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Abstract

Automatic Speech Recognition (ASR) facil-
itates documenting endangered low-resource
languages. While recent advances in acous-
tic modelling have been substantial, contextual
learning remains underexplored. This study in-
vestigates the main factors that influence the
integration of knowledge from language mod-
els (LMs) into state-of-the-art ASR models for
endangered low-resource languages. Through
experiments on five diverse low-resource lan-
guages, we find: 1) Fine-grained tokenization
effectively improves ASR performance by ad-
dressing the prevalent unknown words and im-
proving data usage efficiency; 2) The integra-
tion of transformer-based LMs into ASR sys-
tems surpasses that of N-gram LMs only in
one language, even though they consistently
achieve better results in language modelling
tasks. 3) ASR performance is highly sensitive
to language-specific optimization, as shown by
a 43% performance degradation in one lan-
guage due to parameter transfer across lan-
guages. We open-source our scripts to support
further research and applications 1.

1 Introduction

The threat of language endangerment continues to
grow due to various external pressures, prompt-
ing linguists to actively document vulnerable lan-
guages. However, manual documentation pro-
cesses are often impractical and time-intensive. Au-
tomatic Speech Recognition (ASR) models offer
valuable support for language documentation, yet
their effectiveness is hindered by the limited avail-
ability of supervised data.

Recent advancements indicate that multilingual
self-supervised learning holds promise for devel-
oping ASR systems tailored to endangered low-
resource languages(Mihajlik et al., 2023; Li et al.,
2024; Taguchi et al., 2024; Mainzinger and Levow,

1https://github.com/ZL-KA/LM-LR-ASR

2024; Taguchi and Chiang, 2024). Among these
approaches, fine-tuning the pre-trained Wav2Vec2
models (Conneau et al., 2020) with Connectionist
Temporal Classification (CTC) loss (Graves et al.,
2006) has emerged as a popular and effective strat-
egy. Compared to other pre-trained ASR models,
such as Whisper (Radford et al., 2023), this ap-
proach often achieves superior performance, par-
ticularly in reducing character-level errors (Le Fer-
rand et al., 2024; He et al., 2024). This advantage
can be attributed to its smaller parameter set and
the extensive pre-training data, making it especially
effective for low-resource settings.

Despite its strengths in acoustic modelling, this
approach lacks contextual learning capabilities due
to the conditional independence assumption inher-
ent in CTC (Graves et al., 2006; Lu and Chen, 2023;
Higuchi et al., 2022). To address this, previous re-
search has integrated ASR models with language
models (LMs) at the word level (Conneau et al.,
2020; San et al., 2023; Liu et al., 2024; He et al.,
2024; Pratap et al., 2024; Arisaputra et al., 2024).
However, word-level integration struggles with the
high prevalence of unknown words in low-resource
settings, where limited text data further impedes
performance.

Additionally, prior studies have predominantly
employed statistical N-gram LMs for integration.
However, transformer-based LMs have demon-
strated superior contextual learning capabilities
compared to N-gram models for high-resource lan-
guages. While few studies have explored com-
bining transformer-based LMs with Wav2Vec2 and
CTC fine-tuning (Conneau et al., 2020), these inves-
tigations have focused on high-resource languages,
leaving their potential for low-resource languages
unexplored. Differences in data availability and lin-
guistic complexity underscore the need for further
investigation.

To fill these gaps, we explore LM integration for
five low-resource languages from diverse language
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families, considering differences in data size and
source. Our main contributions are:

1. Fine-grained tokenizations at subword and
character levels generally improve perfor-
mance, except for Khinalug, a language where
minimal data availability imposes constraints.

2. The transformer-based method outperforms
the N-gram approach only with one language,
unlike high-resource languages where trans-
former models consistently excel (Conneau
et al., 2020), highlighting challenges in low-
resource settings.

3. Parameter optimization is highly language-
specific, with parameter transferring from one
language to another resulting in a significant
performance gap from optimal outcomes.

2 Language Model in ASR

2.1 Language Model Integration

The popular ASR system for low-resource lan-
guages leverages self-supervised pre-training fol-
lowed by CTC-based fine-tuning. Due to the inde-
pendence assumption inherent in CTC, the ASR
system incorporates LMs during decoding to en-
hance contextual learning2. Specifically, LM inte-
gration occurs during inference-only decoding in
an auto-regressive manner 3. In accordance with
the CTC algorithm, the character-level acoustic
representations accumulate based on the space sep-
arator. The corresponding sequence of characters
is collapsed using the CTC algorithm, and the LM
assigns scores to the resulting text. The total score
is computed using Equation 1:

score = logP (text) + α ∗ LM(text) + β (1)

Here, logP (text) represents the acoustic hid-
den representation, and LM(text) denotes the LM
score. The parameters α and β control the con-
tribution of the LM and adjust the length of the
generated sequences, respectively. LM integra-
tion enables the CTC-based ASR model to perform
beam search, where the candidate sequence with
the highest score is returned as the final prediction.

2https://huggingface.co/blog/
wav2vec2-with-ngram

3https://github.com/kensho-technologies/
pyctcdecode/tree/main

2.2 Tokenization Granularity

Since CTC-based fine-tuning operates at the charac-
ter level, current word-level integration overlooks
the fine-grained knowledge provided by CTC, leav-
ing room for potential improvement. Additionally,
word-level LMs struggle to handle the prevalence
of unknown words in low-resource languages, lead-
ing to performance degradation.

This work proposes integrating LMs at the sub-
word and character levels. We encode the tran-
script with space markers ("_") to denote word
boundaries. Tokenization-specific ASR models and
LMs are built using corresponding encoded text,
enabling the models to leverage encoded knowl-
edge effectively. This encoding increases the fre-
quency of sequence patterns, improving data uti-
lization efficiency for LMs. Furthermore, unknown
words are decomposed into recognizable subwords
or characters, reducing their negative impact on
performance.

The study also investigates the impact of
transformer-based LMs on LM integration. The
integration process is adapted by modifying the
scoring function to accommodate the transformer-
based approach. Similar to N-gram LMs, log prob-
abilities are used as LM scores.

3 Experimental Setups

3.1 Datasets

To address the unique challenges of building ASR
systems for low-resource languages, such as lan-
guage complexity, limited corpus size, and sparse
audio sources, this study conducts experiments on
five linguistically diverse languages to explore their
practical application in language documentation.:
Khinalug (Li et al., 2024), Kichwa (Taguchi et al.,
2024), Mboshi (Godard et al., 2018), Japhug (Guil-
laume et al., 2022), and Bemba (Sikasote et al.,
2023). Four of the selected languages are recog-
nized as endangered, while Bemba is included to
examine the impact of collecting additional super-
vised data. Table 1 illustrates the occurrence of
unknown words in the development and test splits,
highlighting the potential risks of overlooking them
when using word-level LMs.

3.2 Modelling

Acoustic Model: We utilize the state-of-the-art ver-
sion of Wav2Vec2 model mms-300 4. Pre-trained

4https://huggingface.co/facebook/mms-300m
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Language ISO code Language Family Audio source Train (h) Dev+Test (h)
Unknown

words
Khinalug kjj Northeast Caucasian Spontaneous 2.14 0.49 25.12%
Kichwa que Quechuan Radio 3.05 0.77 27.28%
Mboshi mdw Bantu ZoneC Reading 3.93 0.53 16.57%
Japhug jya Sino-Tibetan Spontaneous 27.74 7.00 5.23%
Bemba bem Bantu ZoneM Reading 116.32 11.43 7.41%

Table 1: Dataset descriptive statistic

with over 1400 languages, it provides extensive lin-
guistic coverage and adaptability for low-resource
settings. In addition, its lightweight design, with
fewer parameters than other checkpoints, ensures
faster and more efficient performance.

Language Model: We utilize 5-gram LMs for
word and subword tokenization, and 10-gram LMs
for character tokenization. For transformer-based
LMs, we employ GPT-2 tailored to causal lan-
guage modelling tasks5. The vocabulary sizes vary
based on the tokenization approach: the number
of distinct words for word-level, 2000 tokens for
subword-level, and the number of distinct charac-
ters for character-level tokenization. These con-
figurations are based on insights from preliminary
experiments.

Pre- & Post-processing: We investigate LM
integration across various tokenization levels and
adapt ASR modelling accordingly. Training la-
bels are generated by preprocessing transcripts into
string sequences, embedding tokenization details
directly into the training pipeline, as described in
Section 2.2. This method allows the ASR model
to produce outputs consistent with the chosen tok-
enization level. After prediction, post-processing is
used to reverse the encoding steps and reconstruct
the original sentence.

4 Results and Analysis

4.1 Fine-grained Tokenization Benefits
We experiment with different tokenization gran-
ularity with N-gram LMs. As shown in Table 2,
compared with the coarse word-level tokenization,
fine-grained tokenization improves performance
for Kichwa, Mboshi, Japhug, and Bemba with Rel-
ative Word Error Rate (Relative WER) reduction
of 6.5%, 7.3%, 8.4% and 9.8%, respectively. How-
ever, for Khinalug, the fine-grained approach shows
comparable results but no clear gains, likely due

5https://huggingface.co/docs/transformers/
tasks/language_modeling

to limited data and the spontaneous nature of the
audio source.

Besides, we find the character level tokeniza-
tion leads to the best performance for most lan-
guages, indicating character tokenization as a more
effective choice. Regarding the outlier Mboshi, we
notice its character ASR model struggles due to
fast speaking speed or morphological complexity
(Appendices A), complicating direct comparisons
with subword models. Despite this challenge, the
character-based approach shows greater relative im-
provements when transitioning from no LM to LM
integration compared to the subword approach.

No LM Word Subword Char
Khinalug 42.2 34.2 37.9 35.8
Kichwa 17.7 15.4 15.3 14.4
Mboshi 31.4 27.3 25.3 30.1
Japhug 26.5 23.6 24.0 21.3
Bemba 40.0 38.6 35.5 34.8

Table 2: Experimental results for integrations granular-
ity with N-gram LMs. Word, subword and char indicate
the tokenization granularity. The evaluation metric is
WER.

No LM N-gram Transformer
Khinalug 45.5 35.9 40.5
Kichwa 18.6 15.0 17.1
Mboshi 33.4 27.5 28.5
Japhug 26.8 23.0 21.8
Bemba 39.0 36.3 37.2

Table 3: Experimental results for comparison between
N-gram and transformer-based LMs. The resulted WER
represents the average across experiments using word,
subword, and character tokenization.

4.2 N-gram Integration Outperforms

Transformer-based LMs demonstrate notable
strengths in perplexity evaluation, as detailed in
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Text WER N-gram PPL Trans PPL
Gold alcaldesa juzgadomanta llukshikta rikukuni - 7.5 5.4

No LM alcaldesa husgadomanta llukshikta rikukuni 25.0 9.3 5.3
N-gram alcaldesa juzgadomanta llukshikta rikukuni 0 7.5 5.4
Trans alcaldesa huskadomanta llukshikta rikukuni 25.0 8.9 4.8

Table 4: An example of Kichwa with character-level tokenization is presented. Note that all hypotheses are
considered during decoding in all experiments, but only one is selected as the final prediction with Equation 1 in
each experiment.

Appendix B. We investigate transformer-based in-
tegration across all tokenization types and report
the average scores. Surprisingly, as shown in Ta-
ble 3, transformer-based LMs outperform N-gram
LMs only for a single language, Japhug.

A closer examination of prediction samples re-
veals a misalignment between ASR performance
and language modelling under the current integra-
tion approach. As shown in Table 4, the N-gram
and transformer-based approaches do select the can-
didates with the lowest perplexity, and the perplex-
ity values from transformer LM are indeed higher
than that of N-gram LM, indicating the superior
performance in causal language modelling. How-
ever, inconsistencies arise in how different LMs
rank these candidates.

Specifically, the ASR gold transcript aligns more
with the N-gram ranking than the transformer-
based LM in this example. Although both models
share the same vocabulary, allowing direct perplex-
ity comparisons, their rankings might differ due to
variations in architecture and evaluation. This sug-
gests the current integration approach lacks robust-
ness for low-resource languages, as it does not con-
sistently improve ASR performance across models.

4.3 Language Optimization Matters

In developing ASR systems, prior research has pre-
dominantly focused on ASR training optimization,
with limited attention to integrating LMs. In this
study, we observe that the optimal tokenization
granularity for five languages spans all three tok-
enization types and that the integration parameters
vary significantly across languages. To highlight
the importance of language-specific optimization,
we experiment with reasonable parameter adapta-
tion from Kichwa to Mboshi, which has a similar
amount of supervised data, and Japhug, which has
the same optimal tokenization type. As shown in
Table 5, direct parameter transfer results in perfor-
mance degradations of 32.0% and 43.2%, respec-
tively.

Token (Alpha, Beta) WER
Kichwa char (0.9, 5.0) 14.4
Mboshi subword (0.6, 2.0) 25.3

Transferred char (0.9, 5.0) 33.4
Japhug char (0.6, 1.0) 21.3

Transferred char (0.9, 5.0) 30.5

Table 5: Experiment results of parameter transferring
from Kichwa to Mboshi and Japhug. Transferred means
inferencing with the parameters optimized for Kichwa;
Token indicates the tokenization type; Alpha and Beta
indicate the parameters in decoding (Equation 1).

Moreover, we find that customizing beam size
could improve inference speed while maintaining
performance, demonstrating the practical benefits
of tailored ASR systems (Appendix C.1). Addition-
ally, our results indicate that ASR performance in
low-resource languages is highly sensitive to train-
ing hyperparameters; even small adjustments in the
learning rate can lead to significant performance
differences (Appendix C.2). These findings empha-
size the critical importance of language-specific
settings in building effective ASR systems for low-
resource languages.

5 Conclusion

This study focuses on improving contextual learn-
ing in ASR models for low-resource languages by
examining tokenization granularity and the inte-
gration of transformer-based LMs. The findings
show that fine-grained tokenization enhances ASR
performance by addressing unknown words and
increasing data usage efficiency. Moreover, inte-
grating transformer-based LMs does not consis-
tently outperform N-gram LMs in boosting ASR
accuracy. Finally, our results indicate that directly
applying experimental settings to new languages
harms performance, emphasizing the importance
of language-specific optimizations.
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A ASR Performance analysis

A.1 ASR Performance without Language
Models

This section evaluates the performance of the ASR
model using different tokenization methods with-
out including language models (LMs). As outlined
in Table 6, subword- and character-level tokeniza-
tions demonstrate slightly lower performance than
word-level tokenization. This decline can be at-
tributed to the added task of predicting the word
boundary symbol "_." Nonetheless, this trade-off
enables the incorporation of a more robust LM at
the subword and character levels, enhancing the
overall ASR performance during LM integration.

Lang Word Subwrod Char
Khinalug 42.2 47.0 47.4
Kichwa 17.7 18.1 19.9
Mboshi 31.4 29.5 39.4
Japhug 26.5 26.5 27.5
Bemba 40.0 38.7 38.5

Table 6: ASR model performance of different tokeniza-
tion types without LMs

A.2 Character Density Analysis

The Mboshi ASR model with character-level tok-
enization performs noticeably worse compared to
word- and subword-level models. To investigate
the outliers, we examine the character density of
the corpus and find that the Mboshi corpus has a
significantly higher number of characters per sec-
ond than others, even though all audio files are
sampled at 16 kHz (see Table 7).

We specifically use Voice Activity Detection
(VAD) (Team, 2024) to measure the speaking dura-
tion and count the number of characters in the cor-
responding transcripts. We argue that the high char-
acter density negatively impacts character-level to-
kenization, as it leaves limited space for detecting
separators between characters, resulting in infor-
mation loss. Additionally, we suspect that the mor-
phological complexity of Mboshi could be another
contributing factor, but we are unable to evaluate
this hypothesis due to a lack of linguistic expertise.

Lang Train Valid Test
Khinalug 0.75 0.75 0.74
Kichwa 0.84 0.85 0.83
Mboshi 1.08 1.1 1.06
Japhug 0.83 0.84 0.84
Bemba 0.75 0.75 0.75

Table 7: Analytical statistic on character per second

B Causal Language Modelling

In this section, we compare N-gram and
transformer-based language models (LMs) in the
context of causal language modelling, which fo-
cuses on predicting the next token. This analysis
supports our discussion in Section 4.2. As shown
in Table 8, transformer-based LMs consistently
achieve lower perplexity than N-gram LMs across
all languages. This aligns with our expectation
that transformer-based models outperform N-gram
models in causal language modelling tasks due to
their superior ability to capture contextual informa-
tion. Additionally, we observe that larger datasets
amplify the performance gap between the two types
of models.

C Language Specific optimization

C.1 Integration Parameters

This section highlights the importance of language-
specific parameters in language model integration.
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Word Subword Char
N-gram Trans N-gram Trans N-gram Trans

Khinalug 1619.9 1243.2 709.5 604.7 10.3 8.8
Kichwa 1770.2 1271.7 550.2 313.7 6.9 4.0
Mboshi 1015.7 673.7 343.4 173.8 9.83 5.5
Japhug 699.6 448.0 181.7 75.1 7.3 3.5
Bemba 2915.9 1439.5 238.6 79.0 6.2 2.9

Table 8: Perplexity comparison for difference tokenization of N-gram and transformer-based LMs

Beam (α, β) WER
Kichwa

word 10 0.2/0 15.5
word 100 0.2/0 15.4

subword 10 0.9/5.0 15.7
subword 100 0.9/5.0 15.3

char 10 0.8/2.0 14.8
char 100 0.8/2.0 14.4

Japhug
word 10 0/0 25.3
word 100 0.1/0 23.6

subword 10 0.1/2 24.2
subword 100 0.1/2 24.0

char 10 0.5/1 21.9
char 100 0.6/1 21.3

Table 9: Experimental results about beam searching and
the selection of alpha and beta for Kichwa and Japhug

As illustrated in Table 9, a beam size of 10 performs
comparably to a beam size of 100, demonstrating
that this smaller value can reduce computational
costs and hardware requirements. Additionally, we
observe that the parameters alpha and beta require
tailored values for optimal performance.

C.2 ASR Training Parameters
In this study, we explore various training hyper-
parameters to highlight their significance in low-
resource scenarios. Specifically, we experiment
with learning rates of 5e-4, 1e-4, 5e-5, 1e-5, 5e-6,
and 1e-6. Our findings reveal that using the same
hyperparameters across different languages or ap-
plying parameters optimized for one language to
another results in noticeable performance degra-
dation (as shown in Table 10). This underscores
the importance of language-specific optimization
when developing ASR systems for low-resource
languages, in contrast to high-resource scenarios
where the abundance of supervised data mitigates
the influence of training hyperparameters.

Lang Learning rate CER WER
Khinalug 1e-4 13.35 55.85

1e-5 11.40 47.00
Japhug 1e-4 14.41 28.41

1e-5 12.95 26.47

Table 10: Impact of learning rate on building ASR mod-
els
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