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Abstract

Machine Translation (MT) has made great
strides with the use of Large Language Models
(LLMs) and advanced prompting techniques.
However, translating sentences with ambiguous
words remains challenging, especially when
LLMs have limited proficiency in the source
language. This paper introduces two methods
to enhance MT performance by leveraging
the word sense disambiguation capabilities of
LLMs. The first method integrates all the avail-
able senses of an ambiguous word into the
prompting template. The second method uses
a pre-trained source language model to predict
the correct sense of the ambiguous word, which
is then incorporated into the prompting tem-
plate. Additionally, we propose two prompting
template styles for providing word sense infor-
mation to LLMs. Experiments on the HOLLY
dataset demonstrate the effectiveness of our ap-
proach in improving MT performance.

1 Introduction

Semantic ambiguity has long posed a significant
challenge in MT. Despite rapid advancements in
Neural Machine Translation (NMT), effectively dis-
ambiguating and translating ambiguous words re-
mains an unresolved issue. The advent of decoder-
only large language models (LLMs) such as the
GPT series (Achiam et al., 2023), LLaMA (Tou-
vron et al., 2023a,b), and Gemma (Mesnard et al.,
2024) has shown exceptional capabilities in vari-
ous natural language processing tasks, including
MT. These LLMs have emerged as promising alter-
natives, offering performance comparable to tradi-
tional NMT models and introducing new paradigms
for controlling target outputs.

However, due to their predominant pre-training
on English-centric language datasets (Naveed et al.,
2023), LLMs may lack proficiency in low-resource
languages (Tran et al., 2023), making it challeng-
ing for them to accurately translate source sen-

tences containing ambiguous words in these lan-
guages (Campolungo et al., 2022; Nambi et al.,
2023). This issue is particularly pronounced in
small and moderate-sized models (2B, 7B, or 13B)
(Scao et al., 2022; Lu et al., 2024; Vo, 2024). In
this study, we investigate the translation capabili-
ties of such LLMs in handling ambiguous words
through prompting techniques, without relying on
additional training data. In addition, we present
two methods to take advantage of the word-sense
disambiguation (WSD) abilities of LLMs, thus en-
hancing MT performance.

The first method integrates all possible senses
of the ambiguous word from a dictionary into the
prompting template, encouraging LLMs to use their
internal WSD capabilities to select the appropriate
word sense, thus improving translation quality. The
second method utilizes an external decoder-only
language model pre-trained on a large set of source
language data. This model evaluates the perplex-
ities of all sense definitions from a dictionary in
the source language and predicts the correct sense
with the lowest perplexity. The predicted sense is
then incorporated into the prompting template to
aid the LLMs in the translation process. Besides,
we propose two prompting template styles for each
method: Natural Language Style and Tagging Style.

Our contributions are as follows:

(a) We introduce two methods that leverage the
WSD capabilities of LLMs to enhance MT perfor-
mance on sentences with ambiguous words.

(b) We present two prompting template styles for
each method, integrating word sense information
into LLMs to address MT task.

(c) Experiments on the HOLLY dataset (Baek
et al., 2023) demonstrate the effectiveness of our
approach in utilizing WSD capabilities of LLMs,
leading to improved MT performance.
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2 Related Work

Zero-shot and few-shot prompting have become
essential techniques for leveraging LLMs in MT.
Zero-shot prompting asks the model to translate
directly without examples, while few-shot prompt-
ing provides a few examples to guide the model
through in-context learning (Brown et al., 2020).
Previous works (Radford et al., 2019; Jiao et al.,
2023) have shown that both methods can achieve
competitive results without extensive fine-tuning.
Although fine-tuning LLMs in specific language
pairs can improve MT (Zhang et al., 2023), it de-
mands computational resources and annotated data.

More related to our work, Pilault et al. (2023)
proposed interactive-chain prompting, a prompt-
based interactive multi-step computation technique
that first resolves cross-lingual ambiguities in the
input queries and then performs conditional text
generation. Iyer et al. (2023) presented two tech-
niques to improve the disambiguation abilities
of LLMs, including in-context learning and fine-
tuning. The former involves providing similar am-
biguous contexts in the prompt, while the latter
involves fine-tuning LLMs on carefully curated
ambiguous datasets through low-rank adaptation.
Unlike these approaches, our approach takes advan-
tage of the WSD capabilities of LLMs to improve
MT without additional fine-tuning.

3 Our Method

Given a source sentence containing the ambigu-
ous word in language X, our goal is to use LLMs
to accurately translate the sentence into language
Y. Figure 1 illustrates our approach using the pair
(X,Y) as (Korean, English). Following Xu et al.
(2024), we use a basic prompting format: “Trans-
late this from Korean to English:\nKorean:<source
sentence>\nEnglish:” on LLMs, as illustrated in
Block 1 of Figure 1.

To enhance LLMs’ ability to translate sentences
containing ambiguous words, we use a dictionary
to gather all possible senses of the ambiguous word.
For example, in Block 2 of Figure 1, the word ‘연
기’ has three distinct senses, each with an English
translation and a definition in Korean. We present
two methods to exploit this information for LLMs.
All Senses-based Prompting. This method incor-
porates all potential senses of the ambiguous word
into the prompting template, utilizing two distinct
styles: Natural Language Style (NLS) and Tagging
Style (TS). By providing such information, it ex-

Figure 1: The overall framework.

ploits the WSD ability of LLMs for ambiguous
words, thereby improving MT accuracy.

As shown in Block 3 of Figure 1, for the NLS, we
provide all senses of the word ‘연기’ in a natural
language format: “Hint: ‘연기’ means ‘smoke’ or
‘delay’ or ‘acting’.” In contrast, the TS uses tags to
convey the word sense information. For instance,
the ambiguous word ‘연기’ is followed by the tag
“<w>smoke, delay, acting</w>”.
One Predicted Sense-based Prompting. This
method predicts the most relevant sense of an am-
biguous word in a source sentence and provides
this prediction to LLMs, instead of listing all possi-
ble senses. We use a decoder-only language model
pre-trained exclusively in the source language. For
example, let M be a decoder-only model trained
solely in Korean. Due to its lack of proficiency in
the target language, the model M is unable to di-
rectly translate the input sentence from the source
language to the target language.
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Given M’s deep understanding of Korean, we
leverage it to predict the correct sense of the am-
biguous word. We use the template T : “문맥 ‘A’
에서 키워드 ‘B’는 다음을 의미합니다. ” (trans-
lated as: “In the ‘A’ context, ‘B’ means: ”), where
A is the source sentence and B is the ambiguous
word. Assuming that B has K distinct senses from
a Korean-English dictionary, our objective is to
predict the correct sense of B in A.

For each candidate sense Sj , we combine T
with its Korean definition to create a full statement.
This statement is then tokenized into N tokens:
w1, w2, . . . , wN1 , wN1+1, . . . , wN . The first N1 to-
kens come from T , while the rest are from the sense
definition. We calculate the perplexity for each can-
didate using two various methods. The first method
calculates perplexity over all N tokens:

PPLfull = exp

(
− 1

N

N∑
i=1

logPM(wi | w1, . . . , wi−1)

)
Meanwhile, the second method calculates perplex-
ity only over the (N − N1) tokens of the sense
definition in the full statement:

PPLdef = exp

(
− 1

N−N1

N∑
i=N1+1

logPM(wi | w1, . . . , wi−1)

)

Here, PM(wi | w1, . . . , wi−1) is the probability
of token wi given its preceding context as esti-
mated by the model M. After obtaining the per-
plexity scores for all K candidate senses of the
ambiguous word, the sense with the lowest per-
plexity is selected as the most likely correct sense:
Ŝ = argminj∈{1,...,K} PPL(Sj).

We incorporate the above predicted sense into
the prompting template, as shown in Block 4 of
Figure 1, using two styles: NLS and TS, similar
to “All Senses-based Prompting”. By providing a
single, highly reliable predicted sense, we aim to
help LLMs better understand ambiguous words.

4 Experiments

4.1 Dataset and Settings
Dataset. We evaluate our approach using the
HOLLY benchmark test set (Baek et al., 2023). It
includes 600 high-quality Korean-to-English trans-
lation test examples, where each source sentence
contains one homograph word. Homographs are
words that have the same form but multiple dif-
ferent senses, which can lead to ambiguity with-
out context. However, the specific context of each
source sentence typically clarifies the correct sense.

Out of the 600 examples, 300 are positive test ex-
amples in which the correct sense of the homograph
is labeled. Refer to Appendix A for details.
Settings. We evaluate our approach on five LLMs
using 1-shot and 3-shot learning. The models in-
clude Gemma-2B1, Gemma-7B2, LlaMA-2-7B3,
LlaMA-2-13B4, and LlaMA-3-8B5, all available
on Huggingface6. We keep all LLM parameters
frozen during the experiments.

For text generation, we use non-sampling greedy
decoding, a maximum of 100 new tokens, and
BF16 precision. Each experiment runs on a ma-
chine with eight NVIDIA Tesla V100 Volta 32GB
GPUs and a maximum runtime of 6 hours. The
chrF++ metric7 (Popović, 2017) is used to evalu-
ate MT. We utilize the available pre-trained Ko-
rean language model Polyglot-Ko-12.8B8 as M
introduced in Section 3. In scenarios where such
pre-trained source-side models are unavailable, we
propose pre-training these models using accessible
monolingual datasets.

We also refer to the Korean-English dictionary
from the National Institute of Korean Language9.
Besides, we prepare three fixed examples to use for
prompting with 1-shot and 3-shot learning. They
are provided in Table 4.

4.2 Results and Analysis

Accuracy of the Sense Prediction Module. Our
method, “One Predicted Sense-based Prompting”,
features a sense prediction module that identifies
the most relevant sense of an ambiguous word
based on its context. We evaluate the accuracy
of this module on 300 positive examples of the
HOLLY test set. Table 1 shows that both PPLfull
and PPLdef obtain high accuracy, with PPLdef
reaching 91.67 percent. As each ambiguous word
in the test examples has at least two different senses,
these results highlight the pre-trained model’s
strong proficiency in Korean and its effectiveness
in reliably predicting word senses in context.

1https://huggingface.co/google/gemma-2b
2https://huggingface.co/google/gemma-7b
3https://huggingface.co/meta-llama/

Llama-2-7b-hf
4https://huggingface.co/meta-llama/

Llama-2-13b-hf
5https://huggingface.co/meta-llama/

Meta-Llama-3-8B
6https://huggingface.co/
7nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.4.1
8https://huggingface.co/EleutherAI/

polyglot-ko-12.8b
9https://krdict.korean.go.kr

https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-7b
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/
https://huggingface.co/EleutherAI/polyglot-ko-12.8b
https://huggingface.co/EleutherAI/polyglot-ko-12.8b
https://krdict.korean.go.kr
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Ours Accuracy
PPLfull 87.78
PPLdef 91.67

Table 1: Accuracy of the sense prediction module

Model Baseline All Senses Predicted Sense
NLS TS NLS TS

1-
sh

ot

Gemma-2B 31.73 34.60 30.72 34.79 32.55
Gemma-7B 33.22 35.55 35.67 36.43 37.26
LlaMA-2-7B 22.63 28.82 29.16 30.42 30.36
LlaMA-2-13B 42.51 45.09 44.71 45.60 46.11
LlaMA-3-8B 44.05 46.85 45.83 47.11 47.40

3-
sh

ot

Gemma-2B 30.33 31.47 28.94 32.62 30.55
Gemma-7B 35.49 37.12 37.17 37.63 38.29
LlaMA-2-7B 24.86 30.29 30.81 31.54 31.06
LlaMA-2-13B 43.40 44.91 45.05 45.69 46.38
LlaMA-3-8B 44.35 46.94 45.76 47.22 47.15

Table 2: Performance on MT of the different prompting
methods using ChrF++. NLS and TS stand for Natural
Language Style and Tagging Style, respectively.

Performance on MT. With the high accuracy of
the sense prediction module, we evaluate perfor-
mance on MT of our “One Predicted Sense-based
Prompting” method against other approaches, us-
ing the entire HOLLY test set. Table 2 presents
the results, where Baseline, All Senses, and Pre-
dicted Sense correspond to “Basic Prompting”,
“All Senses-based Prompting”, and “One Predicted
Sense-based Prompting”, respectively. Four key
findings from Table 2 are highlighted below.

First, the Baseline results indicate that perfor-
mance generally improves in the 3-shot scenario
compared to the 1-shot scenario for all models,
except for the Gemma-2B model, which shows
a slight decrease of 1.4 points. This trend high-
lights the effectiveness of few-shot learning, as pro-
viding more examples typically enhances model
performance, though the degree of improvement
varies across different models. Notably, LlaMA-
2-7B has the lowest performance in both scenar-
ios, while LlaMA-3-8B achieves the highest per-
formance among the five models.

Second, the best performance of All Senses and
Predicted Sense across all five models in both
1-shot and 3-shot scenarios shows a significant im-
provement over the Baseline. This consistent en-
hancement suggests that providing word sense in-
formation for ambiguous words in source sentences
greatly aids in generating accurate translations. No-
tably, our approach yields the most substantial im-
provement with LlaMA-2-7B in both 1-shot and
3-shot scenarios, even though this model has the

Model Baseline Predicted Sense Gold Sense
NLS TS NLS TS

1-
sh

ot

Gemma-2B 33.13 35.12 33.16 35.40 33.63
Gemma-7B 35.15 37.28 37.53 37.61 37.86
LlaMA-2-7B 23.21 31.05 30.81 31.67 31.60
LlaMA-2-13B 43.33 45.95 46.63 46.15 46.95
LlaMA-3-8B 45.06 47.14 47.62 47.58 48.01

3-
sh

ot

Gemma-2B 32.26 33.75 31.10 33.83 31.33
Gemma-7B 37.40 38.59 39.68 38.83 40.09
LlaMA-2-7B 25.72 32.42 32.01 32.93 32.35
LlaMA-2-13B 44.04 45.91 46.28 46.13 46.81
LlaMA-3-8B 45.40 47.41 47.18 47.91 47.70

Table 3: Impact of the Sense Prediction Accuracy on MT
using ChrF++ over 300 samples. NLS and TS stand for
Natural Language Style and Tagging Style, respectively.

lowest Baseline performance. For instance, in the
1-shot scenario with LlaMA-2-7B, All Senses and
Predicted Sense improve the Baseline by 6.53
points and 7.79 points, respectively. This indicates
that word sense information is particularly crucial
for LLMs with limited source language abilities, as
it significantly enhances their translation accuracy.

Third, in both 1-shot and 3-shot scenarios, Pre-
dicted Sense consistently outperforms All Senses
across all five models on both NLS and TS. On
average, it improves the ChrF++ scores by 0.74
points on NLS and 1.33 points on TS. The most sig-
nificant improvements are observed with Gemma-
2B on TS, where Predicted Sense surpasses All
Senses by 1.83 points in the 1-shot scenario and
1.62 points in the 3-shot scenario. These results
highlight the advantage of exploiting the WSD ca-
pability of an external pre-trained source language
model to provide the relevant sense of ambiguous
words in context, thereby enhancing the perfor-
mance of general-purpose LLMs in MT.

Last, we compare the performance differences
between NLS and TS for both All Senses and Pre-
dicted Sense. For the small-sized LLM, Gemma-
2B, NLS proves more effective than TS in both
1-shot and 3-shot scenarios, likely because Gemma-
2B better understands and uses word sense informa-
tion in natural language form. Conversely, for the
moderate-sized LLMs (the four remaining models),
the differences between NLS and TS are not sig-
nificant in either 1-shot or 3-shot scenarios. These
models effectively understand word sense informa-
tion regardless of the format, achieving competitive
MT performance with both NLS and TS.
Impact of the Sense Prediction Accuracy on MT.
We examine how the accuracy of the sense predic-
tion in our “One Predicted Sense-based Prompt-
ing” method affects MT performance using 300
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positive test examples from the HOLLY test set.
Table 3 shows the results, comparing Baseline (Ba-
sic Prompting), Predicted Sense (One Predicted
Sense-based Prompting), and Gold Sense (One
Gold Sense-based Prompting).

We contrast MT performance between Pre-
dicted Sense with 91.67% accuracy (from Table 1)
and Gold Sense with 100% accuracy. The results
in Table 3 demonstrate consistent improvements
when using Gold Sense compared to Predicted
Sense across both NLS and TS settings. For ev-
ery model and scenario, Gold Sense yields higher
scores than Predicted Sense, even if the improve-
ments are sometimes small. This shows that pro-
viding more accurate word sense information helps
further enhance the translation quality.

5 Conclusion

This work presents our approach to exploiting
the WSD capabilities in LLMs to enhance the
MT performance of sentences with ambiguous
words. Specifically, we introduce two methods:
“All Senses-based Prompting” and “One Pre-
dicted Sense-based Prompting”, combined with
two styles: NLS and TS. Experiments on the
HOLLY test set highlight the effectiveness of our
approach and underscore the importance of exploit-
ing WSD capabilities in LLMs to improve MT.

Limitations

We evaluate our approach on a single benchmark
dataset (the Korean-English HOLLY benchmark
test set) since this dataset includes gold sense labels
for homograph words (or ambiguous words) in the
source sentences and provides the target sentences.
However, we plan to test our approach on additional
datasets as they become available in the future.

Ethics Statement

The linguistic expert, fluent in both Korean and
English, helped to prepare three examples for few-
shot learning, detailed further in Appendix A. They
declined remuneration due to the minimal effort
involved. Furthermore, as shown in Table 4, the
three examples do not contain toxic content.
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A Appendix

The HOLLY Dataset. The HOLLY dataset
(Baek et al., 2023) is a benchmark for evaluat-
ing Lexically-constrained Neural Machine Transla-
tion (LNMT) systems, focusing on handling homo-
graphs and lexical constraints in translation tasks.
It assesses scenarios where lexical constraints are
either semantically appropriate or not.

The dataset is divided into a training set, a valida-
tion set, and a test set. The training and validation
sets are designed for a homograph disambiguation
task and consist solely of Korean sentences. The
training set contains 48,836 examples, while the
validation set has 3,000 examples. Each example is
a triplet of Korean sentences with a common homo-
graph. The task is to determine if the homograph
has the same meaning in all sentences (labeled "1")
or if it differs in one (labeled "0").

The test set evaluates both homograph disam-
biguation and machine translation tasks, compris-
ing 600 test examples. Each example in this test set
includes a lexical constraint between a Korean ho-
mograph and its English meaning/sense, a source
sentence with the homograph, and its English trans-
lation. Among these, 300 examples have correct
lexical constraints (positive) and 300 have incor-
rect constraints (negative). The positive examples
provide the gold sense label of the homograph,
allowing evaluation of the sense prediction mod-
ule as detailed in our “One Predicted Sense-based
Prompting” method (Section 3).

Preparing for Few-Shot Learning. Here, we
outline how a linguistic expert prepares three fixed
examples for few-shot learning. This expert is flu-
ent in both Korean and English. From the HOLLY
training set, we randomly select three Korean
source sentences, each containing one homograph
word (ambiguous word). These homographs are
unseen in the HOLLY test set.

The HOLLY training set, as mentioned earlier,
includes only Korean source sentences without cor-
responding English target sentences. The linguistic
expert’s task involves identifying the correct sense
of each homograph within its context, using the
provided list of candidate senses. Once the correct
sense is determined, the expert translates the entire
source sentence into English.

Table 4 presents these examples in detail, show-
casing the expert’s translations. In our approach,
described in Section 3, we use the first example for
1-shot learning scenario and all three examples for

3-shot learning scenario. Additionally, we explain
the purpose of using the three samples with the
linguistic expert.

Configurations of the ChrF++ Measure. Here
are the configurations of the ChrF++ measure
we used to evaluate MT quality. It uses a single
reference translation (‘nrefs:1’), is case-sensitive
(‘case:mixed’), and applies effective smoothing
(‘eff:yes’). The metric computes character n-gram
precision and recall with 6-character n-grams
(‘nc:6’) and 2-word n-grams (‘nw:2’). Spaces are
not considered as tokens (‘space:no’). This configu-
ration runs on version 2.4.1 of the chrF++ software,
a tool designed to assess MT quality by comparing
translations against reference texts.
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id Property Content

1

Source Sent 한국에는아파트나빌라처럼여러가구가살수있도록지은집이많다.

Target Sent In Korea, there are many houses built to accommodate multiple households,
such as apartments or villas.

Homograph 가구
All Senses ‘household’, ‘furniture’
Gold Sense ‘household’

2

Source Sent 아버지의사업실패로가산을날려민준이는대학등록금을스스로
마련해야했다.

Target Sent Due to the significant loss of the family fortune resulting from his father’s
business failure, Minjun had to finance his university tuition himself.

Homograph 가산
All Senses ‘addition’, ‘family fortune’
Gold Sense ‘family fortune’

3

Source Sent 경찰은일단알리바이가불명확한사람이범인이라는가정을세웠다.

Target Sent The police established the assumption that a person with an unclear alibi
could be the culprit.

Homograph 가정
All Sense ‘family’, ‘assumption’

Gold Sense ‘assumption’

Table 4: Three fixed examples for few-shot learning.
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