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Abstract

Prompt engineering holds the promise for the
computational literary studies (CLS) to ob-
tain high quality markup for literary research
questions by simply prompting large language
models with natural language strings. We test
prompt engineering’s validity for two CLS se-
quence labeling tasks under the following as-
pects: (i) how generalizable are the results of
identical prompts on different dataset splits?,
(ii) how robust are performance results when
re-formulating the prompts?, and (iii) how gen-
eralizable are certain fixed phrases added to
the prompts that are generally considered to
increase performance. We find that results are
sensitive to data splits and prompt formulation,
while the addition of fixed phrases does not
change performance in most cases, depending
on the chosen model.

1 Introduction

Large language models (LLMs) have taken over
the field of natural language processing (NLP) in
the past years. LLMs implement the transformer ar-
chitecture and are fine-tuned to follow instructions
(Mishra et al., 2022; Zhang et al., 2024), which also
led to the introduction of a new paradigm: ‘prompt-
ing’.1 In contrast to pre-training, fine-tuning or
classical machine learning, prompting does not ac-
tually update the weights of the model itself. In-
stead, prompt strategies aim at producing the best
possible prompt for a given task (Liu et al., 2023),
thus providing a textual context for the model to
generate reasonable replies.

LLM-prompting is a promising development for
digital humanities in general, because task descrip-
tions can be expressed in natural language, pre-
sumably making it easier to connect to classical,
non-digital research in the humanities. This may
also apply to the model’s output, if it is in natural
language or can be verbalized (correctly) as such.

1Also called ‘in-context-learning’ (Brown et al., 2020).

A distinction can be made between two prompt-
ing scenarios: i) Interactive prompting, as with a
chatbot, is the scenario in which most people cur-
rently experience LLMs, as it is easily available
even without technical background. It is character-
ized by a direct application and associated implicit
validation, often used in an exploratory manner.
Note that results obtained must not be perfect or
even correct to be useful, and in following Gricean
conversation maxims (Grice, 1975), human users
put in interpretation effort to make sense of the
results. ii) Batch-use comes into play if prompts
are applied to a large(r) quantity of data, and the
LLM is used for automatic detection of some tex-
tual concept. This paradigm is closely related to
established machine learning scenarios, and thus
needs to follow established machine learning best
practices. The remainder of this article is about this
batch-use of LLM prompting.

Evaluation of LLMs can also be separated into
two areas: i) With the goal of evaluating LLMs as
such (and unrelated to a specific task), they are usu-
ally confronted with test items from multiple bench-
mark data sets that cover a certain range of tasks.
ARC (Clark et al., 2018), for instance, defines 7787
natural science questions with four possible an-
swers, out of which one is correct. The model is
tasked to provide the identifier of the correct an-
swer. Models can then be ranked according to their
(average) performance on such benchmarks, result-
ing in rankings such as the HuggingFace Open
LLM Leaderboard2. ii) For a task-specific evalua-
tion, reference data for the specific task is needed,
and allows comparing system and reference output
as is established in machine learning. In both eval-
uation setups, it is important to realize that what
is evaluated is not (only) the model itself, but a
tuple of model, task formalization, parameters and
prompt, and that an exhaustive evaluation of all pos-
sible settings is usually not possible. This paper, as

2https://tinyurl.com/3ms6bmhm
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do many others, selects a number of parameters for
the experiments and this selection has theoretical
and pragmatic reasons.

This paper explores the use of LLM-prompting
in computational literary studies (CLS). CLS an-
alyzes literary texts and text corpora using meth-
ods of statistics, machine learning and NLP. In
doing so, CLS draws partly on traditional literary
studies, but does so with the help of data-driven
approaches and methods. Past studies in CLS fo-
cused on authorship attribution, drama and genre
analysis, literary-historical questions, narratologi-
cal and gender analysis and questions of canonicity
(cf. Schöch et al., 2023; Pielström et al., 2023; An-
dresen and Reiter, 2024). Non-computational liter-
ary research questions are typically highly complex,
context-dependent and embedded in a deep theoret-
ical framework, that is often expressed somewhat
vaguely. Addressing such questions thus requires
a multitude of tools and methods that form com-
ponents in an argumentation that uses manual and
automatic work steps. The tasks we discuss in this
paper are representative for such components.

Concretely, this paper’s contribution is the sys-
tematic evaluation of a number of LLMs and
prompts on two different CLS-relevant sequence
classification tasks for which manually annotated
reference data sets exist. Sequence classification in
NLP is the task of assigning a categorical label to
each element in a sequence of data, such as words
in a sentence or characters in a word. Such tasks
are complex as they combine two potentially sep-
arate work steps in one: the selection of a token
span to be classified and the classification of this
span. Such tasks are common in CLS as manual
annotation tasks.3

An important methodological aspect of such an
evaluation is that as soon as prompting strategies
make use of manually or automatically optimizing
prompts on a data set (“prompt engineering”), this
needs to be treated as a training process, even if
no weight updates are performed: Selecting the
best prompt on a data set and evaluating its per-
formance on the very same data set is a case of
overfitting and the measured performance is not
indicative of its performance on new data. This

3Following the categorization of classification tasks in
cultural analytics according to Bamman et al. (2024), this
primarily involves the category of “replacing human labeling
at scale,” which is also a prerequisite for “top-down theory
testing”. Note also the survey paper by Hatzel et al. (2023) on
machine learning in computational literary studies.

does not mean that performance on unseen data
must be lower in every case – if the model-prompt-
combination has generalized properly, it may even
achieve similar performance on unseen data. We
suspect that in practice this optimization process
is usually based on a small, hand-picked selection
of examples, and often not evaluated on an inde-
pendent test set. Accordingly, to avoid overfitting,
we propose to follow established best practices and
make a (documented) split into train and test data,
with similar roles as in classical machine learning:
Train data is used to optimize a prompt and test
data to evaluate it.

Research questions. Against this background,
we will focus on the following three research ques-
tions: i) How generalizable are performance
measurements? This question rests on the as-
sumption that a good model shows similar perfor-
mance on different data sets. If its performance
varies strongly, the model has failed to capture the
essence of the task. ii) How robust is the model
against meaning-preserving prompt variations?
This question is related to the issue that Mizrahi
et al. (2024) have uncovered (and named “prompt
brittleness”): That the performance of prompted
LLMs reacts very strongly to minor changes in the
prompts, be it minimal changes such as adding or
changing punctuation marks, or lexical changes
such as paraphrasing the task. iii) How general-
izable are recommendations on prompt compo-
nents? Because an exhaustive search over all pos-
sible prompts (or other parameters) is impossible,
prompting usually relies on best practices devel-
oped in interactive prompting scenarios (Saravia,
2022; Bsharat et al., 2024), such as promising the
model a reward. Our question is to find out whether
following these best practices for non-interactive
prompting leads to consistently best (or even good)
results. I.e., we investigate if general recommenda-
tions on how to construct a prompt actually lead to
performance gains and/or consistently best results
on CLS tasks and data set.

Documentation of all our experiments (including
prompt templates) is done in a GitHub repository,
to facilitate the reproduction of our experiments.4

2 Related Work

Several studies in NLP use LLMs for classic clas-
sification tasks. Balkus and Yan (2023) use GPT-

4https://github.com/pagelj/prompt-cls
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3’s API to classify the topics of short texts and
use both the generative completion capabilities as
well as a dedicated classification end point of the
API. Zhao et al. (2023) use ChatGPT to classify
agriculture-related texts with regards to sentiment,
prediction of natural disasters and text topic. Wang
et al. (2023) test GPT-3.5, GPT-4 and Llama 2 on,
among others, sentiment analysis of tweets. In ad-
dition to this, Clavié et al. (2023) show that in the
binary classification of qualification requirements
for job advertisements, LLMs such as OpenAI’s
text-davinci-003 model clearly outperform classi-
cal ML approaches such as SVM but also smaller
‘foundational models’ such as DeBERTaV3.

Many studies investigate the influence of
prompts for prediction performance (Schick and
Schütze, 2021; Zhao et al., 2021; Perez et al., 2021;
Lu et al., 2022; Ceron et al., 2024). All come to
the conclusion that the form and quality of man-
ually crafted prompts is highly influential on per-
formance and often suggest methods for automati-
cally generating prompts or using methods such as
prompt tuning to circumvent the shortcomings of
hard prompts. Many studies distinguish systemati-
cally between different prompt components, such
as “Definition”, “Things to Avoid”, etc. (Mishra
et al., 2022). Sadr et al. (2025) investigate which
words are most important in a prompt by system-
atically replacing words in prompt components
like “Let’s think step-by-step” and measure the
change in performance via a newly introduced met-
ric. They find that nouns are consistently among the
most important words regarding prediction and that
the most important word varies according to the
task performed. Mizrahi et al. (2024) demonstrate
how single prompts lead to chance-based outcomes
and suggest using a suite of prompts and averag-
ing over their performance (this strategy is called
‘prompt ensemble’ in Liu et al. (2023)). Lastly,
Schaeffer et al. (2023) suggest that the proclaimed
emergent abilities of LLMs disappear once appro-
priate evaluation metrics are used.

The largest study on the usages of LLMs for
classification tasks in a computational humanities
context to date comes from Ziems et al. (2024).
They work in the context of computational social
science and perform zero-shot learning on a wide
variety of tasks on different textual levels such as
sarcasm and ideology detection, misinformation
detection, empathy classification, politeness, event
detection and roles and tropes. The study uses one

prompt template per task and does not address the
potential impact of prompt brittleness on the evalu-
ation. They find that, except for certain minor tasks,
LLMs in a zero-shot setting are not able to outper-
form fine-tuned classifiers or replace the work of
human annotators (Ziems et al., 2024, p. 240).

Pichler and Reiter (2024) come to a similar con-
clusion in the context of an ICL-experiment in the
CLS, in which they investigate the extent to which
OpenAI’s text-davinci-003-LLM can reproduce the
performance of smaller older models used by Piper
(2020) in the course of a classification task based on
complex knowledge from literary theory, namely
the determination of domain specific generalizing
statements in literary studies.

Pagel et al. (2024) tested several open and close-
sourced LLMs in zero and few-shot setups on the
task of identifying knowledge transfers about fam-
ily relations in German dramas. They also conclude
that, in the current state, LLMs are not suitable to
sufficiently perform high-level CLS classification
tasks out-of-the-box.

Bamman et al. (2024), recently published as
a pre-print, arrives at differentiated results. The
study identifies ten tasks from computer-assisted
text analysis, characterized as cultural analytics,
for which annotated reference data is available, and
investigates how well these tasks can be solved
by LLMs compared to pretrained language mod-
els (PLMs). The choosen LLMs are GPT-4o,
LLAMA 3 70B and Mixtral 8x22B, which are
prompted with a single prompt template contain-
ing 10 examples but no Chain-of-thought-prompts.
They find that “LLMs offer competitive perfor-
mance through prompting alone for established
tasks, while traditional supervised methods excel
for newly constructed phenomena (even in scenar-
ios with limited training data)”. In a further compar-
ison, for which the models were fine-tuned on the
task-specific reference data, the performance differ-
ences between masked PLMs and LLMs are even
smaller. Issues of prompt brittleness and prompt
generalizability are not addressed.

Hicke et al. (2024) perform zero-shot classifi-
cation for focalization on 16 Stephen King nov-
els with LLAMA 3 and GPT-4o and compare to a
NaiveBayes and DistilBERT baseline. They find
that GPT-4o performed best with an F1 score of
86.90, but also that initial inter-annotator agree-
ment between the three annotators was relatively
low with Krippendorff’s α of 0.55. However, an ad-
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judicated version could be created after discussion
between the annotators. They also find a correla-
tion between a model’s confidence scores and its
performance, as well as a robustness of GPT-4o’s
performance with regard to multiple runs and small
changes in the prompt.

We are not aware of any studies dedicated to
sequence classification tasks in CLS.

3 Sequence Classification Tasks and Data

This section describes the two sequence classifica-
tion tasks (emotion and event) and data sets used
in our experiments. Note that the event dataset is
in German, while the emotion dataset is in English
language. Regarding the issue of data leakage (Bal-
loccu et al., 2024), please also note that both the
emotion and event dataset are publicly available.
It can therefore not be excluded that (parts of) the
public data sets and their annotated labels have
been included in the pre-training of our models.

Emotion The dataset for the emotion task is com-
ing from work by Kim and Klinger (2018) and is
called REMAN (Relational Emotion Annotation
for Fiction). They provide annotations of 200 En-
glish texts from Project Gutenberg5 and annotate
the emotions anger, anticipation, disgust, fear, joy,
sadness, surprise and trust plus a category other
emotion for cases that do not fall into one of the
above. Annotated is either a single word or phrase
with a preference for shorter spans. For instance,
the annotated span for the sentence “His smile was
distinctly attractive.” is “smile” and was given the
joy-label. In a multi-step process, all spans that do
not match exactly between annotators, but overlap,
were adjudicated by an expert.

Kim and Klinger provide baseline experimental
results on predicting emotions on their dataset, us-
ing dictionary and bag-of-words-based baselines,
a conditional random field (CRF) model as well
as a long short-term memory model (LSTM) ar-
chitecture with a CRF classification on top. The
LSTM-CRF performs best with an F1 score of 43%
in a strict setting where all spans have to match ex-
actly, but the authors note that recall is low for
both models. They report inter-annotator agree-
ment scores for their annotations, ranging from an
average Cohen’s κ of 0.11 for anticipation to a κ
value of 0.35 for joy. See Table 3 for an example
of each emotion.

5https://www.gutenberg.org/

Event Vauth and Gius (2022) take six German-
language texts from the TextGrid6 and d-
prose (Gius et al., 2021) repositories. They an-
notate three different event types, process, stative
and change of state, as well as non-event (see Vauth
and Gius, 2021). Each span receives exactly one of
these labels.

The original annotation task consisted of three
parts: In a first step, the annotation span had to be
identified, in a second step it had to be marked with
the corresponding labels, and then in a third step
subordinate property tags had to be assigned. Fol-
lowing this procedure, they achieved an agreement
for these event types of Krippendorff’s α between
0.57 and 0.75, depending on the text.

To our knowledge, there are currently no pub-
lished studies on automatic annotation of the
dataset. Examples for annotation spans for each of
the four categories look like the ones in Table 4.

4 Formalization

In this section, we describe which measurement
techniques we use to answer the three research
questions introduced above. In general, our
prompts consist of a frame structure describing
the role of the LLM, the task, the expected output
format, and the labels to be used, with slots for vari-
able components and the text to analyze: A prompt
is thus defined as a complete input sequence that
realizes one of 8 possible combinations of so-called
prompt components, where prompt components are
elements that can be switched on and off. The
implementation of one of these 8 possible combi-
nations as a prompt, we call prompt configuration.
Additionally, there are 3 paraphrases (semantically
equivalent reformulations) of each prompt. These
were generated automatically by using GPT to gen-
erate 10 alternative reformulations based on an ini-
tial manually created prompt that follows current
prompt engineering recommendations, from which
we then manually selected three. All in all, this
leads to 4 ∗ 8 = 32 different prompt configurations
— for each model and each task — which results
in a grand total of 64 different prompts and 256
model runs.

4.1 RQ1: Generalizability of Performance
Measurements

To check whether and to what extent a particular
prompt configuration performs equally well on dif-

6https://textgridrep.org/
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ferent test samples, we proceed as follows: For
each model, we test each prompt configuration on
two test data sets and calculate the difference and
p-values between the F1 scores obtained using a
paired sample t-test. This way, we test the null hy-
pothesis that different data samples have no effect
on the performance.

4.2 RQ2: Robustness against
Meaning-Preserving Prompt Variations

In order to investigate how robust each model is
against semantic rephrasings in prompt formula-
tions, we first define (with the help of a language
model) four different but semantically equivalent
paraphrases of each (fully instantiated) prompt.
These changes cover the entire prompt: Next to the
prompt components, elements of the frame struc-
ture of the prompt are also reformulated (see list-
ings 1-4). We then look at the standard deviation
of F1 scores over each of those prompt variants by
comparing the paraphrases that realize the same
components. We hypothesize that a more robust
model is less sensitive against these paraphrases,
and thus shows lower standard deviation.

4.3 RQ3: Generalizability of Prompt
Component Optimization

For the final research question, we investigate how
well different components added to a prompt gen-
eralize across tasks and models.

Under the term component, we understand
phrases or instructions added to the prompt that
are meant to improve model performance, but are
not specific to solving a concrete task. One of the
most popular examples of such a component is to
assign a role or occupation to the model and ask it
to provide an answer under the assumption that it
behaves like a person with the specified role (for
example “You are an expert mathematician”).

Bsharat et al. (2024) provide an extensive list
of principles to construct good prompts, including
prompt components, from which we pick three that
we perceive as currently popular options: (i) the
model gets bribed to give a good answer, (ii) the
stakes are high, and (iii) the model should think
step by step.7

Concretely, we checked which of the prompt
components were present in the best performing
prompts per model and how often. This investi-
gation sheds light on which components actually

7For the specific formulations of the components, see sec-
tion B

make a measurable positive impact on performance.
We hypothesize that, provided the components are
actually useful in boosting model performance,
they should appear in all or close to all of the best-
performing prompt variations.

5 Experiments

We carry out experiments on all tasks de-
scribed above, using the following LLMs:
GPT8 (GPT-4o9), LLAMA (Llama3.1-8B-
Instruct (AI@Meta, 2024)10, MIXTRAL (Mixtral-
8x7B-Instruct (Jiang et al., 2024)11), and
SAUERKRAUT (SauerkrautLM12). The models
provide a balance of close and (semi-)open
source systems and with SAUERKRAUT there
is a model that was especially re-pretrained
on German language texts. Furthermore, all
models displayed high scores on popular NLP
benchmarks and should therefore generally be
able to tackle the two CLS tasks. Due to the
computer resources available, we quantified
LLAMA and SAUERKRAUT into a 4-bit version
using HuggingFace’s bitsandbytes library.

5.1 Experimental Setup
For the Event dataset, we remove annotated cate-
gories which occur less than 600 times. This leads
to the change of state class being removed, leaving
us with the process, stative and no event labels. We
use a single text out of four, Effi Briest by Theodor
Fontane, as it is by far the longest text and the only
one for which the requirement of 600 instances
per class can be kept. As the Emotion data set is
smaller, we have set a threshold of at least 150 oc-
currences per label. This leaves us with the classes
anger, disgust, joy, sadness and surprise.

From these samples, we create two random sub-
sets for each task, each with 15% of the instances.
The distribution of labels in each subset corre-
sponds to the distribution of label occurrences in
the whole dataset. These sets are subsequently
called test 1 and test 2.

For all tasks, each prompt contained only a sin-
gle target sentence together with a fixed frame and

8In the following, we will use short names in small caps to
refer to the concrete models used in the experiments.

9https://www.wikidata.org/wiki/Q125919502
10https://huggingface.co/meta-llama/

Meta-Llama-3.1-8b-Instruct
11https://huggingface.co/mistralai/

Mixtral-8x7B-Instruct-v0.1
12https://huggingface.co/VAGOsolutions/Llama-3.

1-SauerkrautLM-8b-Instruct
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some of the components (see Listing 1 for an ex-
ample). The models were asked to i) select word
sequences that match the definition and ii) assign a
class label in a second step. This procedure differs
from the standard procedure for text and sequence
classification in that the probabilities of the labels
for a selection of tokens are not determined by the
LLM, but rather the LLM is prompted to gener-
ate both the text sequence to be classified and the
corresponding label. To evaluate the output of the
LLMs generated in this way, we mapped the clas-
sified text sequences to the input sentence, then
tokenized it and assigned the label “None” to all
those tokens that were not labeled. The evaluation
was then based on these token-label pairs.

For all models, we set the temperature to 0.1 and
left top_k at the default of 5, in order to get results
relatively close to deterministic for reproducability.
For all other hyperparameters, we used the model-
specific default values.

5.2 Results

Before discussing results related to our research
questions, the general, best possible performance
measured in F1 on the entire test set for each model
can be seen in Table 1. Note that different mod-
els achieve best performance with different prompt
configurations. As can be seen, performance scores
for the emotion task are generally lower than for the
event task. Best models are GPT (for emotion) and
MIXTRAL (for event). We also compare with cur-
rent average results from the HuggingFace Open
LLM Leaderboard that — albeit on very different
tasks than ours — are in a similar range. The Hug-
gingFace average is composed of scores for six
different benchmarks, including math problems,
formatting challenges and language understanding.
The leaderboard does not include results for GPT-
4o. The similar range of results shows that the
scores in our experiments are not only due to our
CLS tasks, but also occur for more general tasks.
It should however be noted that the standard devia-
tion for the benchmark results from HuggingFace
are relatively high, with some benchmarks show-
ing scores of around 70% accuracy, while for other
benchmarks, the accuracy is under 10%.

5.2.1 Generalizability of Performance
Measurements

The results relevant to RQ1 can be found in Ta-
ble 2. Generally, the models achieve a mean of dif-
ferences for the different data sets between 4.2%

Model Emotion Event HF

GPT 27.04 29.03 -
LLAMA 19.21 28.93 28.20
MIXTRAL 22.72 32.6 23.84
SAUERKRAUT 21.79 28.04 28.68

Table 1: Overall best possible performance, mea-
sured in F1 score. Results have been achieved with
different prompt configurations. We also compare
to the average scores of the HuggingFace (HF)
benchmark on https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard,
last access on 15th November 2024.

Task Model Diff. (pp)

E
m

ot
io

n GPT 7.7
MIXTRAL 6.7
LLAMA 4.2
SAUERKRAUT 5.2

E
ve

nt
GPT 6.2
MIXTRAL 10.9
LLAMA 6.6
SAUERKRAUT 6.3

Table 2: Mean of differences of the F1-scores obtained
on the two test stets and p-values between the two test
sets per model for the Emotion and Event task. All
differences are statistically significant (p < 0.05).

and 10.9%. While these numbers seem small, they
represent a deviation of up to almost 11 percentage
points in F1 score, which would be a substantial
difference for most applications. The differences
between the F1 scores on the two data sets are sta-
tistically significant on both tasks for all models
(p-values < 0.05). The null hypothesis that differ-
ent data samples have no effect on the measure-
ment of performance can therefore be rejected in
all cases. This indicates that the measurement of
the performance on one test set does not general-
ize well to another test set. It must therefore be
expected that performance on new/unseen data sets
is significantly different. Possible reasons for this
are a.) that the models did not properly generalize
(i.e., learn the true nature of the task) or b.) that the
two test data sets are distributed differently.

5.2.2 Model Robustness against Prompt
Variations

The results for RQ2 can be found in Tables 5 and
6 (see Appendix) for the emotion and event task
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respectively. Please note that the table shows mean
and standard deviation of the F1 scores on the entire
test data set (i.e., the union of test 1 and test 2),
using four different variants of the prompts.

Generally, the models achieve a mean standard
deviation for the different component configuration
between 2.4 and 5.92%. While these numbers
seem small, they represent a deviation of up to 6
percentage points in F1 score, which would be a
substantial difference for most applications.

For the emotion task, LLAMA achieves the small-
est deviation over the formulations, and can thus
be considered the most robust model. For the
event task, SAUERKRAUT achieves the smallest
average deviation, although LLAMA’s deviation is
only slightly higher. GPT and MIXTRAL do not
show an interpretable pattern in this evaluation.

Compared to the results reported by Mizrahi et al.
(2024), we can confirm the observation that, de-
pending on the prompt formulation, any ranking of
the models can be achieved. We also note, however,
that the deviations are much smaller, albeit on a
generally low performance level.

5.2.3 Generalizability of Prompt Component
Importance

The analysis of prompt components, shown in
Figure 1 reveals that there are only few compo-
nents that occur in all best performing prompts
(steps three times, bribe one time out of a possi-
ble eight).13 Only for LLAMA, steps occurs in all
best performing prompts, making it the only occur-
rence were this happens. On average, components
occur only half of the time in all best performing
prompts across all models and tasks. Since this
is around chance level and we expected to see a
relatively high frequency for each component, we
conclude that the components are generally not a
useful addition to the prompts. Overall, no general
recommendation can be derived from these figures
for the inclusion of certain components in a uni-
formly designed prompt, at least for the two CLS
tasks and four models examined.

6 Discussion

Dividing the test data into two sub-data sets (RQ1)
shows a clear tendency: All four models perform in
a statistically significant way differently on the two
data sets. This is arguably not specific to prompting

13RQ3 has only been evaluated on test 1, since it yielded
the best average performance scores.

or large language models, but a general property of
machine learning approaches, although we are not
aware of work that systematically investigates this.
We believe this to be a consequence of how test data
is sampled, how much variety of the phenomenon
it covers, and, ultimately, how representative the
selected test sample is for other test samples or the
‘population’ in general. In particular the latter ques-
tion is not easy to answer, given that we are dealing
with historical and cultural data, which is subject
to a number of highly intransparent selection pro-
cesses (cf. Levi, 2013). Still, as it has been hinted
that large language models “understand” a prompt
(Bubeck et al., 2023)14 (which nobody has claimed
for classical machine learning algorithms), it can
be argued that if the models would have understood
those prompts, they would not show a statistically
significant difference on different test data sets.

The fact that different prompts lead to dif-
ferent responses (RQ2) is not surprising per se.
What Mizrahi et al. (2024) have uncovered is that
meaning-preserving prompt variants (e.g., spelling
variation or paraphrases) also lead to different re-
sponses, and that – when ranking models for their
performance – the exact prompt formulation has
tremendous influence on the ranking of such mod-
els. They therefore recommend to use the mean
performance over multiple prompts. Generally, we
also observe a difference in F1 score depending on
the exact prompt. While model ranking is not our
prime goal here, different model rankings can be
established from our experiments as well – which
makes the search for the ‘best model’ for a given
task more complex. However, the differences we
observe are rather modest, with standard devia-
tions over various prompt variants between 2 and
6 points in F1 score. Still, if the overall absolute
performance results were better, a difference in this
range could very well have impact on the applicabil-
ity of such a model in practice. To address specific
tasks, there is no alternative to having annotated
reference data and experimenting with different
formulations and parameters. At the same time, ex-
haustively searching the best setting is impossible.

Finally, we have investigated recommendations
that are often given for manually constructed
prompts (RQ3), on what to include in the prompt.

14The paper contains sentences such as: “One of the key
aspects of GPT-4’s intelligence is its generality, the ability to
seemingly understand and connect any topic, and to perform
tasks that go beyond the typical scope of narrow AI systems.”
(Bubeck et al., 2023, p. 7)
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Figure 1: RQ 3: Relative frequency of enabled prompt components in the best performing prompts for test 1,
measured per model and task and across paraphrases.

Our results support these recommendations only
partially. First of all, we see different results for
different tasks. Across the two tasks discussed in
this paper, we can only extract three clear trends:
a) LLAMA seems to benefit from using the steps-
component (asking the model to think step by step).
b) The same component seems to be detrimental for
the SAUERKRAUT model. c) SAUERKRAUT, on the
other hand, benefits from the bribe-component for
both tasks. For all other components and models,
no tendency can be discerned.

In general, across the three research questions in
this paper, there seems to be a generalizability issue
(which is also discussed in recent papers in philos-
ophy of science, cf. Buijsman and Durán, 2024).
Generalizing from any scientific experiment to the
‘real world’ (or, more technically, from lab data
to application data) rests on certain assumptions
about model behavior and data sets. This applies
first to the performance measures that have been
achieved on a test set – assuming representativity
of the test set, performance will be roughly similar
during application. This is, in practice, impossible
to control and verify. Secondly, as the actual perfor-
mance of a model-prompt-pair varies substantially
depending on prompt variations, it is impossible
to recommend a model or prompt formulation that
is in general beneficial to the performance results.
This holds not only to the formulation variants of a
prompt, but, thirdly, also to the selection of prompt
components. While there is no reason to believe
that the same prompt component will always be

beneficial (or detrimental) to the results – properly
establishing prompt components that often lead to
better results would require either a huge project
or a number of meta studies that investigate many
different existing publications.

Conversely, the scientific use of LLMs and
prompting as a ML technique is usually not about
general chat functionality (as is a smart personal
assistant or “general artificial intelligence”), but
about very specific questions and tasks. The gen-
eral performance of a LLM (measured on some
benchmark) may not be indicative for the specific
tasks that a researcher from CLS has as their goal.
For solving specific tasks, using reference data as
train/test data still is the only way to systemati-
cally search for the best performing combination
of model, prompt and parameters.

7 Conclusions

We were able to show that (i) LLM models are sen-
sitive to data splits (ii) the choice of prompt-model
combination determines the success in performance
to a high degree and (iii) the helpfulness of fixed
components in the prompts to increase performance
can not be corroborated for all models for the given
tasks. Overall, it could also be shown that all tested
models have problems to reach satisfying results on
both tasks (emotion and event sequences classifica-
tion), casting doubt on the immediate usefulness of
in-context, zero-shot LLM-sequence-classification
for the given CLS tasks.
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Limitations

Due to the complexity of the model architectures,
which is known to be not publicly available for
many models (Liesenfeld et al., 2023), as well as
the effort involved in the manual creation of refer-
ence data curated by specialists, the present study
could not take into account all factors that we be-
lieve are relevant for assessing its results. This is
not least due to the fact that there is still no gener-
ally valid and generic formula for what is ultimately
relevant for the results that a specific LLM achieves
on specific data. Of the factors that we consider
relevant, we were unable to take into account the
following in particular: 1) The theory dependency
of the evaluation data: In the Digital Humanities
in general and CLS in particular, the theoretical
orientation determines which concepts are opera-
tionalized and how they are subsequently measured.
It can be assumed that alternative annotation guide-
lines that are also plausible from a literary studies
perspective can be created for the two tasks we
examined. In this respect, the classification tasks
evaluated here should be tested on several curated
reference data sets in order to check the extent to
which different operationalization approaches af-
fect the performance of the models via the detour of
the reference data. 2) The statistical representative-
ness of the data split: this is unclear since we only
worked with two test splits, although it is unlikely
that different splits on the current data would result
in significant difference in performance. 3) The
data on which the models were trained: for each
task, we only evaluated one dataset with certain
choices made that other datasets on the same task
might not contain. 4.) the answer-space-mapping:
i.e. it is completely unclear if the internal represen-
tations of the model that produce natural-language-
like output correspond directly to the assumptions
that domain specialists have when applying pre-
defined class-labels.

Another limitation that needs to be mentioned
is related to the tasks we discuss here: Both of
them have clear roots in CLS, although they may
not be what is ultimately interesting to a literary
scholar. Literary research questions, if they are not
on specific interpretations of specific texts, which
rules out quantitative approaches a priori, are com-
plex, multi-modal and highly context- and theory-
dependent. Addressing such tasks requires the inte-
gration of many different analysis components, and
we consider the two tasks under investigation to be

able to fill the role of two such components. Thus:
Both event and emotion detection do not address
literary research questions per se, the detection of
events and emotions is a relevant ingredient for
many, more abstract, literary research questions.
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A Dataset Examples

Sentence Class

For I fear the failing will go with me to the
grave that I am very ready to be annoyed,
even to the loss of my temper, at the
urgings of ignoble prudence.

anger

She would brighten up greatly at this, tak-
ing it for a compliment of the best sort.

anti-
cipation

For I fear the failing will go with me to
the grave that I am very ready to be an-
noyed, even to the loss of my temper, at
the urgings of ignoble prudence.

disgust

Through all its tremor, there was a look
of constancy that greatly pleased me.

fear

His smile was distinctly attractive. joy

’Eh,’ said the old man, staring at the
floor and lifting his hands up and down,
while his arms rested on the elbows of his
chair, ’it’s a poor tale if I mun leave th’
ould spot an be buried in a strange parish.

sad-
ness

Then she went on with a sudden out-
break of passion, a burst of summer thun-
der in a clear sky:

sur-
prise

”Not a doubt of it, my dear. trust

Table 3: Examples for annotations (bold) in dataset
“Emotion”.

Sentence Class

Ich glaube, Mama würde sich freuen,
wenn sie wüßte, daß ich so was gesagt
habe. stative
“I think mom would be happy if she
knew I said something like that.”

Sidonie nickte.
process

“Sidonie noded.”

Effi, als sie seiner ansichtig wurde, kam
in ein nervöses Zittern; change

of
state

“Effi, when she saw him, began to trem-
ble nervously;”

In drei Tagen feiern wir Sylvester. non
event“In three days we will celebrate New

Year’s Eve.”

Table 4: Examples for annotations (bold) in dataset
“Event” from the text Effi Briest.

B Prompt Templates

1 ### Role
2 You are a literary scholar.
3

4 ### Instruction
5 Your task is to classify parts of

sentences on the basis of labels
given to you.

6 This should be done in two steps:
First , extract the part of the
sentence to which one of the three
labels applies. Then output this
label.

7

8 Let 's think step by step. <step >
9 I'm going to tip $1000 for a better

solution! <bribe >
10

11 ### Labels
12 Select one of the following labels to

classify a text excerpt:
13 Label: process
14 Label: stative_event
15 Label: non_event
16

17 ### Application
18 When annotating text snippets , the

following steps should be taken to
determine the appropriate label:

19 1. ** Identify the Main Verb **:
Determine the main verb in the
sentence or clause to understand
the nature of the action or state
being described.

20 2. ** Analyze the Context **: Consider
the surrounding context to ensure
the correct interpretation of the
verb and the overall meaning of the
snippet.

21 3. ** Assign the Label **:
22 - If the text is purely

descriptive or provides background
information without any action ,
label it as non_event.

23 - If the text describes a
state or condition without any
dynamic action , label it as
stative_event.

24 - If the text describes an
action or process that involves
change or progression , label it as
process.

25

26 ### Output format
27 Use the following output format:
28 Part of Sentence to be labeled: str
29 Label: str
30

31 Do NOT generate any more text or
repeat the input!

32 Doing this task well is very important
for my career. <stakes >

33

34 ### What types of event can be found
in the following sentence: {snippet
}

35 Part of Sentence to be labeled:
36 Label:
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Listing 1: Example prompt (Template 1; Event). The
occurrance of the component phrases is annotated in
angle brackets.

1 ### Role
2 You are a literary scholar.
3

4 ### Instruction
5 Your assignment is to identify and

categorize specific segments of
sentences according to predefined
labels provided to you.

6 This process involves two steps: First
, isolate the relevant portion of
the sentence that corresponds to
one of the three labels. Then ,
assign the appropriate label to
that portion.

7

8 Let 's approach this systematically ,
one step at a time.

9 I will reward $1000 for anyone who can
deliver a more optimal solution.

10

11 ### Labels
12 Select one of the following labels to

classify a text excerpt:
13 Label: process
14 Label: stative_event
15 Label: non_event
16

17 ### Application
18 When annotating text snippets , the

following steps should be taken to
determine the appropriate label:

19 1. ** Identify the Main Verb **:
Determine the main verb in the
sentence or clause to understand
the nature of the action or state
being described.

20 2. ** Analyze the Context **: Consider
the surrounding context to ensure
the correct interpretation of the
verb and the overall meaning of the
snippet.

21 3. ** Assign the Label **:
22 - If the text is purely

descriptive or provides background
information without any action ,
label it as non_event.

23 - If the text describes a
state or condition without any
dynamic action , label it as
stative_event.

24 - If the text describes an
action or process that involves
change or progression , label it as
process.

25

26 ### Output format
27 Use the following output format:
28 Part of Sentence to be labeled: str
29 Label: str
30

31 Do NOT generate any more text or
repeat the input!

32

33 ### What types of event can be found
in the following sentence: {snippet
}

34 Part of Sentence to be labeled:
35 Label:

Listing 2: "Prompt (Template 2; Event; all
components)."

1 ### Role
2 You are a literary scholar.
3

4 ### Instruction
5 Your objective is to analyze sentences

and label specific parts based on
the given set of labels.

6 This task should be completed in two
phases: Initially , identify the
segment of the sentence that
matches one of the three labels.
Subsequently , assign the
corresponding label to that segment
.

7

8 Let 's break this down into manageable
steps.

9 I'm prepared to give a $1000 tip for a
superior solution.

10

11 ### Labels
12 Select one of the following labels to

classify a text excerpt:
13

14 Label: anger
15 Label: joy
16 Label: surprise
17 Label: sadness
18 Label: disgust
19

20 ### Application
21 When annotating text snippets , span

annotations of key words (e. g., "
afraid ") should be prefered , except
cases when

22 emotions are only expressed with a
phrase (e. g., "tense and
frightened ") or indirectly (e. g.,
"the corners of her mouth went down
").

23 Each span is associated with one or
more emotion.

24

25 ### Output format
26 Use the following output format:
27 Part of Sentence to be labeled: str
28 Label: str
29

30 Do NOT generate any more text or
repeat the input!

31

32 ### What types of emotion can be found
in the follwing text snippet: {

snippet}
33 Part of Sentence to be labeled:
34 Label:

Listing 3: "Prompt (Template 3; Emotion; all
components)."
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1 ### Role
2 You are a literary scholar.
3

4 ### Instruction
5 Your mission is to examine sentences

and categorize certain elements
using the provided labels.

6 This should be accomplished in two
stages: First , pinpoint the portion
of the sentence that aligns with

one of the three labels. Then ,
designate the appropriate label for
that portion.

7

8 Let 's tackle this challenge
methodically , step by step.

9 To encourage a superior answer , I will
provide a tip of $1000.

10

11 ### Labels
12 Select one of the following labels to

classify a text excerpt:
13

14 Label: anger
15 Label: joy
16 Label: surprise
17 Label: sadness
18 Label: disgust
19

20 ### Application
21 When annotating text snippets , span

annotations of key words (e. g., "
afraid ") should be prefered , except
cases when

22 emotions are only expressed with a
phrase (e. g., "tense and
frightened ") or indirectly (e. g.,
"the corners of her mouth went down
").

23 Each span is associated with one or
more emotion.

24

25 ### Output format
26 Use the following output format:
27 Part of Sentence to be labeled: str
28 Label: str
29

30 Do NOT generate any more text or
repeat the input!

31

32 ### What types of emotion can be found
in the follwing text snippet: {

snippet}
33 Part of Sentence to be labeled:
34 Label:

Listing 4: "Prompt (Template 4; Emotion; all
components)."

C Full Results

Components Over 4 variants

M
od

el

B
ri

be

St
ak

es

St
ep

s

M
ea

n

St
d.

de
v.

G
P

T

− − − 18.27 5.24
− − + 18.58 5.31
− + − 18.01 4.76
− + + 17.15 3.95
+ − − 17.74 4.65
+ − + 17.5 4.83
+ + − 17.67 4.3
+ + + 17.42 4.58

Mean 17.79 4.7
L

L
A

M
A

− − − 14.47 2
− − + 15.41 3.04
− + − 14.63 2.21
− + + 15.16 2.53
+ − − 14.15 1.96
+ − + 15.27 2.46
+ + − 14.41 2.54
+ + + 15.19 2.47

Mean 14.84 2.4

M
IX

T
R

A
L

− − − 16.34 3.44
− − + 16.85 3.93
− + − 16.74 3.54
− + + 16.52 3.35
+ − − 16.92 4.14
+ − + 16.33 3.54
+ + − 16.89 3.86
+ + + 16.51 3.46

Mean 16.64 3.66

S
A

U
E

R
K

R
A

U
T

− − − 16.0 2.69
− − + 15.53 2.69
− + − 15.74 2.48
− + + 15.87 2.88
+ − − 15.97 3.23
+ − + 15.3 2.43
+ + − 16.16 3.29
+ + + 16.12 3.47

Mean 15.84 2.9

Table 5: RQ 2: Robustness against prompt variations
(emotion task)
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Components Over 4 variants
M

od
el

B
ri

be

St
ak

es

St
ep

s

M
ea

n

St
d.

de
v.

G
P

T

− − − 21.86 3.9
− − + 22.03 3.69
− + − 21.45 4.08
− + + 21.85 3.91
+ − − 21.29 3.88
+ − + 21.34 3.8
+ + − 21.48 3.9
+ + + 21.01 3.3

Mean 21.54 3.81

L
L

A
M

A

− − − 20.22 3.05
− − + 20.17 4.46
− + − 19.47 3.14
− + + 20.59 4.56
+ − − 19.71 3.28
+ − + 22.0 4.79
+ + − 19.71 3.67
+ + + 21.43 4.39

Mean 20.41 3.92

M
IX

T
R

A
L

− − − 24.3 6.08
− − + 23.98 5.72
− + − 23.68 5.54
− + + 24.18 5.84
+ − − 24.07 5.9
+ − + 23.8 5.86
+ + − 24.51 6.53
+ + + 23.84 5.88

Mean 24.05 5.92

S
A

U
E

R
K

R
A

U
T

− − − 22.19 3.68
− − + 21.9 3
− + − 22.36 3.61
− + + 22.46 3.79
+ − − 22.63 4.04
+ − + 22.04 3.01
+ + − 22.94 3.59
+ + + 22.6 3.25

Mean 22.39 3.5

Table 6: RQ 2: Robustness against prompt variations
(event task)
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