). While all performed well, mT5-large
(1.2B) showed notable improvements, especially
for Polish translation, suggesting larger models
may better handle languages without dedicated
pre-trained models. Future work could test per-
formance beyond 1.2B parameters.

Cross-Cultural Evaluation Our evaluation pri-
oritized linguistic accuracy over cultural and the-
ological considerations. This is a limitation when
translating religious texts, where interpretative tra-
ditions influence translation. Future work could
address these cross-cultural dimensions.
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Kurt Aland. 1927. Novum testamentum graece. Würt-
tembergische Bibelanstalt.

Ansar Aynetdinov and Alan Akbik. 2024. Sem-
score: Automated evaluation of instruction-tuned
llms based on semantic textual similarity. arXiv
preprint arXiv:2401.17072.

Walter Benjamin. 1923/2000. The task of the translator.
In Lawrence Venuti, editor, The Translation Studies
Reader. Routledge.

BibleHub. Interlinear Bible. https://biblehub.com/
interlinear/. Accessed: 2024-10-04.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
Preprint, arXiv:2012.07805.

David Carter. 2019. Using translation-based CI to
read Latin literature. Journal of Classics Teach-
ing, 20(39):90–94. Publisher: Cambridge University
Press.

Abhisek Chakrabarty, Raj Dabre, Chenchen Ding,
Hideki Tanaka, Masao Utiyama, and Eiichiro Sumita.
2022. FeatureBART: Feature based sequence-to-
sequence pre-training for low-resource NMT. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 5014–5020,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Abhisek Chakrabarty, Raj Dabre, Chenchen Ding,
Masao Utiyama, and Eiichiro Sumita. 2020. Im-
proving low-resource NMT through relevance based
linguistic features incorporation. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 4263–4274, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Abhisek Chakrabarty, Raj Dabre, Chenchen Ding,
Masao Utiyama, and Eiichiro Sumita. 2023. Low-
resource multilingual neural translation using linguis-
tic feature-based relevance mechanisms. ACM Trans-
actions on Asian and Low-Resource Language Infor-
mation Processing, 22(7):1–36.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Chanambam Sveta Devi, Bipul Syam Purkayastha, and
Loitongbam Sanayai Meetei. 2022. An empirical
study on English-Mizo Statistical Machine Transla-
tion with Bible Corpus. International journal of elec-
trical and computer engineering systems, 13(9):759–
765. Publisher: Elektrotehnički fakultet Sveučilišta
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A Morphological Tag Set Description

This appendix presents the morphological annotation scheme found in the tag sets of our scraped datasets.

Grammatical Categories in the Corpora

Part of Speech: Verb, Noun, Adverb, Adjective, Article, Pronoun, Preposition, Conjunction, Interjec-
tion, Particle, Aramaic Word, Hebrew Word
Pronoun Subtype: Personal / Possessive, Demonstrative, Interrogative / Indefinite, Reciprocal, Relative
and Reflexive
Person: 1st, 2nd, 3rd
Tense: Present, Imperfect, Future, Aorist, Perfect, Pluperfect
Mood: Indicative, Imperative, Subjunctive, Optative, Infinitive, Participle
Voice: Active, Middle, Passive, Middle or Passive
Case: Nominative, Vocative, Accusative, Genitive, Dative
Number: Singular, Plural
Gender: Masculine, Feminine, Neuter
Degree: Positive, Comparative, Superlative

Table 8: Morphological annotation scheme: grammatical categories and their possible values in the Bible Hub and
Oblubienica corpora.
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B Complete Experimental Results

This appendix presents the complete experimental results across all model configurations, tag sets, and
preprocessing approaches. For both English (EN) and Polish (PL) translations, we evaluate using BLEU
and SemScore metrics. Each metric is evaluated across four base models: GreTa, PhilTa, mT5-base, and
mT5-large. Bold values indicate the best performance for each configuration.

Language EN
Base Model GreTa PhilTa mT5-base mT5-large

Encoding Tag Set Preprocessing

baseline Unused
Diacritics 17.69 41.55 31.61 44.67

Normalized 16.77 33.24 29.99 43.64

t-w-t
BH

Diacritics 14.70 40.95 30.11 46.00

Normalized 16.13 34.25 27.59 43.97

OB
Diacritics 14.51 40.84 29.62 45.59

Normalized 12.14 33.44 28.39 35.47

emb-concat
BH

Diacritics 3.58 55.93 1.33 50.47
Normalized 4.05 46.82 27.32 0.70

OB
Diacritics 5.48 45.43 42.59 41.18
Normalized 3.93 40.76 0.69 51.04

emb-sum
BH

Diacritics 55.22 60.10 52.34 56.03
Normalized 51.93 56.24 1.66 55.61

OB
Diacritics 54.98 59.75 51.90 0.83
Normalized 52.39 55.49 47.95 56.24

emb-auto
BH

Diacritics 54.18 60.40 28.52 56.51
Normalized 53.17 56.16 47.84 55.12

OB
Diacritics 54.98 59.66 52.37 55.81
Normalized 53.15 56.51 52.43 55.37

Table 9: BLEU Scores for English translations.
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Language EN
Base Model GreTa PhilTa mT5-base mT5-large

Encoding Tag Set Preprocessing

baseline Unused
Diacritics 0.56 0.83 0.74 0.82
Normalized 0.56 0.74 0.74 0.82

t-w-t
BH

Diacritics 0.55 0.82 0.74 0.83

Normalized 0.56 0.76 0.72 0.82

OB
Diacritics 0.55 0.82 0.74 0.83

Normalized 0.53 0.76 0.73 0.78

emb-concat
BH

Diacritics 0.42 0.87 0.34 0.84
Normalized 0.42 0.82 0.68 0.37

OB
Diacritics 0.49 0.83 0.80 0.77
Normalized 0.42 0.78 0.34 0.85

emb-sum
BH

Diacritics 0.86 0.89 0.86 0.88
Normalized 0.84 0.87 0.38 0.88

OB
Diacritics 0.85 0.89 0.86 0.34
Normalized 0.85 0.86 0.84 0.88

emb-auto
BH

Diacritics 0.86 0.89 0.71 0.88
Normalized 0.85 0.87 0.84 0.87

OB
Diacritics 0.86 0.89 0.86 0.87
Normalized 0.85 0.87 0.87 0.87

Table 10: SemScore for English translations.

Language PL
Base Model GreTa PhilTa mT5-base mT5-large

Encoding Tag Set Preprocessing

baseline Unused
Diacritics 0.86 0.03 28.75 42.92

Normalized 0.63 0.07 26.21 41.05

t-w-t
BH

Diacritics 0.49 0.04 21.45 41.93

Normalized 0.56 0.08 26.07 0.17

OB
Diacritics 0.74 0.08 27.72 41.62

Normalized 0.78 0.05 0.24 41.58

emb-concat
BH

Diacritics 0.71 0.11 0.79 0.57
Normalized 1.86 0.26 1.93 54.54

OB
Diacritics 0.84 0.13 0.63 55.55

Normalized 1.41 0.26 0.45 51.75

emb-sum
BH

Diacritics 50.89 6.18 52.54 56.75

Normalized 48.47 1.71 50.43 58.46

OB
Diacritics 51.21 0.12 54.41 58.90

Normalized 32.92 5.39 0.66 58.92

emb-auto
BH

Diacritics 51.30 11.79 54.63 59.04

Normalized 46.01 15.37 54.47 57.42

OB
Diacritics 51.06 8.24 53.87 58.44

Normalized 49.72 6.23 44.29 59.33

Table 11: BLEU Scores for Polish translations.
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Language PL
Base Model GreTa PhilTa mT5-base mT5-large

Encoding Tag Set Preprocessing

baseline Unused
Diacritics 0.53 0.18 0.85 0.89

Normalized 0.49 0.42 0.85 0.89

t-w-t
BH

Diacritics 0.51 0.54 0.82 0.89

Normalized 0.49 0.52 0.84 0.45

OB
Diacritics 0.54 0.56 0.84 0.89

Normalized 0.56 0.50 0.66 0.89

emb-concat
BH

Diacritics 0.59 0.58 0.67 0.68

Normalized 0.62 0.58 0.68 0.92

OB
Diacritics 0.62 0.53 0.63 0.93

Normalized 0.60 0.58 0.67 0.92

emb-sum
BH

Diacritics 0.92 0.77 0.92 0.93

Normalized 0.92 0.69 0.92 0.93

OB
Diacritics 0.92 0.55 0.93 0.93

Normalized 0.87 0.76 0.65 0.94

emb-auto
BH

Diacritics 0.92 0.80 0.92 0.93

Normalized 0.91 0.82 0.93 0.93

OB
Diacritics 0.92 0.79 0.92 0.93

Normalized 0.92 0.77 0.90 0.94

Table 12: SemScore for Polish translations.
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C Morphological Encoding Strategies

This appendix examines the impact of different encoding strategies: baseline, tags-within-text (t-w-t),
embedding concatenation (emb-concat), embedding sum (emb-sum), and embedding autoencoder (emb-
auto). We present aggregated BLEU and SemScore metrics for both English and Polish translations, along
with statistical significance tests between strategy pairs. For each metric, we report both average and best
scores across all configurations. Mann-Whitney U tests were used to assess the statistical significance of
differences between encoding strategies.

Encoding baseline t-w-t emb-concat emb-sum emb-auto
Language Metric

EN
BLEU Score

Avg 32.40 30.86 26.33 48.04 53.26

Best 44.67 46.00 55.93 60.10 60.40

SemScore
Avg 0.73 0.72 0.63 0.80 0.86

Best 0.83 0.83 0.87 0.89 0.89

PL
BLEU Score

Avg 17.57 12.73 10.74 36.75 42.58

Best 42.92 41.93 55.55 58.92 59.33

SemScore
Avg 0.64 0.66 0.68 0.85 0.89

Best 0.89 0.89 0.93 0.94 0.94

Table 13: Performance comparison of encoding strategies: average and best scores across configurations.

baseline t-w-t emb-concat emb-sum emb-auto

baseline - 0.569 0.787 0.016* 0.002**
t-w-t 0.569 - 0.462 0.001** 0.000***
emb-concat 0.787 0.462 - 0.006** 0.000***
emb-sum 0.016* 0.001** 0.006** - 0.396
emb-auto 0.002** 0.000*** 0.000*** 0.396 -

Table 14: Statistical significance matrix: BLEU scores for Polish translations.

baseline t-w-t emb-concat emb-sum emb-auto

baseline - 0.697 0.742 0.002** 0.000***
t-w-t 0.697 - 0.749 0.000*** 0.000***
emb-concat 0.742 0.749 - 0.001*** 0.000***
emb-sum 0.002** 0.000*** 0.001*** - 0.585
emb-auto 0.000*** 0.000*** 0.000*** 0.585 -

Table 15: Statistical significance matrix: BLEU scores for English translations.
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baseline t-w-t emb-concat emb-sum emb-auto

baseline - 0.928 0.528 0.009** 0.002**
t-w-t 0.928 - 0.169 0.001*** 0.000***
emb-concat 0.528 0.169 - 0.002** 0.000***
emb-sum 0.009** 0.001*** 0.002** - 0.418
emb-auto 0.002** 0.000*** 0.000*** 0.418 -

Table 16: Statistical significance matrix: semantic similarity for Polish translations.

baseline t-w-t emb-concat emb-sum emb-auto

baseline - 0.787 0.653 0.002** 0.000***
t-w-t 0.787 - 0.611 0.000*** 0.000***
emb-concat 0.653 0.611 - 0.001** 0.000***
emb-sum 0.002** 0.000*** 0.001** - 0.534
emb-auto 0.000*** 0.000*** 0.000*** 0.534 -

Table 17: Statistical significance matrix: semantic similarity for English translations.
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D Tag Set Selection Impact

This appendix evaluates the impact of different morphological tag sets on model performance, comparing
the one collected from BibleHub (BH), to the one from Oblubienica (OB), and approaches where no
tags were used (Unused). We present aggregated BLEU and SemScore metrics for both English and
Polish translations. For each metric, we report both average and best scores across all configurations.
Mann-Whitney U tests were used to assess the statistical significance of differences between tag sets.

Tag Set BH OB Unused
Language Metric

EN
BLEU Score

Avg 38.90 40.34 32.40
Best 60.40 59.75 44.67

SemScore
Avg 0.74 0.76 0.73
Best 0.89 0.89 0.83

PL
BLEU Score

Avg 25.84 25.55 17.57
Best 59.04 59.33 42.92

SemScore
Avg 0.77 0.77 0.64
Best 0.93 0.94 0.89

Table 18: Performance comparison of morphological tag sets: BibleHub (BH), Oblubienica (OB), and baseline.

Metric BLEU Score SemScore
Language

EN 0.96 0.97
PL 0.89 0.99

Table 19: Statistical significance of differences between tag sets (p-values).
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E Text Preprocessing Impact

This appendix evaluates the impact of preprocessing choices on model performance, comparing diacritic-
preserved and normalized (stripped of diacritics, lowercased) text approaches. We present aggregated
BLEU and SemScore metrics for both English and Polish translations, with results broken down by
tokenizer type (GreTa, PhilTa, mT5). For each metric, we report both average and best scores across
all configurations. Mann-Whitney U tests were used to assess the statistical significance of differences
between preprocessing approaches.

Preprocessing Diacritics Normalized
Language Metric

EN
BLEU Score

Avg 60.40 56.51
Best 40.48 37.16

SemScore
Avg 0.89 0.88
Best 0.76 0.74

PL
BLEU Score

Avg 59.04 59.33

Best 26.26 23.33

SemScore
Avg 0.93 0.94

Best 0.76 0.75

Table 20: Aggregated BLEU and SemScore results across preprocessing approaches.

GreTa PhilTa mT5
Diacritics Normalized Diacritics Normalized Diacritics Normalized

EN
BLEU

Avg 30.59 29.30 51.62 45.88 39.86 36.72
Best 55.22 53.17 60.40 56.51 56.51 56.24

SemScore
Avg 0.67 0.65 0.86 0.82 0.76 0.74
Best 0.86 0.85 0.89 0.87 0.88 0.88

PL
BLEU

Avg 23.12 20.26 2.97 3.27 39.47 34.89
Best 51.30 49.72 11.79 15.37 59.04 59.33

SemScore
Avg 0.72 0.71 0.59 0.63 0.86 0.83
Best 0.92 0.92 0.80 0.82 0.93 0.94

Table 21: Impact of preprocessing on model performance: breakdown by tokenizer and preprocessing approach.

Tokenizer GreTa PhilTa mT5
Language Metric

EN
BLEU Score 0.48 0.13 0.60
SemScore 0.48 0.05 0.81

PL
BLEU Score 0.66 0.60 0.54
SemScore 0.54 0.93 0.65

Table 22: Statistical significance of preprocessing impact across tokenizers (p-values).
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F Base Model Performance Analysis

This appendix analyzes the performance differences between the four base models: GreTa, PhilTa, mT5-
base, and mT5-large. We present aggregated BLEU and SemScore metrics for both English and Polish
translations, along with statistical significance tests between model pairs. For each metric, we report both
average and best scores across all configurations. Mann-Whitney U tests were used to assess the statistical
significance of differences between model pairs.

Base Model GreTa PhilTa mT5-base mT5-large
Language Metric

EN
BLEU Score

Avg 29.94 48.75 32.46 44.13
Best 55.22 60.40 52.43 56.51

SemScore
Avg 0.66 0.84 0.71 0.79
Best 0.86 0.89 0.87 0.88

PL
BLEU Score

Avg 21.69 3.12 27.75 46.61

Best 51.30 15.37 54.63 59.33

SemScore
Avg 0.71 0.61 0.81 0.88

Best 0.92 0.82 0.93 0.94

Table 23: Performance comparison of base models: average and best scores across all configurations.

Language PL EN
Model GreTa PhilTa mT5-base mT5-large GreTa PhilTa mT5-base mT5-large

GreTa - 0.003** 0.457 0.003** - 0.005** 0.812 0.097
PhilTa 0.003** - 0.000*** 0.000*** 0.005** - 0.001** 0.457

mT5-base 0.457 0.000*** - 0.006** 0.812 0.001** - 0.017*
mT5-large 0.003** 0.000*** 0.006** - 0.097 0.457 0.017* -

Table 24: Statistical significance of BLEU score differences between base models (p-values).

Language PL EN
Model GreTa PhilTa mT5-base mT5-large GreTa PhilTa mT5-base mT5-large

GreTa - 0.110 0.038* 0.003** - 0.005** 0.602 0.079
PhilTa 0.110 - 0.000*** 0.000*** 0.005** - 0.002** 0.740

mT5-base 0.038* 0.000*** - 0.006** 0.602 0.002** - 0.022*
mT5-large 0.003** 0.000*** 0.006** - 0.079 0.740 0.022* -

Table 25: Statistical significance of SemScore differences between base models (p-values).
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