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Abstract
We introduce Nayana, a scalable and efficient
framework for adapting Vision-Language Mod-
els (VLMs) to low-resource languages. Despite
significant advances, modern VLMs remain
constrained by the scarcity of training data in
non-English languages, limiting their global
applicability. Our framework addresses this
fundamental challenge through a novel layout-
aware synthetic data generation pipeline com-
bined with parameter-efficient adaptation tech-
niques. Instead of requiring extensive manu-
ally annotated datasets, Nayana enables exist-
ing models to learn new languages effectively
using purely synthetic data. Using Low-Rank
Adaptation (LoRA), we demonstrate this ca-
pability across ten Indic languages: Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi,
Odia, Punjabi, Tamil, and Telugu. Through
extensive experiments in OCR tasks, we show
that models can achieve strong performance in
new languages without the traditional require-
ments of large-scale annotated datasets or ex-
tensive model modifications. Nayana’s success
in adapting VLMs to new languages with syn-
thetic data establishes a practical pathway for
extending AI capabilities to underserved lan-
guage communities, particularly in scenarios
where annotated data is scarce or unavailable.

1 Introduction

Vision-Language Models (Wang et al. (2024); Wu
et al. (2024); Abdin et al. (2024); Chen et al. (2024);
Liu et al. (2024a); Wei et al. (2024a)) have demon-
strated remarkable success in high-resource lan-
guages like English. However, these advancements
have not translated across all languages due to a
fundamental challenge: the scarcity of high-quality
training data. This limitation is particularly evident
in languages with complex scripts, where creat-
ing large-scale manually annotated datasets is both
time-consuming and prohibitively expensive. This
has limited the adoption of VLMs for document
understanding tasks across diverse languages.

Nayana is an adaptive framework designed to
bridge this gap by enabling existing VLMs to learn
new languages effectively without requiring exten-
sive annotated datasets. While this paper demon-
strates Nayana’s capabilities through OCR tasks
across ten Indic languages, the framework’s ap-
proach is inherently flexible and can extend to other
tasks and language families. Our methodology
eliminates the traditional requirement of annota-
tion by combining synthetic data generation with
efficient model adaptation techniques.

The main contributions of this paper are:

1. Novel Synthetic Data Generation Pipelines:
A layout-aware synthetic data generation
pipeline that automates the creation of train-
ing datasets while preserving visual and struc-
tural relationships in documents. This ap-
proach significantly reduces the dependency
on manually annotated data for low-resource
languages.

2. Systematic Analysis of LoRA-based Adap-
tation: We conduct a comprehensive evalu-
ation of different LoRA techniques and con-
figurations to determine their effectiveness in
multilingual adaptation. Our analysis explores
whether supervised fine-tuning can enhance
language transfer and identifies the optimal
configurations for adapting VLMs to new lan-
guages with minimal computational overhead.

3. Comprehensive Empirical Validation:
Through extensive experimentation and
evaluation across ten Indic languages, we
provide strong evidence that our synthetic
data approach matches the performance
of traditional OCR Models, establishing a
scalable path forward for language adaptation
in VLMs.
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2 Related Work

Recent Vision Language Models like Qwen 2.5
VL (Wang et al., 2024), Deepseek-VL2 (Wu et al.,
2024), InternVL 2.5 (Chen et al., 2024), Llava-
NeXT (Liu et al., 2024a), Phi 3.5 Vision (Abdin
et al., 2024) have advanced significantly in OCR,
captioning, and visual question answering (An-
tol et al., 2015). These developments stem from
parameter-efficient fine-tuning, synthetic data gen-
eration, and improved multimodal architectures.

Parameter-efficient fine-tuning methods are cru-
cial for adapting VLMs to specific tasks and lan-
guages. Low-Rank Adaptation (Hu et al., 2021)
enables efficient parameter updates through low-
rank matrix injection in transformer layers.

Multilingual OCR and document understanding
have progressed substantially, with systems like
Tesseract (Smith, 2007) and PaddleOCR (Du et al.,
2020) establishing foundations for multilingual text
recognition. Transformer-based approaches like
ViLanOCR (Cheema et al., 2024) leverage syn-
thetic data for improved performance on underrep-
resented languages, while LLaVA-NeXT (Liu et al.,
2024a) advances OCR through high-resolution pro-
cessing and improved visual instruction tuning for
training.

Synthetic data generation addresses data scarcity
in low-resource settings. SynthVLM (Liu et al.,
2024b) uses diffusion models to create image-text
pairs, while DocSynth300K (Zhao et al., 2024)
demonstrates the effectiveness of generated data
for document understanding tasks.

OCR-free approaches offer alternatives to tradi-
tional pipelines. DocPedia (Feng et al., 2024) pro-
cesses documents in the frequency domain, while
TextHawk2 (Yu et al., 2024) employs decoder-only
architecture with efficient tokenization. Solutions
like DocLayout-YOLO (Zhao et al., 2024), Donut
(Kim et al., 2021) and Nougat (Blecher et al., 2023)
have also explored document understanding with-
out traditional OCR models.

Despite advances in parameter-efficient fine-
tuning, synthetic data generation, and OCR-free
approaches, challenges persist in adapting VLMs
to low-resource languages. Our work introduces
language-agnostic synthetic pipelines, combines
parameter-efficient tuning with high-resolution vi-
sion encoders, and extends OCR-free paradigms to
low-resource languages.

3 Synthetic Data Generation: A Scalable
Cross-Lingual Framework

The cornerstone of our work lies in developing a
sophisticated pipeline for generating high-fidelity
synthetic training data that preserves the intricate
relationships between document layout, visual ele-
ments, and textual content across languages. Our
framework addresses the fundamental challenge
of data scarcity in low-resource languages through
a novel approach that combines advanced docu-
ment understanding, a state-of-the-art English OCR
model, and context-aware translation mechanisms.
This section details the architectural components
and methodological innovations that enable scal-
able, high-quality dataset generation for multilin-
gual document understanding tasks.

The pipeline’s design emphasizes three critical
aspects: preservation of document structure and
visual hierarchy, accurate text recognition across
diverse scripts, and contextually appropriate trans-
lation that maintains semantic integrity. Through
careful orchestration of these elements, we achieve
a system capable of generating training data that
closely mirrors the complexity and nuance of natu-
rally occurring documents while scaling efficiently
across multiple languages and document types.

3.1 Seed Dataset Collection

The foundation of our synthetic data generation
pipeline rests upon a meticulously curated corpus
of English-language documents, encompassing ap-
proximately 14,000 distinct samples. Our primary
source materials comprise research papers from
arXiv (2,000 documents), medical literature from
PubMed (1,000 documents), newspaper articles
(1,000 pages), and marketing materials (10,000
samples). This collection represents a strategic bal-
ance across multiple domains and document types,
carefully selected to capture the diverse spectrum
of real-world document layouts, content structures
and ensures comprehensive coverage of various
typographical elements, structural patterns, and
domain-specific formatting conventions that char-
acterize modern document ecosystems.

The academic papers, drawn from arXiv’s ex-
tensive repository, provide exemplars of complex
multi-column layouts, mathematical notation, and
intricate figure-text relationships. Medical litera-
ture from PubMed introduces specialized termi-
nology and standardized reporting formats, while
newspaper pages contribute examples of dynamic
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Figure 1: Nayana’s end-to-end synthetic data generation pipeline. Starting from English document images, our
pipeline generates multilingual datasets for OCR and Document level OCR tasks while preserving layout integrity
and visual characteristics. The pipeline processes approximately one image every 3-5 seconds, enabling rapid
dataset generation at scale.

layout patterns and diverse content organization.
Marketing materials round out the collection with
their rich variety of creative layouts, typographical
treatments, and visual design elements.

3.2 Multi-stage Processing Pipeline

Our processing methodology employs a sophis-
ticated multi-stage approach that preserves doc-
ument integrity while enabling efficient multilin-
gual adaptation. The pipeline initiates with high-
resolution document preprocessing, converting all
inputs to standardized 300 DPI images to ensure
consistent quality and feature preservation across
source formats. This standardization step estab-
lishes a robust foundation for subsequent process-
ing stages.

The layout analysis phase employs an optimized
implementation of DocLayout-YOLO (Zhao et al.
(2024)), which systematically identifies and classi-
fies document regions including text blocks, titles,
figure captions, tables, and visual elements. While
our initial research explored ensemble-based ap-
proaches using multiple layout detection models,
empirical evaluation demonstrated that our opti-
mized single-model implementation achieves com-
parable accuracy with significantly reduced com-
putational overhead.

Text extraction and visual analysis proceed

through a carefully orchestrated sequence of opera-
tions. Each identified text region undergoes precise
optical character recognition to extract English text
from our diverse document collection. We selected
Tesseract (Smith (2007)) as the pipeline’s OCR
model amongst state-of-the-art candidates includ-
ing PaddleOCR (Du et al. (2020)) and EasyOCR
due to its high accuracy at low compute expendi-
ture. The extracted text then undergoes comprehen-
sive visual attribute analysis. This includes back-
ground and text color detection, font size estima-
tion, and preservation of critical styling metadata.
Our implementation maintains strict fidelity to the
original document’s visual hierarchy and structural
relationships throughout this process.

The translation phase employs a sophisticated
multi-engine approach, leveraging several state-of-
the-art translation services: Google Translate API,
Microsoft Azure Translate, IndicTrans2 (Gala et al.
(2023)), and advanced language models such as
Llama3.1 405B (Dubey et al. (2024)). This di-
verse ensemble of translation engines enables ro-
bust context-aware translation, with each service
contributing its unique strengths in handling differ-
ent aspects of document context, technical termi-
nology, and formatting conventions.

Our system dynamically selects the most appro-
priate translation based on context, domain, and
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Figure 2: End-to-end Nayana system architecture: (1) A synthetic data generation pipeline transforming English
documents into multilingual training data while preserving layout and visual fidelity, (2) OCR model with LoRA
adapters for efficient multilingual adaptation, and (3) Training pipeline with Supervised Fine-Tuning (SFT). The
modular architecture processes documents in 3-5 seconds while enabling rapid adaptation to new languages with
high accuracy.

language pair, ensuring optimal translation quality
across diverse document types. The final stage in-
volves precise layout-preserving text replacement
(Zhao et al. (2024)), incorporating dynamic font
size adjustments and maintaining visual hierarchy
while ensuring color contrast preservation.

3.3 Pipeline Performance Characteristics
Our pipeline achieves remarkable efficiency met-
rics, demonstrating both speed and accuracy at
scale. Processing individual documents in approx-
imately 3-5 seconds, the system maintains excep-
tional performance across all processing stages
while enabling rapid dataset generation for new lan-
guages. The optimized DocLayout-YOLO (Zhao
et al. (2024)) implementation consistently achieves
95.8% accuracy in structural analysis, while the
OCR model and sophisticated translation architec-
ture work in concert to ensure high-quality text
extraction and translation.

The system’s effectiveness is particularly evident
in its data multiplication capabilities. Through our

augmentation strategies and multi-task generation
approach where we use the layout data to extract
region-specific information, we achieve an output
multiplication factor of 7-10× images per source
document. This rich extraction process yields di-
verse training signals including layout structures,
text content. The extracted multi-modal elements
can be leveraged for training various downstream
models such as VLMs for Visual Question An-
swering (Antol et al., 2015), Information Extrac-
tion systems, Multi-Modal Retrievers(Faysse et al.,
2025).This multiplication effect significantly am-
plifies the utility of our seed dataset, enabling the
creation of comprehensive training sets from a
relatively modest collection of source documents.
The combination of speed, multiplication factor,
and rich multi-modal data extraction makes our
pipeline particularly effective for rapidly bootstrap-
ping vision-language capabilities in new languages
and diverse document understanding applications.
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4 Architectural Innovation:
Parameter-Efficient Cross-Script
Learning

The adaptation of vision-language models (VLMs)
for multilingual document understanding presents
a fundamental architectural challenge: How to ef-
fectively extend models trained primarily on Latin
scripts to handle dramatically different writing sys-
tems while maintaining computational efficiency.
This section details our systematic exploration of
architectural approaches, empirically-driven design
decisions, and the development of our parameter-
efficient adaptation methodology.

Our initial investigation began with a compre-
hensive evaluation of contemporary VLM architec-
tures, analyzing their fundamental capabilities in
handling text-dense images. This exploration re-
vealed a critical insight: while many models excel
at general visual understanding, they often strug-
gle with the precise geometric and spatial relation-
ships inherent in document processing. Through
extensive experimentation with architectures rang-
ing from traditional CNN-based models to state-of-
the-art transformer variants, we identified several
key architectural requirements that would prove
crucial for successful cross-script adaptation.

4.1 Foundation Model Selection and Analysis

The selection of an appropriate foundation model
emerged from a rigorous empirical study evaluating
multiple state-of-the-art architectures. Our inves-
tigation focused particularly on models’ ability to
handle the unique challenges presented by Indic
scripts, including complex ligatures, overlapping
characters, and varied writing directions. Initial
experiments with popular vision-language models
revealed significant limitations in handling dense
textual content, despite their strong performance
on general vision-language tasks.

The breakthrough came through our analysis
of GOT OCR (580M parameters) (Wei et al.
(2024b)), which demonstrated exceptional perfor-
mance across key metrics. Based on published
benchmarks, GOT OCR achieved superior results
with an Edit Distance of 0.035/0.038 and F1-scores
of 0.972/0.980 for English and Chinese respec-
tively, significantly outperforming larger models
like Qwen-VL-Max (>72B parameters) (Wang
et al. (2024)) and Vary (7B parameters) (Wei et al.
(2024a)). More importantly, its architecture demon-
strated remarkable flexibility in handling non-Latin

scripts, likely due to its original design for handling
both English and Chinese characters – writing sys-
tems with significantly different visual characteris-
tics.

Our choice of GOT OCR (Wei et al. (2024b))
was further validated through its optimal balance
of performance and efficiency due to its:

• Superior vision transformer backbone archi-
tecture compared to contemporary VLM de-
signs

• Specialized text detection heads optimized for
dense textual content

• Efficient parameter count (580M) enabling
practical deployment while maintaining state-
of-the-art performance

The model’s architecture, particularly its atten-
tion mechanisms and hierarchical feature process-
ing, provided an ideal foundation for our cross-
script adaptation strategy. Notably, its transformer-
based design facilitated efficient parameter adap-
tation through Low-Rank Adaptation (Hu et al.
(2021)), enabling us to preserve the model’s fun-
damental visual understanding while extending its
capabilities to new scripts.

During our initial exploration phase, we pur-
sued several alternative approaches that, while ul-
timately unsuccessful, provided crucial insights.
We conducted extensive experiments with vocab-
ulary expansion techniques, hypothesizing that di-
rect modification of the tokenization layer would
enable better handling of Indic scripts. These ex-
periments involved:

• Direct vocabulary expansion with script-
specific tokens

• Hierarchical tokenization schemes for han-
dling complex ligatures

• Script-aware embedding layer modifications

Despite systematic exploration of these ap-
proaches with various hyperparameter configura-
tions, the results consistently plateaued at 50-60%
accuracy for both training and evaluation. This
empirical evidence led us to a crucial realization:
the challenge lay not in the vocabulary represen-
tation but in the fundamental visual processing of
different scripts.
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4.2 Cross-Modal Alignment Learning

The Cross-Modal Alignment (CMA) phase extends
GOT OCR’s (Wei et al., 2024b) capabilities beyond
its original English and Chinese training domain
through a two-phase training approach. Built on
GOT OCR’s task-token architecture (e.g., <OCR>),
our adaptation strategy systematically builds mul-
tilingual capabilities while preserving the model’s
core strengths.

The first phase focuses on section-level training
15, where we use layout-preserving translation to
create training pairs from dense textual sections.
By unfreezing all major components (ViTDet vi-
sion encoder, MLP projection layer, and Qwen
0.5B language model), we enable comprehensive
adaptation to new language patterns. Ablation stud-
ies confirmed this phase’s criticality - attempts to
skip directly to document-level training resulted in
stalled learning and hallucinations.

The second phase transitions to document-level
OCR 10, training on complete document images
while selectively freezing components. We main-
tain the trained visual features by freezing the ViT-
Det vision encoder while continuing to train the lan-
guage model and projection layer. This approach
successfully extends the model’s capabilities to
new languages while preserving its performance
on English and Chinese texts.

Table 1: Training Phase Configuration Summary

Component Phase 1 Phase 2

ViTDet Vision Encoder Unfrozen Frozen
MLP Projection Layer Unfrozen Unfrozen
Qwen 0.5B LLM Unfrozen Unfrozen
Training Data Text-heavy Sections Complete Documents

4.3 Single-Language Adaptation Results

4.3.1 Hindi Adaptation Performance
Our initial experiments with Hindi adaptation re-
vealed several crucial insights about parameter-
efficient adaptation strategies. The choice of
85,000 image-text pairs was determined through ex-
tensive preliminary testing, which showed that this
dataset size provided optimal coverage of Hindi
script variations while remaining computationally
manageable.

The results in Table 2 demonstrate a clear pro-
gression in adaptation effectiveness across different
configurations. The baseline LoRA configuration
(r=32, α =64) established fundamental script adap-
tation but showed limitations in handling complex

Hindi character combinations, as evidenced by its
BLEU score of 0.29. The optimal configuration
(r=64, α=128) achieved substantially better per-
formance, with a BLEU score of 0.58, through
improved capacity for modeling intricate script-
specific features.

Particularly noteworthy is the preservation of En-
glish language capabilities. While the higher-rank
LoRA configuration showed a slight decrease in
English BLEU scores (from 0.84 to 0.79), it main-
tained strong overall performance (F1: 0.86, ME-
TEOR: 0.88), suggesting effective balance between
adaptation and preservation of base capabilities.

Table 2: Hindi Adaptation Performance Comparison

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

LoRA Hindi 0.29 0.71 0.56 0.57
(r=32, α=64) English 0.84 0.97 0.91 0.91

LoRA Hindi 0.58 0.91 0.76 0.77
(r=64, α=128) English 0.79 0.97 0.86 0.88

Full Hindi 0.50 0.86 0.75 0.73
Fine-tune English 0.74 0.95 0.85 0.85

4.3.2 Tamil Adaptation Performance
The Tamil adaptation experiments presented unique
challenges due to the script’s distinctive charac-
teristics, including its cursive nature and complex
grapheme structure. Table 3 reveals several impor-
tant patterns in adaptation behavior. The LoRA
configuration (r=64, α=128) demonstrated remark-
able robustness in handling Tamil’s unique script
features, achieving a BLEU score of 0.37 despite
the script’s significant divergence from the model’s
original training domain. This performance is par-
ticularly impressive given Tamil’s complex vowel
modification system and the presence of compound
characters that can span multiple positions. The
comparison with full fine-tuning is especially illu-
minating. While full fine-tuning achieved reason-
able performance (ANLS: 0.79), it showed signifi-
cant degradation in English capabilities, suggesting
potential catastrophic forgetting. In contrast, our
LoRA approach maintained strong performance
across both languages, with English metrics re-
maining notably stable (BLEU: 0.78, F1: 0.87).

4.4 Multi-Language Adaptation
We investigated three distinct approaches to han-
dling multiple scripts simultaneously, each offering
unique insights into cross-lingual transfer. The
Single LoRA approach emerged as particularly ef-
fective, demonstrating strong performance across
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Table 3: Tamil Adaptation Performance Comparison

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

LoRA Tamil 0.37 0.87 0.66 0.64
(r=64, α=128) English 0.78 0.96 0.87 0.88

Full Tamil 0.17 0.79 0.44 0.44
Fine-tune English 0.69 0.96 0.76 0.80

multiple languages without requiring explicit lan-
guage specification during inference. When lan-
guage tags were provided both during training and
inference, we observed further improvements in
performance. A notable advantage of this approach
was its ability to leverage cross-script learning -
for instance, the model showed improved handling
of Marathi text despite being primarily trained on
Hindi, suggesting effective transfer between related
Devanagari scripts. The Multi-LoRA approach,
training separate LoRA modules for each language,
achieved strong language-specific performance but
sacrificed the beneficial cross-script transfer effects
observed in the single LoRA strategy. Despite its
strong per-language performance, this approach’s
inability to leverage script similarities represented
a significant limitation in the multilingual context.
Nayana We also explored a Merged LoRA strat-
egy, where independently trained language-specific
LoRAs were combined using model merging tech-
niques. While this approach showed promising
results for both languages, it did not outperform
the single LoRA approach’s ability to capture cross-
script features.

Table 4: Multi-Language Adaptation Performance
(Hindi + Kannada) in a single LoRA

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

Single Hindi 0.64 0.89 0.85 0.84
LoRA Kannada 0.52 0.72 0.55 0.43

English 0.79 0.97 0.86 0.88

5 Results

5.1 Evaluation Methodology
Our evaluation framework was designed to pro-
vide rigorous, comprehensive assessment across
diverse document types and writing systems. We
constructed a carefully balanced test set compris-
ing 500 images per language, strategically dis-
tributed across different document categories to
ensure broad coverage of real-world scenarios. The
dataset draws 40% of its content from academic
papers sourced from arXiv, another 40% from med-

ical literature in PubMed, and the remaining 20%
split equally between newspaper content and ad-
vertising materials. This distribution reflects the
varying complexity and specialized requirements
of different document processing applications.

To ensure methodological rigor and fair cross-
linguistic comparison, we developed parallel ver-
sions of each document across all ten languages
while maintaining identical visual layouts and con-
tent structures. This parallel corpus approach en-
ables precise isolation of script-specific challenges
while controlling for variations in document com-
plexity and formatting. Such controlled compar-
ison proves essential for understanding the true
impact of script differences on model performance.

5.2 Comparative Analysis
Our comprehensive evaluation framework encom-
passes three distinct categories of document pro-
cessing systems, each representing different ap-
proaches to multilingual document understanding.
We first examined traditional OCR systems, includ-
ing industry standards like Tesseract Smith (2007)
and PaddleOCR (Du et al. (2020)), which have
established strong baselines in multilingual text
recognition. These systems, while specialized for
OCR tasks, provide important reference points for
performance evaluation.

The second category comprises recent vision-
language models, including cutting-edge systems
like Phi-3.5 Vision (Abdin et al. (2024)) and Llama-
3.2 (Dubey et al. (2024)). These models, de-
spite their impressive capabilities in general vision-
language tasks, demonstrate the ongoing chal-
lenges in specialized document processing. Our
analysis of their performance reveals important
insights about the limitations of general-purpose
architectures when applied to script-specific docu-
ment understanding tasks.

Our Nayana-OCR variants, built upon the GOT
OCR (Wei et al. (2024b)) architecture, represent the
third category. Through extensive training on ap-
proximately 850,000 synthetic images spanning 10
Indic languages, these models demonstrate signifi-
cant advantages in multilingual document process-
ing. The results reveal substantial improvements
across key metrics, most notably a 76% reduction
in Character Error Rate compared to the base GOT
OCR model. This improvement is particularly sig-
nificant given that it maintains consistency across
all evaluated languages.

The performance gains extend beyond simple
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Table 5: Average performance metrics across all evaluated languages. Results show mean values for each model
across the ten tested languages. Lower values (↓) are better for CER and WER, while higher values (↑) are better for
other metrics. Best results in each category are highlighted in bold.

Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑

Tesseract 0.206 0.583 0.318 0.797 0.540
PaddleOCR 0.621 0.880 0.020 0.287 0.069

Llama-3.2 11B 3.858 3.900 0.007 0.091 0.055
Phi-3.5 Vision 2.420 2.461 0.007 0.086 0.044
Qwen2-VL 2B 1.776 1.793 0.025 0.129 0.086

GOT-OCR 0.945 1.041 0.016 0.071 0.052
Nayana-OCR 0.227 0.463 0.395 0.796 0.630

character recognition. Our models show markedly
improved BLEU scores, indicating enhanced capa-
bility in handling complex linguistic structures and
maintaining semantic coherence. The reduced stan-
dard deviations across performance metrics suggest
robust cross-language stability, a crucial factor for
practical deployment in multilingual environments.
These improvements stem from our innovative ap-
proach to model adaptation and the sophisticated
synthetic data generation pipeline described in pre-
vious sections.

5.3 Detailed Performance Analysis

Examining Table 6, several patterns emerge that
illustrate the strengths and limitations of different
approaches. Traditional OCR systems like Tesser-
act (Smith (2007)) show strong performance in
character-level accuracy (CER: 0.206) but struggle
with higher-level semantic understanding, as evi-
denced by lower BLEU scores (0.318). In contrast,
Nayana-OCR achieves competitive character-level
accuracy (CER: 0.227) while substantially outper-
forming all baselines in semantic metrics (BLEU:
0.395).

The performance gap between general-purpose
vision-language models and specialized OCR sys-
tems is particularly noteworthy. Despite their
larger parameter counts, models like Llama-3.2
11B (Dubey et al. (2024)) and Phi-3.5 Vision (Ab-
din et al. (2024)) show significantly higher error
rates across all metrics. This disparity underscores
the importance of architectural choices specifically
optimized for document understanding tasks.

5.4 Limitations and Future Work

While our approach demonstrates significant
progress, several limitations should be noted.

When compared to traditional OCR systems, our
models show higher inference latency, reflecting
the complexity of vision-language processing. Per-
formance variations across scripts suggest room for
improvement in handling certain complex writing
systems. Additionally, our synthetic data genera-
tion, while efficient, may not capture all real-world
variations in document layouts and styles.

Future work will focus on expanding the diver-
sity of seed datasets, incorporating more complex
document structures, and developing specialized
architectures that better balance performance and
computational efficiency. We also plan to explore
how our synthetic data approach can benefit other
vision-language tasks and create open-source tools
to facilitate broader adoption of multilingual vision-
language technologies.

6 Conclusion

This work establishes that vision-language models
can be effectively adapted to new languages us-
ing purely synthetic data, reducing dependency on
costly manual annotation. Our results demonstrate
that Nayana provides a practical, scalable solution
for extending AI capabilities to low-resource lan-
guages. By achieving strong performance across
diverse scripts while maintaining computational
efficiency, our framework opens new possibilities
for democratizing AI technologies across linguistic
boundaries. The success of our approach not only
validates the effectiveness of synthetic data gener-
ation and efficient adaptation techniques but also
establishes a promising direction for developing
more inclusive AI systems that can serve diverse
linguistic communities worldwide.
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A Appendix

A.1 Language-wise Performance Analysis

Table 6: Detailed Performance Analysis Across Languages. The table compares various OCR models across
multiple languages using metrics such as CER, WER, BLEU, ANLS and METEOR.

Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑
Hindi

Tesseract 0.090 0.287 0.636 0.908 0.791
PaddleOCR 0.414 0.864 0.023 0.575 0.117
Phi-3.5 Vision 2.878 2.500 0.023 0.126 0.069
Llama-3.2 11B 4.654 3.455 0.020 0.116 0.070
Qwen2-VL 2B 2.360 2.022 0.066 0.172 0.153
GOT OCR base 1.013 1.190 0.004 0.052 0.043
Nayana-OCR 0.160 0.297 0.532 0.850 0.756

Kannada
Tesseract 0.155 0.609 0.259 0.847 0.541
PaddleOCR 0.814 0.918 0.020 0.110 0.048
Phi-3.5 Vision 2.655 2.877 0.006 0.084 0.046
Llama-3.2 11B 4.670 4.991 0.004 0.075 0.047
Qwen2-VL 2B 1.394 1.599 0.013 0.075 0.063
GOT OCR base 0.936 1.008 0.019 0.067 0.063
Nayana-OCR 0.361 0.648 0.341 0.740 0.554

Tamil
Tesseract 0.265 0.811 0.109 0.750 0.324
PaddleOCR 0.545 1.076 0.003 0.450 0.051
Phi-3.5 Vision 1.531 2.033 0.000 0.082 0.035
Llama-3.2 11B 3.009 4.229 0.002 0.086 0.052
Qwen2-VL 2B 1.260 1.515 0.007 0.125 0.053
GOT OCR base 0.956 1.020 0.013 0.056 0.051
Nayana-OCR 0.181 0.551 0.377 0.829 0.592

Telugu
Tesseract 0.158 0.589 0.296 0.821 0.551
PaddleOCR 0.435 0.934 0.014 0.550 0.088
Phi-3.5 Vision 2.442 2.464 0.001 0.067 0.036
Llama-3.2 11B 2.736 3.586 0.015 0.090 0.068
Qwen2-VL 2B 1.580 1.696 0.010 0.115 0.065
GOT OCR base 0.925 1.007 0.022 0.075 0.066
Nayana-OCR 0.282 0.065 0.241 0.733 0.522

Odia
Tesseract 0.290 0.681 0.155 0.703 0.403
PaddleOCR 0.639 0.742 0.020 0.111 0.030
Phi-3.5 Vision 2.311 2.168 0.000 0.090 0.018
Llama-3.2 11B 2.880 2.908 0.005 0.088 0.042
Qwen2-VL 2B 1.247 1.345 0.012 0.092 0.060
GOT OCR base 0.926 1.000 0.020 0.078 0.042
Nayana-OCR 0.311 0.566 0.305 0.738 0.551
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Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑
Punjabi

Tesseract 0.203 0.532 0.356 0.803 0.568
PaddleOCR 0.717 0.811 0.010 0.095 0.029
Phi-3.5 Vision 3.431 2.896 0.001 0.083 0.034
Llama-3.2 11B 5.801 4.535 0.000 0.065 0.029
Qwen2-VL 2B 1.260 1.515 0.007 0.125 0.053
GOT OCR base 0.954 0.994 0.010 0.066 0.046
Nayana-OCR 0.159 0.440 0.435 0.853 0.693

Malayalam
Tesseract 0.355 0.828 0.065 0.663 0.258
PaddleOCR 0.788 0.895 0.036 0.125 0.073
Phi-3.5 Vision 1.993 2.489 0.000 0.070 0.039
Llama-3.2 11B 2.988 3.807 0.001 0.081 0.051
Qwen2-VL 2B 1.394 1.599 0.013 0.075 0.063
GOT OCR base 0.956 1.174 0.011 0.064 0.047
Nayana-OCR 0.270 0.694 0.248 0.740 0.516

Marathi
Tesseract 0.157 0.460 0.513 0.862 0.738
PaddleOCR 0.355 0.849 0.035 0.630 0.154
Phi-3.5 Vision 1.592 2.063 0.023 0.150 0.073
Llama-3.2 11B 2.421 2.724 0.007 0.108 0.074
Qwen2-VL 2B 1.251 1.269 0.069 0.248 0.181
GOT OCR base 0.915 0.988 0.021 0.095 0.060
Nayana-OCR 0.143 0.457 0.540 0.866 0.753

Gujarati
Tesseract 0.148 0.446 0.534 0.871 0.733
PaddleOCR 0.800 0.914 0.026 0.124 0.068
Phi-3.5 Vision 3.329 3.008 0.006 0.091 0.047
Llama-3.2 11B 2.401 2.724 0.007 0.108 0.074
Qwen2-VL 2B 5.050 4.312 0.006 0.092 0.042
GOT OCR base 0.940 1.047 0.020 0.081 0.057
Nayana-OCR 0.172 0.451 0.476 0.839 0.707

Bengali
Tesseract 0.241 0.590 0.259 0.738 0.492
PaddleOCR 0.704 0.798 0.014 0.096 0.029
Phi-3.5 Vision 2.041 2.110 0.008 0.014 0.042
Llama-3.2 11B 7.021 6.039 0.009 0.093 0.044
Qwen2-VL 2B 0.967 1.054 0.048 0.174 0.127
GOT OCR base 0.926 0.983 0.019 0.080 0.048
Nayana-OCR 0.235 0.460 0.452 0.776 0.656
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A.2 Model Output Analysis
To evaluate the practical effectiveness of our model, we present a visual comparison between input
documents and their corresponding Document Level OCR outputs. Figures 3 and 4 demonstrate the
model’s performance on Hindi and Bengali documents respectively.

The results demonstrate the model’s robust performance across different Indic scripts. Note the
preservation of both textual content and document structure in the generated outputs, highlighting the
effectiveness of our approach in handling diverse document layouts and writing systems.

Figure 3: Hindi Document Processing: Comparison between the original document (left) and the model’s OCR
output (right), demonstrating accurate text recognition and formatting preservation.

Figure 4: Bengali Document Processing: Visual comparison showing the model’s capability to accurately process
Bengali script while maintaining structural fidelity.
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Figure 5: Kannada Document Processing: Comparison between the original document (left) and the model’s OCR
output (right)

A.3 Training Dynamics Analysis

A.3.1 Single Language LoRA Adaptation

We first analyze the training dynamics for individual languages using LoRA with rank=64 and α=128.
Figure 6 shows the training curves for Hindi and Kannada.

Figure 6: Single Language LoRA Training Dynamics: Training and loss curves for Hindi (purple) and Kannada
(orange) using LoRA (r=64, α=128). Both languages show stable convergence patterns with Hindi achieving slightly
faster convergence.

A.3.2 Multi-Language Joint Training

Building on the single language results, we investigate joint training on Hindi and Kannada. Figure 7
demonstrates the effectiveness of our multi-language approach.

Figure 7: Joint Hindi-Kannada Training: The model maintains strong performance while learning both languages
simultaneously, suggesting effective parameter sharing between related scripts.

A.3.3 Comparative Analysis of Joint vs Individual Training

To validate our multi-language approach, we compare joint training performance against individual
language models. Figure 8 presents this critical comparison, where the orange line represents Kannada
with rank 64 LoRA, the neon line shows the joint Hindi-Kannada LoRA (rank 64), and the green line
indicates Hindi with rank 64 LoRA adaptation.
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Figure 8: Comparative Analysis: Joint Hindi-Kannada training (r=64, α=128) versus individual language models.
The joint model (neon) achieves comparable performance to individual Hindi (green) and Kannada (orange) models
while using fewer parameters, demonstrating efficient cross-lingual transfer.

A.3.4 Vocabulary Expansion Experiments
Our initial experiments explored vocabulary expansion as a potential approach for handling multiple
scripts. Figure 9 illustrates these challenges, comparing standard LoRA adaptation (purple lines) against
vocabulary expansion attempts (grey lines).

Figure 9: Vocabulary Expansion Analysis: Attempts to expand model vocabulary for Hindi showed poor convergence
across different configurations. The standard vocabulary with LoRA adaptation (purple) proved more effective than
expanded vocabulary approaches (grey), leading us to abandon the vocabulary expansion strategy.

A.4 Data Generation Examples
A.4.1 Page-Level Translation Examples
Our pipeline demonstrates robust translation capabilities while preserving document structure across all
supported languages. Figures 10, 11, 12, 13 and 14 showcase these capabilities across different Indic
scripts.

A.4.2 Section-Level Translation Examples
Figures 15, 16, 17 and 18 showcase section level translation capabilities across different Indic scripts.
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Figure 10: Page-level translation examples showing Hindi (left) and Tamil (right) translations with preserved
document layout.

Figure 11: Page-level translation examples demonstrating Kannada (left) and Bengali (right) translations.

100



Figure 12: Page-level translation examples showing Malayalam (left) and Gujarati (right) translations.

Figure 13: Page-level translation examples demonstrating Marathi (left) and Telugu (right) translations.
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Figure 14: Page-level translation examples showing Odia (left) and Punjabi (right) translations.

Figure 15: Section-level translation examples showing English (original), Hindi, and Tamil translations.

Figure 16: Section-level translation examples showing Kannada, Malayalam, and Bengali translations.

Figure 17: Section-level translation examples showing Gujarati, Marathi, and Odia translations.

Figure 18: Section-level translation examples showing Punjabi and Telugu translations.
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A.5 Data Augmentation Examples

Figure 19: Document degradation examples showing (from left to right): background texturization, printer drum
defects, ink mottling effect, and letterpress impression.

Figure 20: Document degradation examples showing (from left to right): lighting gradient, line degradation, shadow
effects, and ink bleeding.
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